首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Velocity measurements with vertical resolution 0.02 m were conducted in the lowest 0.5 m of the water column using acoustic Doppler current profiler (ADCP) at a test site in the western part of the East China Sea. The friction velocity u * and the turbulent kinetic energy dissipation rate ε wl(ζ) profiles were calculated using log-layer fits; ζ is the height above the bottom. During a semidiurnal tidal cycle, u * was found to vary in the range (1–7) × 10−3 m/s. The law-of-the-wall dissipation profiles ε wl(ζ) were consistent with the dissipation profiles ε mc(ζ) evaluated using independent microstructure measurements of small-scale shear, except in the presence of westward currents. It was hypothesized that an isolated bathymetric rise (25 m height at a 50-m seafloor) located to the east of the measurement site is responsible for the latter. Calculation of the depth integrated internal tide generating body force in the region showed that the flanks of the rise are hotspots of internal wave energy that may locally produce a significant turbulent zone while emitting tidal and shorter nonlinear internal waves. This distant topographic source of turbulence may enhance the microstructure-based dissipation levels ε mc(ζ) in the bottom boundary layer (BBL) beyond the dissipation ε wl(ζ) associated with purely locally generated turbulence by skin currents. Semi-empirical estimates for dissipation at a distance from the bathymetric rise agree well with the BBL values of ε mc measured 15 km upslope.  相似文献   

2.
On the vertical structure of the Rhine region of freshwater influence   总被引:1,自引:0,他引:1  
An idealised three-dimensional numerical model of the Rhine region of fresh water influence (ROFI) was set up to explore the effect of stratification on the vertical structure of the tidal currents. Prandle’s dynamic Ekman layer model, in the case of zero-depth-averaged, cross-shore velocities, was first used to validate the response of the numerical model in the case of barotropic tidal flow. Prandle’s model predicted rectilinear tidal currents with an ellipse veering of up to 2%. The behaviour of the Rhine ROFI in response to both a neap and a spring tide was then investigated. For the given numerical specifications, the Rhine plume region was well mixed over the vertical on spring tide and stratified on neap tide. During spring conditions, rectilinear tidal surface currents were found along the Dutch coast. In contrast, during neap conditions, significant cross-shore currents and tidal straining were observed. Prandle’s model predicted ellipse veering of 50%, and was found to be a good indicator of ellipticity magnitude as a function of bulk vertical eddy viscosity. The modelled tidal ellipses showed that surface currents rotated anti-cyclonically whereas bottom currents rotated cyclonically. This caused a semi-diurnal cross-shore velocity shearing which was 90° out of phase with the alongshore currents. This cross-shore shear subsequently acted on the horizontal density gradient in the plume, thereby causing a semi-diurnal stratification pattern, with maximum stratification around high water. The same behaviour was exhibited in simulations of a complete spring–neap tidal cycle. This showed a pattern of recurring stratification on neaps and de-stratification on springs, in accordance with observations collected from field campaigns in the 1990’s. To understand the increase in ellipticities to 30% during neaps and the precise shape of the vertical ellipse structure, stratification has to be taken into account. Here, a full three-dimensional numerical model was employed, and was found to represent the effect of de-coupling of the upper and lower layers due to a reduction of mixing at the pycnocline.  相似文献   

3.
Understanding the fate of freshwater runoff and corresponding nutrient and pollution loads is of critical importance for the development of accurate predictive models and coastal management tools. A key element of such studies is the identification and understanding of the interaction between stratification and current structure. This paper presents a new series of measurements made in the Liverpool Bay region of freshwater influence (ROFI) during spring 2004 where freshwater-maintained horizontal density gradients and strong tidal currents interact to produce strain-induced periodic stratification (SIPS). During stratification, tidal current profiles are significantly modified such that the tidal flow deviates from the otherwise rectilinear E–W axis generating counter rotating upper and lower mixed layers. This feature has often been reported for the Rhine ROFI but not previously identified in Liverpool Bay despite previous investigation at this site. Investigation of an ongoing long-term dataset collected nearby reveals this process to be a common feature throughout the year. Liverpool Bay is shown to maintain three different regimes, long term mixed, long term stratified, and a transitional state when SIPS occurs. The phase of SIPS relative to the tide results in a residual flow away from the Welsh coastline in the upper water column of 2.3–3.6 cm s−1 with a counterflow in the lower layer of 2.8–3.1 cm s−1 towards the coast.  相似文献   

