首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We discuss the morphology, photometry and kinematics of the bars which have formed in three N -body simulations. These have initially the same disc and the same halo-to-disc mass ratio, but their haloes have very different central concentrations. The third model includes a bulge. The bar in the model with the centrally concentrated halo (model MH) is much stronger, longer and thinner than the bar in the model with the less centrally concentrated halo (model MD). Its shape, when viewed side-on, evolves from boxy to peanut and then to 'X'-shaped, as opposed to that of model MD, which stays boxy. The projected density profiles obtained from cuts along the bar major axis, for both the face-on and the edge-on views, show a flat part, as opposed to those of model MD which are falling rapidly. A Fourier analysis of the face-on density distribution of model MH shows very large  m=2  , 4, 6 and 8 components. Contrary to this, for model MD the components  m=6  and 8 are negligible. The velocity field of model MH shows strong deviations from axial symmetry, and in particular has wavy isovelocities near the end of the bar when viewed along the bar minor axis. When viewed edge-on, it shows cylindrical rotation, which the MD model does not. The properties of the bar of the model with a bulge and a non-centrally concentrated halo (MDB) are intermediate between those of the bars of the other two models. All three models exhibit a lot of inflow of the disc material during their evolution, so that by the end of the simulations the disc dominates over the halo in the inner parts, even for model MH, for which the halo and disc contributions were initially comparable in that region.  相似文献   

2.
We carry out a detailed orbit analysis of gravitational potentials selected at different times from an evolving self-consistent model galaxy consisting of a two-component disc (stars+gas) and a live halo. The results are compared with a pure stellar model, subject to nearly identical initial conditions, which are chosen so as to make the models develop a large-scale stellar bar. The bars are also subject to hose-pipe (buckling) instability which modifies the vertical structure of the disc. The diverging morphological evolution of both models is explained in terms of gas radial inflow, the resulting change in the gravitational potential at smaller radii, and the subsequent modification of the main families of orbits, both in and out of the disc plane.   We find that dynamical instabilities become milder in the presence of the gas component, and that the stability of planar and 3D stellar orbits is strongly affected by the related changes in the potential — both are destabilized, with the gas accumulation at the centre. This is reflected in the overall lower amplitude of the bar mode and in the substantial weakening of the bar, which appears to be a gradual process. The vertical buckling of the bar is much less pronounced and the characteristic peanut shape of the galactic bulge almost disappears when there is a substantial gas inflow towards the centre. Milder instability results in a smaller bulge, the basic parameters of which are in agreement with observations. We also find that the overall evolution in the model with a gas component is accelerated because of the larger central mass concentration and the resulting decrease in the characteristic dynamical time.  相似文献   

3.
NGC 3741: the dark halo profile from the most extended rotation curve   总被引:1,自引:0,他引:1  
We present new H  i observations of the nearby dwarf galaxy NGC 3741. This galaxy has an extremely extended H  i disc, which allows us to trace the rotation curve out to unprecedented distances in terms of the optical disc: we reach 42 B -band exponential scalelengths or about 7 kpc. The H  i disc is strongly warped, but the warp is very symmetric. The distribution and kinematics are accurately derived by building model data cubes, which closely reproduce the observations. In order to account for the observed features in the data cube, radial motions of the order of 5–13 km s−1 are needed. They are consistent with an inner bar of several hundreds of pc and accretion of material in the outer regions.
The observed rotation curve was decomposed into its stellar, gaseous and dark components. The Burkert dark halo (with a central constant density core) provides very good fits. The dark halo density distribution predicted by the Λ cold dark matter (CDM) theory fails to fit the data, unless NGC 3741 is a 2.5σ exception to the predicted relation between concentration parameter and virial mass and at the same time a high value of the virial mass (though poorly constrained) of  1011 M  . Noticeably, modified Newtonian dynamics (MOND) seems to be consistent with the observed rotation curve. Scaling up the contribution of the gaseous disc also gives a good fit.  相似文献   

