首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Environmental tracers are used qualitatively for a better formulation of conceptual models and quantitatively for assessing groundwater ages with the aid of box models or for calibrating numerical transport models. Unfortunately, tracers often yield different ages that do not represent uniquely the water ages. Difficulties result also from different definitions of age, e.g. water age, advective age, tracer age, or radiometric tracer age, that are measured differently and depend on aquifer parameters and characteristics of particular tracers. Even the movement of an ideal tracer can be delayed with respect to the advective movement of water due to diffusion exchange between mobile and immobile water zones, which for fissured rocks or thin aquifers, may lead to significant differences between advective and tracer ages, i.e. also between advective and tracer velocities. The advective velocity is of importance in water resources considerations as being related to Darcy velocity, whereas the tracer velocity is a more useful term for the prediction of pollutant transport. When a groundwater system changes from one hydrodynamic steady state to another, environmental tracers need much more time to reach a new steady state. Several tracer studies are recalled as examples of tracer-specific effects on the estimations of groundwater age.  相似文献   

2.
An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from?<?10 to 1,200?mm/yr in selected aquifers on the basis of measured vertical age distributions and assuming exponential age gradients. On a regional basis, recharge rates based on tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.  相似文献   

3.
Numerical groundwater flow and contaminant transport modeling incorporating three alternative conceptual models was conducted in 2005 to assess remedial actions and predict contaminant concentrations in an unconfined glacial aquifer located in Milford, Michigan, USA. Three alternative conceptual models were constructed and independently calibrated to evaluate uncertainty in the geometry of an aquitard underlying the aquifer and the extent to which infiltration from two manmade surface water bodies influenced the groundwater flow field. Contaminant transport for benzene, cis-DCE, and MTBE was modeled for a 5-year period that included a 2-year history match from July 2003 to May 2005 and predictions for a 3-year period ending in July 2008. A postaudit of model performance indicates that predictions for pumping wells, which integrated the transport signal across multiple model layers, were reliable but unable to differentiate between alternative conceptual model responses. In contrast, predictions for individual monitoring wells with limited screened intervals were less consistent, but held promise for evaluating alternative hydrogeologic models. Results of this study suggest that model conceptualization can have important practical implications for the delineation of contaminant transport pathways using monitoring wells, but may exert less influence on integrated predictions for pumping wells screened over multiple numerical model layers.  相似文献   

4.
Travel times and flow paths of groundwater from its recharge area to drinking-water production wells will govern how the quality of pumped groundwater responds to contaminations. Here, we studied the 180 km2 Ammer catchment in southwestern Germany, which is extensively used for groundwater production from a carbonate aquifer. Using a 3-D steady-state groundwater model, four alternative representations of discharge and recharge were systematically explored to understand their impact on groundwater travel times and flow paths. More specifically, two recharge maps obtained from different German hydrologic atlases and two plausible alternative discharge scenarios were tested: (1) groundwater flow across the entire streambed of the Ammer River and its main tributaries and (2) groundwater discharge via a few major springs feeding the Ammer River. For each of these scenarios, the groundwater model was first calibrated against water levels, and subsequently travel times and flow paths were calculated for production wells using particle tracking methods. These computed travel times and flow paths were indirectly evaluated using additional data from the wells including measured concentrations of major ions and environmental tracers indicating groundwater age. Different recharge scenarios resulted in a comparable fit to observed water levels, and similar estimates of hydraulic conductivities, flow paths and travel times of groundwater to production wells. Travel times calculated for all scenarios had a plausible order of magnitude which were comparable to apparent groundwater ages modelled using environmental tracers. Scenario with groundwater discharge across the entire streambed of the Ammer River and its tributaries resulted in a better fit to water levels than scenario with discharge at a few springs only. In spite of the poorer fit to water levels, flow paths of groundwater from the latter scenario were more plausible, and these were supported by the observed major ion chemistry at the production wells. We concluded that data commonly used in groundwater modelling such as water levels and apparent groundwater ages may be insufficient to reliably delineate capture zones of wells. Hydrogeochemical information relating only indirectly to groundwater flow such as the major ion chemistry of water sampled at the wells can substantially improve our understanding of the source areas of recharge for production wells.  相似文献   

