首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taiwan High Speed Rail (THSR), which began operations in January 2007, passes through an area in Yunlin County where the largest cumulative subsidence measured during 1992–2006 exceeds 100 cm. Leveling benchmarks, GPS pillars and multi-level monitoring wells were deployed in this area to collect detailed subsidence data from October 2003 to 2006. Leveling is carried out on both ground benchmarks and survey bolts attached to THSR columns. Minimum constraint solutions of leveling networks produce estimated heights accurate to a few mm. Special attention is paid to code smoothing, ionospheric, tropospheric and ocean tidal loading (OTL) effects, so that height estimates from GPS are optimal. Leveling and GPS-derived height changes are consistent to 1 cm, and show that from Stations 210 to 240K of TSHR, the subsidence is bowl shaped. Measurements of sediment compaction in specific depth intervals at three monitoring wells indicate that most of the subsidence is caused by sediment compaction at depths from 50 to 300 m. The major compaction occurs in the interval 220–300 m and is attributed to ground water withdrawal. Large angular deflections as determined from subsidence measurements are detected at some columns, but are below the upper bound (1/1,000) of tolerance specified in the safety code. With the current subsidence and sediment compaction, no significantly reduced loading capacity of the columns is expected to occur. For a safe THSR operation, subsidence and sediment-compaction monitoring should be continued, and current ground water withdrawal in Yunlin must be reduced or stopped.  相似文献   

2.
Recent research has provided a high-resolution map that depicts the effect of land subsidence on the Venice coastal plain of Italy. The map, which covers the decade of 1992 to 2002, was obtained by an innovative “Subsidence Integrated Monitoring System” (SIMS), which efficiently merges the different displacement measurements obtained by high precision-leveling, differential and continuous Global Positing System data (GPS), and Synthetic Aperture Radar (SAR)-based interferometry. The displacement rates exhibit significant spatial variability, ranging from a slight 1 to 2 mm/yr uplift, to a serious subsidence of more than 10 mm/yr. This paper aims to describe the many natural and anthropogenic mechanisms that drive the pattern of the ground displacement. The movement sources are presented based on their depth of occurrence. Deep causes act at depths generally greater than 400 m below m.s.l. (mean sea level), and are recognizable in the movement of the pre-Quaternary basement. Medium causes act at depths between 400 and 50 m below m.s.l., and include geological features, such as a major presence of compressible clay layers in the southern and northern portions of the study area and groundwater withdrawals, mainly in the north-eastern coastland and western mainland. Shallow causes, i.e. those occurring from a depth of 50 m up to the ground surface, are related to the architecture and geomechanical properties of the Pleistocene and Holocene deposits, which are more thick and compressible approaching the littoral belt; geochemical compaction, due to the increasing salt concentration in the clayey sediments; and oxidation of the outcropping organic soils drained by land reclamation. These two latter factors primarily involve the southern portion of the Venice coast. The building loads in newly developed areas also cause local compaction of shallow deposits. We conclude that the consolidation of Holocene deposits and anthropogenic activities (groundwater withdrawal, land reclamation, and urban land use) are the major factors that contribute to the present land subsidence in the Venice coastland.  相似文献   

3.
Land subsidence due to decline in head in confined aquifers, related to municipal and industrial water pumpage, is widespread in the Atlantic Coastal Plain. Although not a major engineering problem, subsidence greatly complicates adjustment of precise leveling and distorts prediction of future sea-level rise. When preconsolidation stress equivalent to about 20 m of head decline is exceeded compaction of fine-grained sediments of the aquifer system begins, and continues until a new head equilibrium is attained between fine and coarse units. The ratio subsidence/head decline is quite consistent, ranging from 0.0064 in southeastern Virginia to 0.0018 at Dover, Delaware and Atlantic City, New Jersey. Higher values are related to the occurrence of montmorillonite as the predominant clay mineral present. Review of tide gauge records indicates that gauges not affected by land subsidence or other local secular effects have been sinking relative to sea level since 1940 at rates averaging about 2.5 mm/yr, of which 0.6 mm/yr is ascribed to glacio-isostatic adjustment to unloading of North America resulting from melting of late Pleistocene glaciers, and about 0.9 mm/yr is ascribed to steric sea-level rise related to ocean warming. The residual 1 mm/yr of relative sea-level rise is not well understood, but may be related to regional tectonic subsidence of the Atlantic coast.  相似文献   