4.
Angular momentum redistribution within barred galaxies drives their dynamical evolution. Angular momentum is emitted mainly by near-resonant material in the bar region and absorbed by resonant material mainly in the outer disc and in the halo. This exchange determines the strength of the bar, the decrease of its pattern speed, as well as its morphology. If the galaxy has also a gaseous component and/or a companion or satellite, then these also take part in the angular momentum exchange. During the evolution a bar structure forms in the inner parts of the halo as well. This bar is shorter and fatter than the disc bar and stays so all through the simulation, although its length grows considerably with time. Viewed edge-on, the bar in the disc component acquires a boxy or peanut shape. I describe the families of periodic orbits that explain such structures and review the observations showing that boxy/peanut ‘bulges’ are in fact just bars seen edge-on.  相似文献   

5.
Analyses of halo shapes for disc galaxies are said to give conflicting results. I point out that the modified dynamics (MOND) predicts for disc galaxies a distribution of fictitious dark matter that comprises two components: a pure disc and a rounder halo. The former dominates the true disc in regions of small accelerations, where it controls the z -dynamics in the disc (disc flaring etc.); it has a finite total mass. It also dominates the round component near the centre where the geometry is nearly planar. The second component controls motions far from the plane, has a total enclosed mass that diverges linearly with radius, and determines the rotation curve at large radii. Its ellipticity may be appreciable at small radii but vanishes asymptotically. This prediction of MOND differs from what one expects from galaxy formation scenarios with dark matter. Analyses to date, which, as they do, assume one component – usually with a constant ellipticity – perforce give conflicting results for the best value of ellipticity, depending on whether they probe the disc or the sphere, small radii or large ones.  相似文献   

6.
We present the 21-cm rotation curve of the nearby galaxy M33 out to a galactocentric distance of 16 kpc (13 disc scalelengths). The rotation curve keeps rising out to the last measured point and implies a dark halo mass ≳5×1010 M. The stellar and gaseous discs provide virtually equal contributions to the galaxy gravitational potential at large galactocentric radii, but no obvious correlation is found between the radial distribution of dark matter and the distribution of stars or gas.
Results of the best fit to the mass distribution in M33 picture a dark halo which controls the gravitational potential from 3 kpc outward, with a matter density which decreases radially as R −1.3. The density profile is consistent with the theoretical predictions for structure formation in hierarchical clustering cold dark matter (CDM) models, and favours lower mass concentrations than those expected in the standard cosmogony.  相似文献   

7.
We study the self-consistent, linear response of a galactic disc to vertical perturbations, as induced, say, by a tidal interaction. We calculate the self-gravitational potential corresponding to a non-axisymmetric, self-consistent density response of the disc using the Green's function method. The response potential is shown to oppose the perturbation potential because the self-gravity of the disc resists the imposed potential, and this resistance is stronger in the inner parts of a galactic disc. For the   m = 1  azimuthal wavenumber, the disc response opposes the imposed perturbation up to a radius that spans a range of 4–6 disc scalelengths, so that the disc shows a net warp only beyond this region. This physically explains the well known but so far unexplained observation that warps typically set in beyond this range of radii. We show that the inclusion of a dark matter halo in the calculation only marginally changes (by ∼10 per cent) the radius for the onset of warps. For perturbations with higher azimuthal wavenumbers, the net signature of the vertical perturbations can only be seen at larger radii – for example, beyond 7 exponential disc scalelengths for   m = 10  . Also, for the high- m cases, the magnitude of the negative disc response due to the disc self-gravity is much smaller. This is shown to result in corrugations of the mid-plane density, which explains the puzzling scalloping with   m = 10  detected in H  i in the outermost regions ∼30 kpc in the Galaxy.  相似文献   