4.
Variations of wind direction and strength in the Tay Estuary control wave generation and the resultant patterns of suspended sediment concentration in the waters over the extensive tidal flats. Bodies of water with high water concentration peaks advect to occupy sites at which turbidity maxima are normally present at low water. Other low water peaks are generated by ebb tidal current resuspension.  相似文献   

5.
Bottom-mounted ADV and ADCP instruments in combination with CTD profiling measurements taken along the Chinese coast of the East China Sea were used to study the vertical structure of temperature, salinity, and velocity in reversing tidal currents on a shallow inner shelf and in rotating tidal flows over a deeper sloping bottom of the outer shelf. These two regimes of barotropic tide affect small-scale dynamics in the lower part of the water column differently. The reversing flow was superimposed by seiches of ∼2.3 h period generated in semienclosed Jiaozhou Bay located nearby. As the tidal vector rotates over the sloping bottom, the height of the near-bottom logarithmic layer is subjected to tidal-induced variations. A maximum of horizontal velocity Umax appears at the upper boundary of the log layer during the first half of the current vector rotation from the minor to the major axis of tidal ellipse. In rotating tidal flow, vertical shear generated at the seafloor, propagated slowly to the water interior up to the height of Umax, with a phase speed of ∼5 m/h. The time-shifted shear inside the water column, relative to the shear at the bottom, was associated with periodically changing increases and decreases of the tidal velocity above the log layer toward the sea surface. In reversing flows, the shear generated near the bottom and the shear at the upper levels were almost in phase.  相似文献   

6.
In this paper SST imagery and a three-dimensional numerical model of a river plume were employed to detect upwelling induced by tidal straining in the Rhine ROFI (region of fresh water influence). Previous studies have shown that the Rhine ROFI in the North Sea exhibits strong cross-shore density gradients that compete with tidal and wind mixing to establish stratification. During neap periods with low mixing energy an area measuring 30 km offshore by 100 km alongshore becomes stratified. When the ROFI is stratified strong cross-shore currents are observed, with surface currents rotating anti-cyclonically and bottom currents rotating cyclonically. The cross-shore currents interact with the cross-shore density gradients to produce a semi-diurnal cycle of stratification. Due to continuity requirements imposed by the proximity of the coast, the offshore-directed surface currents and onshore-directed bottom currents should lead to coastal upwelling.  相似文献   

7.
Vertical mixing by the tides plays a key role in controlling water column structure over the seasonal cycle in shelf seas. The influence of tidal stirring is generally well represented as a competition between surface buoyancy input and the production of turbulent kinetic energy (TKE) by frictional stresses, a competition which is encapsulated in the Qh/u3 criterion. An alternative control mechanism arises from the limitation of the thickness of the bottom boundary layer due to the effects of rotation and the oscillation of the flow. Model studies indicate that, for conditions typical of the European shelf seas, the energy constraint exerts the dominant control but that for tidal streams with large positive polarisation (i.e. anti-clockwise rotation of velocity vector), some influence of rotation in limiting mixing should be detectable. We report here measurements of flow structure (with ADCPs) and turbulent dissipation (FLY Profiler) made at two similar locations in the Celtic Sea which differ principally in that the tidal currents rotate in opposite senses with approximately equal magnitude (polarity P=±0.6). A clear contrast was observed between the two sites in the vertical structure of the currents, the density profile and the rate of dissipation of TKE. At the positive polarity (PP) site (P≈+0.6), the bottom boundary layer in the tidal flow was limited to ∼20 mab (metre above the bed) and significant dissipation from bottom boundary friction was constrained within this layer. At the negative polarity (NP) site (P≈−0.6), the dominant clockwise rotary current component exhibited a velocity defect (i.e. reduction relative to the free stream) extending into the upper half of the water column while significant dissipation was observed to penetrate much further up the water column with dissipation levels ∼10−4.5 W m−3 reaching to the base of the pycnocline at 70–80 mab. These contrasting features of the vertical distribution of dissipation are well reproduced by a 1-D model when run with windstress and tidal forcing and using the observed density profile. Model runs with reversed polarity at the two sites, support the conclusion that the observed contrast in the structure of tidal velocity, dissipation and stratification is due to the influence of tidal stream polarity. Increased positive polarity reduces the upward penetration of mixing which allows the development of stronger seasonal stratification, which, in turn, further inhibits vertical mixing.  相似文献   