4.
During 1992–2007, excessive pumping of groundwater caused large-scale aquifer-system compaction and land subsidence in the Choshui River Alluvial Fan, especially in the area of Yunlin county. The subsidence impedes surface-water runoff and endangers the operation of Taiwan High Speed Rail. Leveling, Global Positioning System (GPS), multi-level compaction monitoring well, and Differential Interferometric Synthetic Aperture Radar (DInSAR) are used to study the extent of subsidence in Yunlin and its mechanism. These sensors complement each other in spatial and temporal resolutions. A leveling network totaling 434 km in length was deployed to derive subsidence at every 1.5 km along the routes, and the result is accurate to few mm and shows a basin-like subsidence pattern centering at Tuku Township. Four multi-level compaction monitoring wells, co-located with GPS pillars, detect compactions at different depths, showing that the aquifer-system compaction (the cause of subsidence) occurs mostly below depths >200 m, where reduction of groundwater pumping is most needed. The vertical displacements from GPS and leveling agree to within 1 cm, and are larger than the cumulative compaction detected by the compaction-monitoring wells, suggesting that compaction also occurs below 300 m (the depth of the wells). The vertical displacements derived using DInSAR and 8 ENVISAT SAR images agree with the leveling result to 1–2 cm.  相似文献   

5.
We used a combined field and modeling approach to estimate the potential for submergence for one rapidly deteriorating (Bayou Chitigue Marsh) and one apparently stable (Old Oyster Bayou Marsh) saltmarsh wetland in coastal Louisiana, given two eustatic sea level rise scenarios: the current rate (0.15 cm year−1); and the central value predicted by the Intergovernmental Panel on Climate Change (48 cm by the year 2100). We also used the model to determine what processes were most critical for maintaining and influencing salt marsh elevation including, mineral matter deposition, organic matter production, shallow subsidence (organic matter decomposition + primary sediment compaction), deep subsidence, and sediment pulsing events (e.g., hurricanes). Eight years of field measurements from feldspar marker horizons and surface elevation tables revealed that the rates of vertical accretion at the Bayou Chitigue Marsh were high (2.26 (0.09) cm yr−1 (mean ± SE)) because the marsh exists at the lower end of the tidal range. The rate of shallow subsidence was also high (2.04 (0.1) cm yr−1), resulting in little net elevation gain (0.22 (0.06) cm yr−1). In contrast, vertical accretion at the Old Oyster Bayou Marsh, which is 10 cm higher in elevation, was 0.48 (0.09) cm yr−1. However, there was a net elevation gain of 0.36 (0.08) cm yr−1 because there was no significant shallow subsidence. When these rates of elevation gain were compared to rates of relative sea level rise (deep subsidence plus eustatic sea level rise), both sites showed a net elevation deficit although the Bayou Chitigue site was subsiding at approximately twice the rate of the Old Oyster Bayou site (1.1 cm yr−1 versus 0.49 cm yr−1 respectively). These field data were used to modify, initialize, and calibrate a previously published wetland soil development model that simulates primary production and mineral matter deposition as, feedback functions of elevation. Sensitivity analyses revealed that wetland elevation was most sensitive to changes in the rates of deep subsidence, a model forcing function that is difficult to measure in the field and for which estimates in the literature vary widely. The model also revealed that, given both the current rate of sea level rise and the central value estimate, surface elevation at both sites would fall below mean sea level over the next 100 years. Although these results were in agreement with the field study, they contradicted long term observations that the Old Oyster Bayou site has been in equilibrium with sea level for at least the past 50 years. Further simulations showed that the elevation at the Old Oyster Bayou site could keep pace with current rates of sea level rise if either a lower rate for deep subsidence was used as a forcing function, or if a periodic sediment pulsing function (e.g., from hurricanes) was programmed into the model.  相似文献   