5.
The method of obtaining zircon samples affects estimation of the global U-Pb age distribution.Researchers typically collect zircons via convenience sampling and cluster sampling.When using these techniques,weight adjustments proportional to the areas of the sampled regions improve upon unweighted estimates.Here,grid-area and modern sediment methods are used to weight the samples from a new database of 418,967 U-Pb ages.Preliminary tests involve two age models.Model-1 uses the most precise U-Pb ages as the best ages.Model-2 uses the~(206)Pb/~(238)U age as the best age if it is less than a1000 Ma cutoff,otherwise it uses the~(207)Pb/~(206)Pb age as the best age.A correlation analysis between the Model-1 and Model-2 ages indicates nearly identical distributions for both models.However,after applying acceptance criteria to include only the most precise analyses with minimal discordance,a histogram of the rejected samples shows excessive rejection of the Model-2 analyses around the1000 Ma cutoff point.Because of the excessive rejection rate for Model-2,we select Model-1 as the preferred model.After eliminating all rejected samples,the remaining analyses use only Model-1 ages for five rock-type subsets of the database:igneous,meta-igneous,sedimentary,meta-sedimentary,and modern sediments.Next,time-series plots,cross-correlation analyses,and spectral analyses determine the degree of alignment among the time-series and their periodicity.For all rock types,the U-Pb age distributions are similar for ages older than 500 Ma,but align poorly for ages younger than 500 Ma.The similarities(500 Ma)and differences(500 Ma)highlight how reductionism from a detailed database enhances understanding of time-dependent sequences,such as erosion,detrital transport mechanisms,lithification,and metamorphism.Time-series analyses and spectral analyses of the age distributions predominantly indicate a synchronous period-tripling sequence of~91-Myr,~273-Myr,and~819-Myr among the various rock types.  相似文献   

6.
In this work, the effectiveness of transient environmental tracer data in reducing the uncertainty associated with the inference of groundwater residence time distribution was evaluated. A Bayesian Markov Chain Monte Carlo method was used to infer the parameters of presumed residence time distribution forms—exponential and gamma—using concentrations of five tracers, including CFC-11, CFC-12, CFC-113, SF6, and 85Kr. The transient tracer concentrations were synthetically generated using the residence time distributions obtained from a model of the Plœmeur aquifer in southern Brittany, France. Several measures of model adequacy, including Deviance Information Criteria, Bayes factors, and measures based on the deviation of inferred and true cumulative residence time distribution, were used to evaluate the value of groundwater age time-series. Neither of the presumed forms of residence time distributions, exponential and gamma, perfectly represent the simulated true distribution; therefore, the method was not able to show a definitive preference to one over the other in all cases. The results show that using multiple years of tracer data not only reduces the bias of inference (as defined by the difference between the expected value of a metric of inferred residence time distribution and the true value of the same metric), but also helps quantify the uncertainty more realistically. It was found that when one year of data is used, both models could almost perfectly reproduce the observed tracer data, even when the inferred residence time distributions differed substantially from the true one. When the number of years of tracer data is increased to four years, the uncertainty associated with the distribution parameters and the model structural uncertainly increased, as the presumed forms were not able to reproduce all the data accurately. This resulted in a more realistic assessment of model uncertainty due to structural error. It was also found that regardless of the prescribed age distribution form, the Bayesian method does a better job of capturing the cumulative ages at older ages; however, it is not able to reproduce the early ages well. The ability of the model to capture older ages improves as a greater number of years of tracer data is used, in cases of both presumed exponential and gamma distributions.  相似文献   