8.
We have modelled 38 barred galaxies by using near-infrared and optical data from the Ohio State University Bright Spiral Galaxy Survey. We constructed the gravitational potentials of the galaxies from H -band photometry, assuming a constant mass-to-light ratio. The halo component we choose corresponds to the so-called universal rotation curve. In each case, we used the response of gaseous and stellar particle disc to rigidly rotating potential to determine the pattern speed.
We find that the pattern speed of the bar depends roughly on the morphological type. The average value of corotation resonance radius to bar radius,     , increases from 1.15 ± 0.25 in types SB0/a–SBab to 1.44 ± 0.29 in SBb and 1.82 ± 0.63 in SBbc–SBc. Within the error estimates for the pattern speed and bar radius, all galaxies of type SBab or earlier have a fast bar     , whereas the bars in later type galaxies include both fast and slow rotators. Of 16 later type galaxies with a nominal value of     , there are five cases, where the fast-rotating bar is ruled out by the adopted error estimates.
We also study the correlation between the parameter     and other galactic properties. The clearest correlation is with the bar size: the slowest bars are also the shortest bars when compared to the galaxy size. A weaker correlation is seen with bar strength in a sense that slow bars tend to be weaker. These correlations leave room for a possibility that the determined pattern speed in many galaxies corresponds to actually that of the spiral, which rotates more slowly than the bar. No clear correlation is seen with either the galaxy luminosity or the colour.  相似文献   

9.
We use the recently completed one billion particle Via Lactea II Λ cold dark matter simulation to investigate local properties like density, mean velocity, velocity dispersion, anisotropy, orientation and shape of the velocity dispersion ellipsoid, as well as the structure in velocity space of dark matter haloes. We show that at the same radial distance from the halo centre, these properties can deviate by orders of magnitude from the canonical, spherically averaged values, a variation that can only be partly explained by triaxiality and the presence of subhaloes. The mass density appears smooth in the central relaxed regions but spans four orders of magnitude in the outskirts, both because of the presence of subhaloes as well as of underdense regions and holes in the matter distribution. In the inner regions, the local velocity dispersion ellipsoid is aligned with the shape ellipsoid of the halo. This is not true in the outer parts where the orientation becomes more isotropic. The clumpy structure in local velocity space of the outer halo cannot be well described by a smooth multivariate normal distribution. Via Lactea II also shows the presence of cold streams made visible by their high 6D phase space density. Generally, the structure of dark matter haloes shows a high degree of graininess in phase space that cannot be described by a smooth distribution function.  相似文献   

10.
We present the results of a new H i , optical, and Hα interferometric study of the nearby spiral galaxy NGC 157. Our combined C- and D-array observations with the VLA show a large-scale, ring-like structure in the neutral hydrogen underlying the optical disc, together with an extended, low surface density component going out to nearly twice the Holmberg radius. Beginning just inside the edge of the star-forming disc, the line of nodes in the gas disc commences a 60° warp, while at the same time, the rotation velocity drops by almost half its peak value of 200 km s−1, before levelling off again in the outer parts. While a flat rotation curve in NGC 157 cannot be ruled out, supportive evidence for an abrupt decline comes from the ionized gas kinematics, the optical surface photometry, and the global H i profile. A standard 'maximum-disc' mass model predicts comparable amounts of dark and luminous matter within NGC 157. Alternatively, a model employing a disc truncated at 2 disc scalelengths could equally well account for the unusual form of the rotation curve in NGC 157.  相似文献   

11.
Many barred disc galaxies show rings of gas clouds and young stars thought to be in periodic orbits near the two-fold inner and outer Lindblad resonances (ILR and OLR) plus a four-fold ultraharmonic resonance (UHR) of the turning bar with oscillations about the disc orbital motion. To confirm and extend simulations by Schwarz and by Byrd et al. of resonance ring formation, we present an analytical formulation of the clouds' orbital motion which includes dissipative damping of oscillations relative to the local interstellar medium plus the rotation curve, bar pattern speed, and strength. Observed ring morphology matches our plots of periodic orbits where the density is enhanced but clouds do not collide violently. Pairs of 'outer rings' bracket the OLR. Dimpled outer rings like that of ESO 507-16 can be matched by plots with strong bars. Slightly dimpled outer rings like that of ESO 509-98 can be matched by weak bar plots. For flat rotation curves, a pair of two-fold rings bracket the ILR; the smaller can be identified with the tiny 'nuclear rings'. We find narrow UHR rings just outside this pair as well as just inside the OLR pair. We confirm the identification of the larger ILR ring and the inner UHR ring with 'inner rings'. Disagreeing with the common identification, we associate the dimpled outer rings with the UHR just inside the OLR. See ESO 507-16 as an example. We predict that damping can misalign the ILR and OLR rings relative to the bar as seen in our match to ESO 507-16. We find that for weak bars, if the linearly rising portion of the rotation curve is a significant fraction of the corotation radius, nuclear and inner rings are absent with outer rings still present. We show this in a match to ESO 509-98. Success of the matches to ESO 507-16 and 509-98 shows how the analytic formulation can be used to estimate disc orientation and pattern speed if rotation curve observations are available.  相似文献   