6.
Groundwater systems in coastal aquifers may be affected by sea level change as increased seawater intrusion occurs with sea level rise. Artificial pumping taking place at the same time will increase this impact. In order to estimate the vulnerability of groundwater systems with sea level rise within coastal aquifers in South Korea, long-term groundwater data were analyzed using basic statistics, trend analysis, and correlation analysis. Conductivity depth profiling was also periodically conducted. Groundwater levels increased in wells with relatively low groundwater elevations but decreased in wells with higher groundwater elevations. At the same time, conductivity variations were greater in wells located in reclaimed land areas, which vertical conductivity profiles indicated were more affected by sea level variations, but decreased on the mainland. Results of auto-correlation analysis showed a decreasing trend with cyclic variations and significant periodic patterns during dry seasons, indicating that groundwater levels were not affected by artificial factors and that those in reclaimed land areas were less affected by rainfall than on the mainland. These results coincided with those from cross-correlation analysis showing that groundwater level was affected by sea level variation during the dry season. Sea level changes, which may be related to climate change, as well as rainfall in South Korea can influence groundwater levels, and the groundwater system in reclaimed land areas may be more affected than on the mainland, especially under dry conditions.  相似文献   

7.
The plain of Beijing city in China suffers severe land subsidence owing to groundwater overdraft. The maximum subsidence rate could reach 6 cm/year through the 2000s. An integrated subsidence-monitoring program was designed, including levelling survey, borehole extensometers and multilayer monitoring of groundwater level, with the aim to understand both hydrological and mechanical processes and to characterize the land subsidence. From multilayer compaction monitoring, the major compression layers were identified. The major strata contributing to compression deformation are the second (64.5–82.3 m) and third (102–117 m) aquitards, which contributed around 39 % of the total subsidence. Meanwhile, irrecoverable deformations were also observed in the second (82.3–102 m) and third (117–148 m) confined aquifers; they exhibit elasto-plastic mechanical behavior, which is attributed to the thin beds of silt or silty clay. Stress–strain analysis and oedometer tests were conducted to study the aquifer-system response to pumping and to estimate the specific storage of the major hydrogeologic units. The results reveal the creep behavior and elasto-plastic, visco-elasto-plastic mechanical behavior of the aquitards at different depths. The compressibility of the aquitards in the inelastic range is about one order of magnitude larger than for the elastic range.  相似文献   

8.
战庆  王张华 《古地理学报》2014,16(4):548-556
根据对长江三角洲北部海安地区4个钻孔标志性沉积物(潮上带盐沼泥炭、高潮滩沉积)的年龄测定和高程测量,以及沉积物压实沉降量的分析研究,重建了本研究区全新世中期8.1~7.3 cal kyr BP和5.6~5.4 cal kyr BP的相对海平面位置。结果显示,8.1~7.3 cal kyr BP海平面缓慢上升1.46m,上升速率仅为0.2cm/yr, 与三角洲南部全新世早期海平面的快速上升(2cm/yr)形成鲜明对比,验证了冰盖控制下的全球海平面阶段性波动上升模式。对比长江三角洲地区海平面曲线发现,三角洲北部海平面曲线较南部低5~6m,长江三角洲海平面曲线与世界各地海平面曲线也存在明显差异,分析认为主要是由长江口地区的差异性沉降和中国东部边缘海的水均衡作用两个因素引起的。  相似文献   

9.
The paper deals with the implementation of a levelling and Global Positioning System (GPS) network to control land subsidence in the coastal area north of the Venice Lagoon. About 480 km of levelling lines with 527 benchmarks, 45 of which suited for Differential GPS measurements, were established in 2004. A complete survey of the net was carried out in 2004 soon after its establishment. The 2004 records have been compared with previous scattered data obtained by the use of levelling surveys, DGPS and SAR interferometry. The results show a trend in land settlement that increases from the lagoon margin to the north and jeopardize the Venice coastland. Groundwater withdrawals for domestic, agricultural, and health spas uses, peat oxidation of reclaimed marshlands for farming, natural consolidation of the Holocene deposits, and tectonics of the pre-Quaternary basement are the causes of land subsidence in the study area. Since most of the area lies below the mean sea level and on account of the expected sea level rise due to global change, a detailed monitoring of land displacements in the near future will be of paramount importance to plan necessary works for coastland protection.  相似文献   