7.
The Corallian limestone of northern England (UK) is widely exploited for water supplies and exhibits the karstic phenomena of sinking rivers, conduit development and groundwater velocities of several kilometres per day. To test a number of model-derived source protection zones and elucidate contaminant transport mechanisms in the aquifer, three tracer tests were conducted from a set of swallow-holes draining the River Derwent toward public water supply wells in the eastern part of the aquifer. Tracers used included: Enterobacter cloacae (bacteriophage), Photine C (optical brightener), sodium fluorescein (fluorescent dye) and sulphur hexafluoride (dissolved gas), the varying properties of which make them suitable analogues for different types of potential contaminant. Observed tracer transport times and arrival patterns indicate that tracer transport occurs through karstic channels embedded in a network of primary fissures which exert control over tracer concentrations once initial tracer plumes have passed. A dipole flow system is observed between the swallow-holes and the closest abstraction well, whilst previously modelled source protection zones do not accurately reflect either groundwater velocity or those areas of the aquifer supplying the wells. These findings imply that managing such aquifers for potential contamination should rely upon empirical tracer evidence for source-protection zone modelling.  相似文献   

8.
A study was conducted to evaluate production strategies for a well field system near a source of groundwater contamination. Numerical modeling of groundwater flow was employed to generate hydraulic head configurations for different production scenarios. For a given scenario, an evaluation of contamination susceptibility was made by comparing head distributions in two aquifer units to the positions of the contaminant source and discharging water supply wells. The results of this study suggest that groundwater flow modeling can be a useful technique for planning the production of water supply wells in aquifers at risk of contamination from anthropogenic pollution sources.  相似文献   

9.
Two fluvial sediment cores taken from a floodplain of the Hawkesbury‐Nepean River system in the Sydney region, eastern Australia are dated using Optically Stimulated Luminescence (OSL) to provide a reliable chronology essential for the management and planning of water resources. Nine charcoal 14C (AMS) dates constrain these OSL ages. Quartz extracted from seven OSL samples from each of the cores was measured using both single‐grain and multi‐grain OSL techniques. Three of the single‐grain natural dose distributions appear to be well bleached, but the others appear to be incompletely bleached to various degrees. Three minimum‐age models (MAM, MAMUL and IEU) are applied to the single‐grain dose distributions. We conclude that these models give consistent age estimates. For one of the cores it appears to be necessary to use a minimum‐age model to obtain accurate ages, but in the other core incomplete bleaching is probably less important than postdepositional mixing and mixing during sampling. As a result, the burial age is probably best estimated using the weighted average of the individual single‐grain dose estimates. The application of multi‐grain OSL techniques to these samples results in an average apparent age overestimation of ~200 years, which is significant for these samples, but negligible for sediments older than a few thousand years. The intention is that the chronology obtained in this study will be used in conjunction with a proxy flood record, derived from floodplain sediments, to gain an understanding of the long‐term variability in periods of high and low rainfall in eastern Australia.  相似文献   

10.
分形法估算分散性污染物的运移时间   总被引:1,自引:0,他引:1  
付东林  余超 《地下水》2006,28(6):68-71,82
污染物运移的分形模型导出一个新的适于任意浓度的污染物运移时间公式.对于一个高度非均质含水层中逐渐形成的污染羽,新公式预算出低浓度更早到达的测点.污染峰或羽的运移时间一般经常从达西定律中采用估算平均孔隙流速法得到,而此估算仅仅提供平均浓度(或污染脉冲的峰值浓度)的运移时间信息.近来,计算出任意浓度的运移时间是一个很直接的过程,并且对一个无反应污染物而言,其突破曲线部分的方程被发展.在文中,我们推导出这些方程去概括污染物运移的分形模型.  相似文献   

11.
岩溶热储井间连通性的示踪研究   总被引:3,自引:0,他引:3       下载免费PDF全文
岩溶热储储层的不均匀性强,采灌井之间的连通性不易确定。示踪技术可以将运移参数量化,有效刻画储层流体的特征,研究回灌井和开采井之间的水力联系,包括导水通道,流体流速等信息,对长期回灌可能引起的开采井的冷却进行预测,是岩溶热储井间连通性研究十分有效的技术。本文以华北牛驼镇地热田雄县地区为例,针对蓟县系雾迷山组岩溶热储,采用荧光素钠示踪剂,进行了1口井注入,10口井观测的群井示踪试验。采用裂隙介质溶质运移模型,对示踪试验数据进行了解释,得到优势通道的长度、渗透流速、纵向弥散度、回收率等储层性质,获得了试验区内采灌井之间的连通特征。对调整采灌井布局提出了建议。  相似文献   

