首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了获取2019年6月17日发生的四川宜宾Ms6.0地震引起的地表形变情况,该文利用欧空局宽幅模式的高分辨率新型Sentinel-1A卫星获取了此次地震的第一对同震干涉像对数据,使用D-InSAR技术获取宜宾市长宁县地区的同震形变场。结果显示,本次地震在震中西北方向分别形成了1个明显的沉降区和抬升区,在雷达视线方向上的最大沉降量为7.9 cm,最大抬升量为8.1 cm。通过与同一时间内的GPS高程测量形变量相比,D-InSAR解算的地表形变量与GPS监测点形变量基本一致,均不超过3 mm,表明了本文的D-InSAR形变解算结果的可靠性,体现了新型Sentinel-1A雷达卫星在地震形变监测领域有着很高的应用价值和潜力。  相似文献   

2.
李东  侯西勇 《测绘通报》2020,(3):118-122
雷达卫星结合InSAR技术已广泛应用于高精度地表形变监测领域。本文选取2017年九寨沟地震为研究案例,利用Sentinel-1A地震前后的单视复数影像,基于D-InSAR技术获取该次地震的同震形变场。结果显示:震中西北侧表现出相对均匀的下沉现象,沉降漏斗区雷达视线向最大沉降量达25.1 cm;东南侧呈现不均匀抬升状态,地表破碎较为明显,最大抬升量为11.6 cm。研究表明基于Sentinel-1A数据的D-InSAR技术可以为地震形变场的定量分析提供一种快速有效的手段,为阐释地震发震机理及评估受灾情况提供必要的数据支撑,具有广阔的应用前景。  相似文献   

3.
燕翱翔  蒋亚楠  廖露  罗袆沅  刘陈伟 《测绘科学》2022,(10):132-141+160
针对如何准确分析2017年11月12日的伊朗Mw7.4地震断层属性的问题,该文从三维同震形变场与断层滑动分布角度出发,采用Sentinel-1A升降轨数据获取该地区三维同震形变场,并基于弹性半空间矩形位错模型,结合最速下降法反演得到其发震断层参数、模拟三维形变场。结果显示,地震东西向和南北向最大形变分别为68.8、43.8 cm,竖直方向上最大沉降和抬升分别达到34.4、96.7 cm,均符合逆冲断层的运动特征。地震主要形变特征为抬升,地震矩1.66×1020 N·m,矩震级Mw7.4,断层倾角16°,走向351°。结果表明,Okada模型解算所得地震三维形变场与观测结果总体特征相吻合,并且该地震为西南部板块挤压东北部板块而引发,属于逆冲为主带有右旋走滑的逆冲断层,其与地震学结果一致。  相似文献   

4.
韩鸣  张永志  程冬  尹鹏 《测绘通报》2019,(4):75-78,129
2017两伊地震是自1900年以来发生在扎格罗斯山脉的最大地震,为了研究此次地震引起的同震形变场,利用覆盖同一地区的3对Sentinel-1A升降轨数据分别进行两通差分DInSAR处理,得到了研究区3个视线向的地表同震形变场,通过直接解算法重建了研究区的三维同震形变场。试验表明:3种视角的升降轨视线向上升与沉降总体趋势基本一致;联合多个视角的观测结果可以实现三维形变场的重建;根据地表视线向和三维同震形变的特征以及地质构造背景推测了发震断层很有可能为扎格罗斯山前断层。  相似文献   

5.
高精度同震三维形变场对于研究地震变形模式、震源机制等具有重要意义。设计并实现了一种联合地震位错模型和扩展融合大地测量、卫星形变观测、应变张量估计(extended simultaneous and integrated strain tensor estimation from geodetic and satellite deformation measurements, ESISTEM)方法的新方法,以2021年Ms 6.4漾濞地震为例,利用哨兵1号A、B星(Sentinel-1A/B)升、降轨影像获得该地震的合成孔径雷达干涉测量形变场,利用地震位错模型正演得到的南北向形变分量进行约束,成功提取了该地震完整的同震三维形变场及应变场。结果表明,漾濞地震断层西南侧主要向西、向北运动,最大形变分别为4.8 cm、9.5 cm;东北侧主要向东、向南运动,最大形变分别为7.4 cm、4.6 cm;垂直向抬升、沉降的最大值分别为3.6 cm、3.4 cm;发震断层以右旋走滑运动为主,兼有少量正断分量;发震断层区域受到显著的膨胀、剪切和旋转作用。  相似文献   