8.
Several field studies in bays and estuaries have revealed pronounced subsurface maxima in the vertical profiles of the current amplitude of the principal tidal harmonic, or of its vertical shear, over the water column. To gain fundamental understanding about these phenomena, a semi-analytical model is designed and analysed, with focus on the sensitivity of the vertical structure of the tidal current amplitude to formulations of the vertical shape of the eddy viscosity. The new analytical solutions for the tidal current amplitude are used to explore their dependence on the degree of surface mixing, the vertical shape of eddy viscosity in the upper part of the water column and the density stratification. Sources of surface mixing are wind and whitecapping. Results show three types of current amplitude profiles of tidal harmonics, characterised by monotonically decreasing shear towards the surface, “surface jumps” (vertical shear of tidal current amplitude has a subsurface maximum) and “subsurface jets” (maximum tidal current amplitude below the surface), respectively. The “surface jumps” and “subsurface jets” both occur for low turbulence near the surface, whilst additionally the surface jumps only occur if the eddy viscosity in the upper part of the water column decreases faster than linearly to the surface. Furthermore, “surface jumps” take place for low density stratification, while and “subsurface jets” occur for high density stratification. The physics causing the presence of surface jumps and subsurface jets is also discussed.  相似文献   

9.
The role of water depth and bottom boundary layer turbulence upon lee-wave generation in sill regions is examined. Their effect upon vertical mixing is also considered. Calculations are performed using a non-hydrostatic model in cross-section form with a specified tidal forcing. Initial calculations in deeper water and a sill height such that the sill top is well removed from the surrounding bed region showed that downstream lee-wave generation and associated mixing increased as bottom friction coefficient k increased. This was associated with an increase in current shear across the sill. However, for a given k, increasing vertical eddy viscosity A v reduced vertical shear in the across sill velocity, leading to a reduction in lee-wave amplitude and associated mixing. Subsequent calculations using shallower water showed that for a given k and A v, lee-wave generation was reduced due to the shallower water depth and changes in the bottom boundary layer. However, in this case (unlike in the deepwater case), there is an appreciable bottom current. This gives rise to bottom mixing which in shallow water extends to mid-depth and enhances the mid-water mixing that is found on the lee side of the sill. Final calculations with deeper water but small sill height showed that lee waves could propagate over the sill, thereby reducing their contribution to mixing. In this case, bottom mixing was the major source of mixing which was mainly confined to the near bed region, with little mid-water mixing.  相似文献   