10.
天津滨海地区晚新生代地层自然固结与地面沉降研究   总被引:1,自引:0,他引:1  
天津滨海地区地处渤海湾西岸,晚新生代沉积了巨厚的松散沉积物。地下水位下降、地层自然固结、地表载荷的加速增长等复合因素造成了严重的地面沉降。利用在天津滨海新区塘沽地区施工的一眼1 226 m全取芯钻孔,通过原状样品测试分析,系统研究了晚新生代土层的物理力学性质、黏性土固结特征,并结合欠固结黏性土层沉降量计算等方法阐述了土层固结状态空间特征,探讨了土层固结特征与地面沉降的相关关系。结果表明:该地区0~100 m深度土层具有低天然密度、高孔隙比、高含水率、高压缩性等特点,表现出软土的性质,在地表荷载增大的情况下,易发生地面沉降;100~550 m的黏性土大都处于超固结和微超固结状态,主要是由于过去地下水的大量开采造成的;550 m以下的黏性土多为正常固结,局部存在欠固结黏性土夹层。钻孔中存在合计约218 m的欠固结黏性土夹层,这些欠固结黏性土夹层在自重应力下的最终沉降量为1 985 mm,沉降量最大的土层对应于第1、6含水组,分别达614 mm和665 mm,这一沉降过程完成所需时间为数十年甚至上百年。  相似文献   

11.
中国沿海地区地面沉降问题思考   总被引:7,自引:0,他引:7  
中国沿海地区地面沉降主要发生在大河三角洲及沿海平原区。文章主要以我国两大沿海城市——上海及天津为例,分析和阐述了沿海地区发生地面沉降的机理以及影响地面沉降发生发展的诸多因素。指出,孔隙水承压含水层中抽取地下水将引起承压水位降低进而引起土颗粒承担的有效压力的增大,从而使土层压缩。影响沿海地区地面沉降的因素有新构造运动、全球海平面上升、软土地基自然沉降、过量抽取地下流体以及建筑施工造成的局部沉降等。文章认为,在诸多影响因素中,人类过量开采地下流体是导致地面沉降发生的主要原因,人类应在资源利用和环境保护方面力争双赢。  相似文献   

12.
Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetatedSpartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic Coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4–4.5 yr record with the long-term (>50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, theSpartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh-dependent seaside sparrowsAmmodramus maritimus, saltmarsh sharp-tailed sparrowsAmmodramus caudacutus, black railsLaterallus jamaicensis, clapper railsRallus longirostris. Forster's ternsSterna forsteri, common ternsSterna hirundo, and gull-billed ternsSterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.  相似文献   

13.
Aquifers consisting of unconsolidated sediments in the coastal area near Zhanjiang in southern China are grouped into the shallow, middle-deep and deep aquifer systems. Groundwater exploitation began in the 1950s in this district and has increased from year to year since 1980. Measurements of groundwater levels and monitoring data of groundwater chemistry at some 60 wells since 1981 are examined to analyze the evolution of hydrodynamics and hydrochemistry in the coastal aquifers. The results indicate that groundwater levels in the middle-deep and deep aquifer systems have fallen continuously and the extents of the depression cones in water levels have increased in the past two decades, even though the water levels recovered to some degree during the period of 1997–2001. In 2004, the lowest water levels in the middle-deep and deep aquifer systems were 23.58 and 21.84 m below sea level, respectively. The groundwater has TDS ranging from 40 to 550 mg/L, and is of low pH, commonly varies between 4 and 7. Concentrations of total iron and manganese exceed the concentration limits of the drinking water standards. The hardness is in the range of 10–250 mg/L. Chloride contents of the groundwater range from 10 to 60 mg/L. The chloride and TDS do not show systematically increasing trends. Although the water levels in the exploitation center near the coast are significantly lower than the sea level and the depression cones of water levels in the middle-deep and deep aquifer systems have expanded to the sea, sea water intrusion has not been observed until recently. This phenomenon is quite unique in the coastal area near Zhanjiang.  相似文献   