12.
The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry–Perot interferometry as part of the GHASP survey. The main aim of obtaining high-resolution Hα 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The Hα velocities were combined with low resolution H  i data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere (ISO) and a Navarro–Frenk–White (NFW) profile. For the galaxies already modelled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the centre of the dark matter haloes rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and low surface brightness galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius haloes have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low-luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type.  相似文献   

13.
The dark matter dominated Fornax dwarf spheroidal has five globular clusters orbiting at ∼1 kpc from its centre. In a cuspy cold dark matter halo the globulars would sink to the centre from their current positions within a few Gyr, presenting a puzzle as to why they survive undigested at the present epoch. We show that a solution to this timing problem is to adopt a cored dark matter halo. We use numerical simulations and analytic calculations to show that, under these conditions, the sinking time becomes many Hubble times; the globulars effectively stall at the dark matter core radius. We conclude that the Fornax dwarf spheroidal has a shallow inner density profile with a core radius constrained by the observed positions of its globular clusters. If the phase space density of the core is primordial then it implies a warm dark matter particle and gives an upper limit to its mass of ∼0.5 keV, consistent with that required to significantly alleviate the substructure problem.  相似文献   

14.
We study the gravitational lensing effects of spiral galaxies by taking a model of the Milky Way and computing its lensing properties. The model is composed of a spherical Hernquist bulge, a Miyamoto–Nagai disc and an isothermal halo. As a strong lens, a spiral galaxy like the Milky Way can give rise to four different imaging geometries. They are (i) three images on one side of the galaxy centre ('disc triplets'), (ii) three images with one close to the centre ('core triplets'), (iii) five images and (iv) seven images. Neglecting magnification bias, we show that the core triplets, disc triplets and fivefold imaging are roughly equally likely. Even though our models contain edge-on discs, their image multiplicities are not dominated by disc triplets. The halo is included for completeness, but it has a small effect on the caustic structure, the time delays and brightnesses of the images.
The Milky Way model has a maximum disc (i.e. the halo is not dynamically important in the inner parts). Strong lensing by nearly edge-on disc galaxies breaks the degeneracy between the relative contributions of the disc and halo to the overall rotation curve. If a spiral galaxy has a submaximum disc, then the astroid caustic shrinks dramatically in size, whilst the radial caustic shrinks more modestly. This causes changes in the relative likelihood of the image geometries, specifically (i) core triplets are now ∼9/2 times more likely than disc triplets, (ii) the cross-section for threefold imaging is reduced by a factor of ∼2/3, whilst (iii) the cross-section for fivefold imaging is reduced by ∼1/2. Although multiple imaging is less likely (the cross-sections are smaller), the average total magnification is greater. The time delays are smaller, as the total projected lensing mass is reduced.  相似文献   

15.
The evolution of a stellar bar transforms not only the galactic disc, but also the host dark matter halo. We present high-resolution, fully self-consistent N -body simulations that clearly demonstrate that dark matter halo central density cusps flatten as the bar torques the halo. This effect is independent of the bar formation mode and occurs even for rather short bars. The halo and bar evolution is mediated by resonant interactions between orbits in the halo and the bar pattern speed, as predicted by linear Hamiltonian perturbation theory. The bar lengthens and slows as it loses angular momentum, a process that occurs even in rather warm discs. We demonstrate that the bar and halo response can be critically underestimated for experiments that are unable to resolve the relevant resonant dynamics; this occurs when the phase space in the resonant region is undersampled or plagued by noise.  相似文献   