10.
Near‐bed, highly resolved velocity profiles were measured in the lower 0.03 m of the water column using acoustic Doppler profiling velocimeters in narrow tidal channels in a salt marsh. The bed shear stress was estimated from the velocity profiles using three methods: the log‐law, Reynolds stress, and shear stress derived from the turbulent kinetic energy (TKE). Bed shear stresses were largest during ebbing tide, while near‐bed velocities were larger during flooding tide. The Reynolds stress and TKE method gave similar results, while the log‐law method resulted in smaller bed shear stress values during ebbing tide. Shear stresses and turbulent kinetic energy followed a similar trend with the largest peaks during ebbing tide. The maximum turbulent kinetic energy was on the order of 1 × 10? 2 m2/s2. The fluid shear stress during flooding tide was approximately 30% of the fluid shear stress during ebbing tide. The maximum TKE‐derived shear stress was 0.7 N/m2 and 2.7 N/m2 during flooding and ebbing tide, respectively, and occurred around 0.02 m above the bed. Turbulence dissipation was estimated using the frequency spectrum and structure function methods. Turbulence dissipation estimates from both methods were maximum near the bed (~0.01 m). Both the structure function and the frequency spectrum methods resulted in maximum dissipation estimates on the order of 4 × 10? 3 m2/s3. Turbulence production exceeded turbulence dissipation at every phase of the tide, suggesting that advection and vertical diffusion are not negligible. However, turbulence production and dissipation were within a factor of 2 for 77% of the estimates. The turbulence production and dissipation decreased quickly away from the bed, suggesting that measurements higher in the water column cannot be translated directly to turbulence production and dissipation estimates near the bed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Liverpool Bay is a region of freshwater influence which receives significant freshwater loading from a number of major English and Welsh rivers. Strong tidal current flow interacts with a persistent freshwater-induced horizontal density gradient to produce strain-induced periodic stratification (SIPS). Recent work (Palmer in Ocean Dyn 60:219–226, 2010; Verspecht et al. in Geophys Res Lett 37:L18602, 2010) has identified significant modification to tidal ellipses in Liverpool Bay during stratification due to an associated reduction in pycnocline eddy viscosity. Palmer (Ocean Dyn 60:219–226, 2010) identified that this modification results in asymmetry in flow in the upper and lower layers capable of permanently transporting freshwater away from the Welsh coastline via a SIPS pumping mechanism. Observational data from a new set of observations from the Irish Sea Observatory site B confirm these results; the measured residual flow is 4.0 cm s−1 to the north in the surface mixed layer and 2.4 cm s−1 to the south in the bottom mixed layer. A realistically forced 3D hydrodynamic ocean model POLCOMS succeeds in reproducing many of the characteristics of flow and vertical density structure at site B and is used to estimate the transport of water through a transect WT that runs parallel with the Welsh coast. Model results show that SIPS is the dominant steady state, occurring for 78.2% of the time whilst enduring stratification exists only 21.0% of the year and enduring mixed periods, <1%. SIPS produces a persistent offshore flow of freshened surface water throughout the year. The estimated net flux of water in the surface mixed layer is 327 km3 year 1, of which 281 km3 year−1 is attributable to SIPS periods. Whilst the freshwater component of this flux is small, the net flux of freshwater through WT during SIPS is significant, the model estimates 1.69 km3 year−1 of freshwater to be transported away from the coast attributable to SIPS periods equivalent to 23% of annual average river flow from the four catchment areas feeding Liverpool Bay. The results show SIPS pumping to be an important process in determining the fate of freshwater and associated loads entering Liverpool Bay.  相似文献   

12.
Measurements are presented of the properties of suspended particulate matter (SPM) in the estuarine turbidity maximum (ETM) of the upper Humber and Ouse estuaries during transient, relatively low freshwater inflow conditions of September 1995. Very high concentrations of near-bed SPM (more than 100 g l−1) were observed in the low-salinity (less than 1), upper reaches. SPM within the ETM consisted largely of fine sediment (silt and clay) that existed as microfloc and macrofloc aggregates and individual particles. Primary sediment particles were very fine grained, and typically, about 20–30% was clay-sized at high water. The clay mineralogy was dominated by chlorite and illite. There was a pronounced increase in particle size in the tidal river, up-estuary of the ETM. The mean specific surface area (SSA) of near-bed SPM within the ETM was 22 m2 g−1 on a spring tide and 24 m2 g−1 on a neap tide. A tidal cycle of measurements within a near-bed, high concentration SPM layer during a very small neap tide gave a mean SSA of 26 m2 g−1. The percentage of silt and clay in surficial bed sediments along the main channel of the estuary varied strongly. The relatively low silt and clay percentage of surficial bed sediments (about 10–35%) within the ETM’s region of highest near-bed SPM concentrations and their low SSA values were in marked contrast to the overlying SPM. The loss on ignition (LOI) of near-bed SPM in the turbid reaches of the estuary was about 10%, compared with about 12% for surface SPM and more than 40% in the very low turbidity waters up-estuary of the ETM. Settling velocities of Humber–Ouse SPM, sampled in situ and measured using a settling column, maximized at 1.5 mm s−1 and exhibited hindered settling at higher SPM concentrations.  相似文献   