12.
随着我国地下水监测工作的高速发展,高频率高密度水位监测数据的出现催生了对其进行深入信息挖掘的需求。在传统地下水模型研究中,地下水水位监测值常位于模型构建过程的下游,当水位监测的时空密度逐渐增大时,新增信息无法有效传导至模型的规划阶段并指导概念模型的修订。文章提出了一种地下水系统补排边界的识别方法,在不建立地下水数值模型的前提下,以监测井空间位置为节点,按照德劳内原则建立三角网格。在此网格系统中,首先定义一个水力梯度变换函数gradF,以求取网格中任意位置的水力梯度;借鉴机器学习领域的优化算法,使用水力梯度场驱动含水层中随机分布质点的运行轨迹,并以此推断和识别区域内地下水补给和排泄边界。在环境地学计算平台EnviFusion-CGS中实现,并构建了详细工作流程。以山东省青岛市大沽河中下游含水层为示范区,对含水系统的补给区和排泄区的空间分布及其动态变化进行了分析,取得了良好效果。本研究为构建和修订已有含水层概念模型提供了新思路。  相似文献   

13.
This study presents a modeling framework for quantifying human impacts and for partitioning the sources of contamination related to water quality in the mixed-use landscape of a small tropical volcanic island. On Tutuila, the main island of American Samoa, production wells in the most populated region (the Tafuna-Leone Plain) produce most of the island’s drinking water. However, much of this water has been deemed unsafe to drink since 2009. Tutuila has three predominant anthropogenic non-point-groundwater-pollution sources of concern: on-site disposal systems (OSDS), agricultural chemicals, and pig manure. These sources are broadly distributed throughout the landscape and are located near many drinking-water wells. Water quality analyses show a link between elevated levels of total dissolved groundwater nitrogen (TN) and areas with high non-point-source pollution density, suggesting that TN can be used as a tracer of groundwater contamination from these sources. The modeling framework used in this study integrates land-use information, hydrological data, and water quality analyses with nitrogen loading and transport models. The approach utilizes a numerical groundwater flow model, a nitrogen-loading model, and a multi-species contaminant transport model. Nitrogen from each source is modeled as an independent component in order to trace the impact from individual land-use activities. Model results are calibrated and validated with dissolved groundwater TN concentrations and inorganic δ15N values, respectively. Results indicate that OSDS contribute significantly more TN to Tutuila’s aquifers than other sources, and thus should be prioritized in future water-quality management efforts.  相似文献   

14.
We present the results of U BV RI CCD photometry of giant HII regions in the spiral galaxy NGC 628, acquired with the 1.5 m telescope of the Mt. Maidanak Observatory (Uzbekistan) with an angular resolution better than 1″. We estimate the ages and interstellar extinctions of these regions and identify the acting star-formation mode by comparing the observed color indices with a detailed grid of evolutionary models covering the entire range of parameters of the initial mass function and of ages of the young star-formation complexes, and taking into account two star-formation modes. We find a radial gradient of the interstellar extinction in NGC 628, which is consistent with the radial abundance gradient found earlier by other authors from independent spectrophotometry. Our age estimates agree with abundance estimates from independent observations.  相似文献   