16.
We perform collisionless N -body simulations of 1:1 galaxy mergers, using models which include a galaxy halo, disc and bulge, focusing on the behaviour of the halo component. The galaxy models are constructed without recourse to a Maxwellian approximation. We investigate the effect of varying the galaxies' orientation, their mutual orbit and the initial velocity anisotropy or cusp strength of the haloes upon the remnant halo density profiles and shape, as well as on the kinematics. We observe that the halo density profile (determined as a spherical average, an approximation we find appropriate) is exceptionally robust in mergers, and that the velocity anisotropy of our remnant haloes is nearly independent of the orbits or initial anisotropy of the haloes. The remnants follow the halo anisotropy – local density slope (β–γ) relation suggested by Hansen & Moore in the inner parts of the halo, but β is systematically lower than this relation predicts in the outer parts. Remnant halo axis ratios are strongly dependent on the initial parameters of the haloes and on their orbits. We also find that the remnant haloes are significantly less spherical than those described in studies of simulations which include gas cooling.  相似文献   

17.
Lopsidedness is a common feature in galaxies, both in the distribution of light and in the kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a disc lying off-centre in a dark halo, and circling around the halo centre. We search for families of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these orbits. Several of our models show strong lopsided gas kinematics, especially those in which the disc spins around its axis in a retrograde sense compared with its motion around the halo centre. We are able to reproduce the H  i velocity map of the kinematically lopsided galaxy NGC 4395.
The lopsidedness in our models is most pronounced in the models where the halo provides a relatively large fraction of the total mass at small radii. This may explain why the gas shows lopsidedness more frequently in late-type galaxies, which are dominated by dark matter. Surfaces of section show large regions of irregular orbits in the models where the halo density is low. This may indicate that these models are unstable.  相似文献   

18.
The structure of the Galactic bar   总被引:1,自引:0,他引:1  
We present a deep near-infrared wide-angle photometric analysis of the structure of the inner Galactic bar and central disc. The presence of a triaxial structure at the centre of the Galaxy is confirmed, consistent with a bar inclined at  22°± 55  from the Sun—Galactic Centre line, extending to approximately 2.5 kpc from the Galactic Centre and with a rather small axis ratio. A feature at  ℓ=−98  not aligned with this triaxiality suggests the existence of a second structure in the inner Galaxy, a double triaxiality or an inner ring. We argue that this is likely to be the signature of the end of the Galactic bar, at approximately 2.5–3 kpc, which is circumscribed by an inner pseudo-ring. No thick dust lane preceding the bar is detected and a hole in the dust distribution of the disc inside the bar radius is inferred.  相似文献   

19.
The radial distribution of globular clusters in galaxies is always less peaked to the centre than that of the halo stars. Extending previous work to a sample of Hubble Space Telescope globular cluster systems in ellipticals, we evaluate the number of clusters potentially lost to the galactic centre as the integrals of the difference between the observed globular cluster system distribution and the underlying halo light profile. In the sample of galaxies examined it is found that the initial populations of globular clusters may have been ∼30 per cent to 50 per cent richer than now. If these 'missing' globular clusters have decayed and have been partly destroyed in the very central galactic zones, they have carried there a significant quantity of mass that, plausibly, contributed to the formation and feeding of a massive object therein. It is relevant to note that the observed correlation between the core radius of the globular cluster system and the parent galaxy luminosity can be interpreted as a result of evolution.  相似文献   

20.
We present radial velocities for a sample of 723 planetary nebulae in the disc and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel Telescope. Velocities are determined using the [O  iii ] λ5007 emission line. Rotation and velocity dispersion are measured to a radius of 50 arcmin (11.5 kpc), the first stellar rotation curve and velocity dispersion profile for M31 to such a radius. Our kinematics are consistent with rotational support at radii well beyond the bulge effective radius of 1.4 kpc, although our data beyond a radius of 5 kpc are limited. We present tentative evidence for kinematic substructure in the bulge of M31 to be studied fully in a later work. This paper is part of an ongoing project to constrain the total mass, mass distribution and velocity anisotropy of the disc, bulge and halo of M31.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号