13.
Physical and dynamical oceanography of Liverpool Bay   总被引:1,自引:1,他引:0  
The UK National Oceanography Centre has maintained an observatory in Liverpool Bay since August 2002. Over 8 years of observational measurements are used in conjunction with regional ocean modelling data to describe the physical and dynamical oceanography of Liverpool Bay and to validate the regional model, POLCOMS. Tidal dynamics and plume buoyancy govern the fate of the fresh water as it enters the sea, as well as the fate of its sediment, contaminants and nutrient loads. In this context, an overview and summary of Liverpool Bay tidal dynamics are presented. Freshwater forcing statistics are presented showing that on average the bay receives 233 m3 s − 1. Though the region is salinity controlled, river input temperature is shown to significantly modulate the plume buoyancy with a seasonal cycle. Stratification strongly influences the region’s dynamics. Data from long-term moored instrumentation are used to analyse the stratification statistics that are representative of the region. It is shown that for 65% of tidal cycles, the region alternates between being vertically mixed and stratified. Plume dynamics are diagnosed from the model and are presented for the region. The spring–neap modulation of the plume’s westward extent, between 3.5 °W and 4°W, is highlighted. The rapid eastward erosion of the plume during spring tides is identified as a potentially important freshwater mixing mechanism. Novel climatological maps of temperature, salinity and density from the CTD surveys are presented and used to validate numerical simulations. The model is found to be sensitive to the freshwater forcing rates, temperature and salinities. The existing CTD survey grid is shown to not extend sufficiently near the coast to capture the near coastal and vertically mixed component the plume. Instead the survey grid captures the westward spreading, shallow and transient, portion of the plume. This transient plume feature is shown in both the long-term averaged model and observational data as a band of stratified fluid stretching between the mouth of the Mersey towards the Isle of Man. Finally the residual circulation is discussed. Long-term moored ADCP data are favourably compared with model data, showing the general northward flow of surface water and southward trajectory of bottom water.  相似文献   

14.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

15.
《Continental Shelf Research》2006,26(17-18):2019-2028
Measurements of turbulence and suspended particulate matter (SPM) were measured over a 50 h period at a site in high tidal energy, mixed waters of the Irish Sea, NW European shelf. Turbulence parameters included both production (variance method from seabed ADCP) and dissipation (FLY profiler); SPM parameters included mass and volume concentrations and particle size (LISST 100 C). It is shown that the resultant SPM time series was due to a combination of time-varying turbulence at the measurement site and space-varying turbulence advecting through the site. Time asymmetry in turbulence at the site produced an asymmetric M4 signal in SPM volume concentration due to resuspension and disaggregation of flocs at times of peak turbulent energy. In terms of mass, the disaggregation contribution was 43% as much as the resuspension contribution near the bed, and 20% as much integrated throughout the water column. There was aggregation of flocs at high and low slack waters but the largest flocs occurred at low slack waters. Space-varying ambient turbulence was responsible for a horizontal gradient in floc size with small and large flocs at the high and low ends of the gradient, respectively; this generated a M2 signal in SPM properties. SPM concentrations and properties at any time resulted from combination of M2 and M4 variations which are responsible for the well-known twin peaks signature seen in transmissometer time series in tidal waters.  相似文献   

16.
Turbulence measurements were collected in the bottom boundary layer of the California inner shelf near Point Sal, CA, for 2 months during summer 2015. The water column at Point Sal is stratified by temperature, and internal bores propagate through the region regularly. We collected velocity, temperature, and turbulence data on the inner shelf at a 30-m deep site. We estimated the turbulent shear production (P), turbulent dissipation rate (ε), and vertical diffusive transport (T), to investigate the near-bed local turbulent kinetic energy (TKE) budget. We observed that the local TKE budget showed an approximate balance (P?≈?ε) during the observational period, and that buoyancy generally did not affect the TKE balance. On a finer resolution timescale, we explored the balance between dissipation and models for production and observed that internal waves did not affect the balance in TKE at this depth.  相似文献   

17.
The freshwater budget of a tidal flat area is evaluated from long-term hydrographic time series from an observation pole positioned in a tidal channel in the Hörnum Basin (Germany). For each tidal cycle, the freshwater budget is calculated from the total imported and exported water volumes and the corresponding mean densities. The variability of the budget on a tidal scale is characterised by a period of twice the tidal period, exhibiting a minimum when the tidal flats are dry around daylight hours during the foregoing low tide, and a maximum when low tide occurs at night; enhanced evaporation on the flats at daylight hours is identified as the driving process. On the average over one year, while winter observations are missing, the freshwater budget is negative for the years 2002–2005 and positive only for 2006. The interannual mean is negative and amounts to a freshwater loss of about 2 mm day−1, although the large-scale climate in this region is humid. The results demonstrate that the bulk parametrisations for the latent and sensible heat flux between the ocean and the atmosphere must not be applied for the tidelands.  相似文献   