15.
A major assumption of the Empirical Transport Model (ETM), widely adopted by both electric utilities and regulatory agencies for estimating the effects of entrainment mortality on fish populations in estuaries, is that the fraction of ichthyoplankton entrained varies only in response to changes in water withdrawals, not to changes in freshwater flow. We evaluated this assumption using a particle-tracking model to estimmate the probability of entrainment at power plants on the Hudson River during low and high freshwater flow periods and comparing those probabilities with estimates calculated from the ETM. We found that freshwater flow had a profound effect on the probability of entrainment. Both the number of river regions from which particles were entrained and the probabilities of entrainment for particles in those river regions differed between low-flow and high-flow periods. During high flow, particles spent less time in the grid box next to the intakes, reducing the probability of entrainment for particles released in the river region of each power plant and the average probability of entrainment across all regions at three power plants. The reduced probability of entrainment for particles released in the river regions of two power plants was offset by higher entrainment for particles upriver of these power plants. Although the average probabilities of entrainment across all river regions estimated with the particle-tracking model and the ETM were relatively similar for some power plants at high flow, low flow, or both, the probabilities for each river region differed considerably between the models. The number of river regions from which particles were entrained using the ETM was consistently undersestimated, resulting in probabilities for regions where entrainment occurred that were biased high compared with the particle-tracking model.  相似文献   

16.
A groundwater flow and contaminant transport model was used to simulate arrays of non-pumped wells with reactive media for remediating contaminated groundwater. Each array featured a minimum number of wells, with identical diameter, capable of removing a contaminant plume within a hypothetical site. Simulated well diameters ranged from 0.25 m (similar to typical remediation wells) to 1.25 m (similar to large-diameter, bucket-augered wells). Both arrays occupied a linear transect located approximately 5 m downgradient of the front of a polluted enclave and oriented 90° to the hydraulic gradient. The minimum smallest diameter array contained 23 wells, whereas the minimum largest diameter array contained only four wells. Results of this study suggest that bucket-augering technology, adapted to install non-pumped wells with reactive media, may be an effective alternative for remediating contaminated groundwater in some environments.  相似文献   

17.
Determining groundwater ages from environmental tracer concentrations measured on samples obtained from open bores or long-screened intervals is fraught with difficulty because the sampled water represents a variety of ages. A multi-tracer technique (Cl, 14C, 3H, CFC-11, CFC-12, CFC-113 and SF6) was used to decipher the groundwater ages sampled from long-screened production bores in a regional aquifer around an open pit mine in the Pilbara region of northwest Australia. The changes in tracer concentrations due to continuous dewatering over 7 years (2008–2014) were examined, and the tracer methods were compared. Tracer concentrations suggest that groundwater samples are a mixture of young and old water; the former is inferred to represent localised recharge from an adjacent creek, and the latter to be diffuse recharge. An increase in 14C activity with time in wells closest to the creek suggests that dewatering of the open pit to achieve dry mining conditions has resulted in change in flow direction, so that localised recharge from the creek now forms a larger proportion of the pumped groundwater. The recharge rate prior to development, calculated from a steady-state Cl mass balance, is 6 mm/y, and is consistent with calculations based on the 14C activity. Changes in CFC-12 concentrations with time may be related to the change in water-table position relative to the depth of the well screen.  相似文献   

18.
A comparison of estimated and calculated effective porosity   总被引:1,自引:1,他引:0  
 Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil–water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil–water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50–90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Received, March 1997 · Revised, August 1997 · Accepted, August 1997  相似文献   

19.
Matrix-diffusion parameters deduced from an infiltration tracer test at Idaho National Laboratory (INL), USA, are combined with other site information in an analysis involving two dimensionless lumped parameters to assess the effects of matrix diffusion on contaminant transport at the INL over longer distance and time scales than were evaluated in the test. Matrix diffusion was interrogated in the test by comparing, in three different observation wells, the breakthrough curves of two simultaneously injected nonsorbing solutes that have different diffusion coefficients. The matrix-diffusion parameters deduced from the different breakthrough curves were in good agreement, suggesting that the parameters may be broadly applicable at the INL. With this in mind, the uncertainties in the individual parameters that make up the two lumped parameters were estimated, and the resulting ranges of parameter values were used to assess matrix diffusion over larger scales. Assessments of the effects of flow transients, spatial heterogeneity in transport parameters, and sorption on solute transport in the shallow subsurface flow system were also conducted. The methods presented here should be generally applicable to other settings for making bounding assessments of the effects of matrix diffusion while honoring the information obtained from tracer tests and other supporting data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号