14.
Monitoring land subsidence in Semarang,Indonesia   总被引:1,自引:0,他引:1  
Semarang is one of the biggest cities in Indonesia and nowadays suffering from extended land subsidence, which is due to groundwater withdrawal, to natural consolidation of alluvium soil and to the load of constructions. Land subsidence causes damages to infrastructure, buildings, and results in tides moving into low-lying areas. Up to the present, there has been no comprehensive information about the land subsidence and its monitoring in Semarang. This paper examines digital elevation model (DEM) and benchmark data in Geographic Information System (GIS) raster operation for the monitoring of the land subsidence in Semarang. This method will predict and quantify the extent of subsidence in future years. The future land subsidence prediction is generated from the expected future DEM in GIS environment using ILWIS package. The procedure is useful especially in areas with scarce data. The resulting maps designate the area of land subsidence that increases rapidly and it is predicted that in 2020, an area of 27.5 ha will be situated 1.5–2.0 m below sea level. This calculation is based on the assumption that the rate of land subsidence is linear and no action is taken to protect the area from subsidence.  相似文献   

15.
Land subsidence in China   总被引:19,自引:0,他引:19  
Land subsidence in China occurs in different regions. It is primarily caused by excessive groundwater withdrawal. Other reasons for the subsidence include the oil, warm groundwater withdrawal and the neotectonic movement. The common characteristics of land subsidence in China are slow, accumulative, irreversible, and other unique properties. The range of subsidence still keeps extending and the accumulative subsidence increasing though some measures taken. Adjustment of the aquifer exploitation practice is a subsidiary way to control land subsidence, but it cannot solve this problem completely. In a specfic way of groundwater changing, the contribution of a certain soil layer to the total subsidence depends on its compressibility and thickness. Besides the elasticity, both cohesive soil layers (aquitards) and sand layers (aquifers) are observed to be plastic and creep when the groundwater level fluctuates in a specific way, which often leads to subsidence delay.  相似文献   

16.
Twenty-three estimates of soil subsidence rates arising under the influence of local hydrologic changes from flap-gates, weirs, dikes, and culverts in tidal wetlands were compared to 75 examples of subsidence in drained agricultural wetlands. The induced subsidence rates from these hydrologic modifications in tidal wetlands can continue for more than 100 years, and range between 1.67 to 0.10 cm yr−1 within 1 to 155 years after the hydrologic modifications commence. These subsidence rates are lower than in freshwater wetlands drained for agricultural purposes, decline with age, and are significant in comparison to the rates of global sea level rise or the average soil accretion rates. The elevation change resulting from local hydrologic manipulations is significant with respect to the narrow range of flood tolerances of salt marsh plants, especially in microtidal environments.  相似文献   

17.
Su-Xi-Chang area is one of the typical regions in China which suffers from severe land subsidence. Various tools of field monitoring were integrated to study the characteristics and mechanisms of land subsidence in this region. The occurrence and the development of the land subsidence in this region are strongly related to the groundwater pumping both in time and space. The main consolidation layers are the soft mud layers; however, the compressibility of the confined sandy layers should not be ignored. The second and third confined aquifers contributed more than 30% of total subsidence. Meanwhile, irrecoverable deformations were also observed in the sandy layers. Different sandy layers deform diversely under different stress conditions. Some have the elastic feature. But the soil strata, including both sandy layers and clayey layers, located in the center of the groundwater level depression cone exhibited obvious viscous mechanical behavior which caused the common lag phenomenon. The sand composition (mingled with small clay particles or interbeds) and sand rheology are the two main reasons for the lag phenomena in sandy layers. A series of laboratory tests for modeling the effective stress changes due to groundwater withdrawals, were conducted to investigate the mechanism of the lag phenomenon. Based on the test results, the relationship of stress–strain–time for saturated sands is obtained; and it could be expressed as power functions. The results also showed that the compression of the sandy layers was time dependent, and its deformation could be remarkable. When establishing land subsidence model, the deformation for the similar soil formation could be elastic, visco-elastic and even visco-elastic–plastic, because of the different groundwater level fluctuation experienced.  相似文献   