18.
Modern diatom distribution patterns in the surface sediment of the Ferrol Ría and their relationship to the hydrography and diatom patterns in the water column were studied to determine the hydrographic influence on the record of these biogenic components. Diatom abundance in the water column was assessed for different oceanographic periods and compared with the biosiliceous sedimentary record. Very low abundances were found in the water column during the winter, whereas in spring and summer, diatoms proliferated. Chaetoceros spp. formed the bulk of the water column community during spring and summer, followed by Thalassionema nitzschioides and Rhizosolenia spp. Nitzschia longissima represented a significant portion of the winter assemblage, together with Paralia sulcata and benthic taxa. Leptocylindrus danicus, N. longissima and Skeletonema costatum characterized the autumn campaign, when stratification of the waters occurs, with L. danicus being especially abundant in the outer ría.Seasonal hydrographic and associated productivity patterns govern the abundance and assemblage of the diatoms preserved in surface sediments. Samples located in the inner ría area and its margins exhibited the highest abundances of diatoms, and were primarily dominated by benthic species. The freshwater group, crysophycean cysts and phytoliths were present in the landward stations influenced by river runoff. The middle ría was characterized by P. sulcata and Thalassiosira spp., with minor occurrences of the benthic and freshwater group. Chaetoceros R.S., L. danicus R.S. and T. nitzschioides typified the outer ría, an assemblage that corresponds to nutrient-rich coastal areas of high productivity influenced by oceanic waters, demonstrating the impact of oceanic waters flowing into the embayment due to enhanced tidal mixing through the narrow channel. Therefore, sediment diatom assemblages reflect diatom production patterns in the water column of the Ría. However, we must proceed with caution when interpreting the paleorecord in the inner area due to the high contribution of allochthonous taxa, which is indicative of low water depths. This paper contributes to a better understanding of diatom thanatocoenosis in the Galician Rías, where very few studies of this kind have been done to date.  相似文献   

19.
Few hyperpycnal flows have ever been observed in marine environments although they are believed to play a critical role in sediment dispersal within estuarine and deltaic depositional systems. The paper describes hyperpycnal flows observed in situ off the Huanghe (Yellow River) mouth, their relationship to tidal cycles, and the mechanisms that drive them. Simultaneous observations at six mooring stations during a cruise off the Huanghe mouth in the flood season of 1995 suggest that hyperpycnal flows observed at the river mouth are initiated by high concentrations of sediment input from river and modulated by tides. Hyperpycnal flows started near the end of ebb tides, when near‐bottom suspended sediment concentration (SSC) increased rapidly and salinity decreased drastically (an inverse salt wedge). The median grain size of suspended particles within the hyperpycnal layer increased, causing strong stratification of the suspended sediments in the water column. Towards the end of flood tides, the hyperpycnal flow attenuated due to frictions at the upper and lower boundaries of the flow and tidal mixing, which collapsed the stratification of the water column. Both sediment concentration and median grain size of suspended particles within the bottom layer significantly decreased. The coarser sediment particles were deposited and the hyperpycnal flows stopped. The intra‐tidal behaviors of hyperpycnal flows are closely associated with the variations of SSC, salinity, and stratification of the water column. As nearly 90% of riverine sediment is delivered to the sea during the flood seasons when hyperpycnal flows are active, hyperpycnal flows at the Huanghe mouth and the river's high sediment loads have caused rapid accretion of the Huanghe delta. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A two-dimensional vertically integrated model of the North Sea is used to compute the distribution of M2 and M4 tidal elevations and currents over the region. Comparison of computed and observed elevations and currents in the area shows that the model can accurately reproduce the M2 tide in the North Sea, although there are difficulties with the M4 tide particularly in the northern North Sea.Comparison between model and a large number of observations collected in a shallow water region off the east coast of England, revealed that the model can accurately reproduce the tides even in near coastal regions, where model resolution problems can occur. Comparisons of computed and observed M2 tidal energy fluxes in this region, show that model and observations agree to within the order of 10% (the error associated with the necessary interpolation of the observations in order to compute the energy flux).The problem of computing energy dissipation in the area by subtracting the energy fluxes into and out of the region is shown to be ill-conditioned in that the energy dissipation in the area is comparable to the error in the energy flux. Consequently for the sea region considered here it is not meaningful to compare this energy budget with energy dissipation due to bottom friction.Energy dissipation for the whole of the North Sea is computed using the numerical model and the geographical distribution of dissipation due to bottom friction is given for the M2 tide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号