18.
Large differential land subsidence and earth fissures in Jiangyin,China   总被引:1,自引:0,他引:1  
Jiangyin County is in the infamous Su–Xi–Chang land subsidence area caused by excessive groundwater withdrawal in Jiangsu province, China. The maximum accumulated land subsidence reached 1,310 mm near the centre of the subsiding trough in 2006 in southern Jiangyin, and earth fissures of significant vertical offsets have been observed at Changjing, Hetang and Wenlin which form an arc towards the subsidence trough. An ancient Yangtze River course is found underlying and passing through the depression in southern Jiangyin, forming a local basin surrounded by outcropped bedrock ridges in the north and south. The Quaternary stratigraphy demonstrates significant heterogeneities in the basin; the second confined aquifer is much thicker and deeper and encapsulated inside the basin and absent above the ridges. The development of earth fissures along the Changjing–Hetang–Wenlin arc might be a combination of an inward rotation of sediments due to a large differential subsidence, an inward movement driven by seepage force and a steeper slope along the south-eastern shoulder of the basin that facilitates the development of horizontal tensile strain and/or shear strain necessary for fissuring. The land subsidence has slowed down and no new earth fissure zone has occurred in the area after the banning of deep groundwater extraction was enacted in 2001.  相似文献   

19.
The New Jersey margin contains an extensive record of Cretaceous to Eocene sea-level fluctuations. These events have been documented on the basis of sedimentology, benthic foraminiferal paleobathymetry (paleoslope), biostratigraphic recognition of unconformities and their associated hiatuses, and on seismic reflection records. The record of sea-level change for the New Jersey margin shows a long-term (second-order) rise beginning in the upper Albian that is punctuated by numerous third-order cycles of change in the Upper Cretaceous, Paleocene, and Eocene. The sequences deposited during these cycles that are most readily recognizable, are separated by type 1 unconformities. Sequences bracketed by one or two type 2 unconformities are more difficult to resolve, although many have been identified. Sequences shown on the cycle chart of Haq et al. (1987) of less than 1 Ma duration are the most difficult to recognize and many have not been identified in the New Jersey section.

Benthic foraminiferal paleoslope studies indicate that relative sea-level rise on the New Jersey margin varied on the order of 10–120 m above present sea level. Much of the preserved record in the coastal plain consists of sediments deposited during rising sea level. This has led to a stacked record of sea-level rise events separated by unconformities.  相似文献   


20.
Subsidence has been affecting many cities around the world, such as Nagoya (Japan), Venice (Italy), San Joaquin Valley and Long Beach (California), and Houston (Texas). This phenomenon can be caused by natural processes and/or human activities, including but not limited to carbonate dissolution, extraction of material from mines, soil compaction, and fluid withdrawal. Surface deformation has been an ongoing problem in the Houston Metropolitan area because of the city’s location in a passive margin where faulting and subsidence are common. Most of the previous studies attributed the causes of the surface deformation to four major mechanisms: faulting, soil compaction, salt tectonics, and fluid withdrawal (groundwater withdrawal and hydrocarbon extraction). This work assessed the surface deformation in the greater Houston area and their possible relationship with fluid withdrawal. To achieve this goal, data from three complimentary remote sensing techniques Global Positioning System (GPS), Light Detection and Ranging (LiDAR), and Interferometric Synthetic Aperture Radar were used. GPS rates for the last 17 years show a change in surface deformation patterns. High rates of subsidence in the northwestern areas (up to ~4 cm/year) and signs of uplift in the southeast are observed (up to 2 mm\year). High rates of subsidence appear to be decreasing. Contrary to previous studies in which the location of subsidence appeared to be expanding toward the northwest, current results show that the area of subsidence is shrinking and migrating toward the northeast. Digital elevation model generated from airborne LiDAR, revealed changes between salt domes and their surrounding areas. The persistent scatterer interferometry was performed using twenty-five (25) European remote sensing-1/2 scenes. Rates of change in groundwater level and hydrocarbon production were calculated using data from 261 observation wells and 658 hydrocarbon wells. A water level decline of 4 m/year was found in area of highest subsidence, this area also show ~70 million m3/year of hydrocarbon extraction. This study found strong correlation between fluid withdrawals and subsidence. Therefore, both groundwater and hydrocarbon withdrawal in northwest Harris County are considered to be the major drivers of the surface deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号