6.
针对D-InSAR地震形变监测中存在LOS(line of sight)视线向模糊的问题,该文构建了一种融合升降轨不同视线向干涉测量数据获取三维同震形变场的方法。以2017年九寨沟M_S7.0级地震为例,基于研究区的Sentine1_1A数据和SRTM(1″)DEM数据,采用二轨差分的D-InSAR技术,融合升降轨LOS向以及自定义视线向的干涉测量数据进行联合解算,获取了研究区三维同震形变场,解决了单一轨道雷达LOS提取结果不能准确反映地表三维形变场的问题。实验表明,此次地震造成了震中附近一定范围地表的沉降和东南向的滑移,并通过震区形变剖面图和形变等值线图,分析了形变场的空间分布以及此次地震所造成地表断裂的位置,认为此次地震与塔藏断裂、虎牙断裂存在关联性,其运动形式为主动盘逆冲的走滑型地震。  相似文献   

7.
2022年1月8日青海省海北州门源县发生Ms 6.9地震,震中位于青藏高原东北缘祁连-海原断裂中段,属历史地震空区,基于多源合成孔径雷达(synthetic aperture radar,SAR)遥感数据研究该地震的破裂模式对理解青藏高原东北缘构造变形机制、应变释放过程以及地震危险性评估具有重要意义。首先利用Sentinel-1数据和合成孔径雷达差分干涉测量(differential interferometry synthetic aperture radar,D-InSAR)技术获取了门源地震的同震形变场,视线(line of sight,LOS)向形变场显示此次地震造成了约20 km长的地表破裂,最大形变约0.75 m;然后基于Sentinel-2卫星数据,利用光学影像配准和相关技术获取了本次地震的东西向同震形变场,最大同震位移达2.5 m;最后基于均匀弹性半无限位错模型,以LOS向形变场为约束反演了断层的滑动分布模型。结果显示,门源地震是一次典型的左旋走滑型地震,地震破裂主要集中在0~10 km深度范围,最大滑动量3.25 m,滑动角10.44°,对应深度4.89 km;反演给出的矩震量为1.07×1019 N·m,对应矩震级Mw 6.6。结合野外考察和地质资料,初步判定发震断裂为冷龙岭断裂,并引起托莱山断裂发生同震滑动。同震库仑应力结果显示,冷龙岭断裂东段和托莱山断裂西段应力状态为加载,未来具有发生强震的风险。  相似文献   

8.
地震的同震形变监测对于地震形变特征解释以及直观了解断层的几何特征具有重要意义。对于有地表破裂的大地震,GNSS(global navigation satellite system)技术空间分辨率较低,InSAR(interferometric synthetic aperture radar)技术由于大的形变梯度会发生相位失相干,均无法获得详细的断层周围形变。基于亚像素互相关技术的光学影像相关和像素偏移追踪能够很好地解决这些问题。以2016年凯库拉Mw 7.8级地震为例,使用哨兵2号数据获取东西向和南北向形变,使用哨兵1号数据获取距离向和方位向形变。为确定获取三维形变场的哨兵2号光学数据与哨兵1号SAR数据的最佳组合,将这些形变种类进行组合,并使用最小二乘方法计算三维形变。结果表明,OIC+POT_As_Des的组合最适合获取凯库拉地震三维形变,各种观测数据类型的结合能够较好地控制三维形变的效果和精度。对凯库拉地震的三维形变进行分析,结果表明,该地震在两个不同区域发生了巨大且复杂的地表位移,是一次右旋走滑为主带有逆冲的地震,垂直形变主要表现为抬升。研究成果可以为地表三维形变的研究提供...  相似文献   

9.
利用哨兵(Sentinel)-1A卫星升、降轨影像,在地震位错模型约束下获取了2017年九寨沟Mw 6.5地震的高质量三维形变场。首先,利用合成孔径雷达干涉测量技术(interferometric synthetic aperture radar,InSAR)提取九寨沟地震升、降轨同震形变场;然后,通过“两步法”反演获取该地震发震断层的几何参数和分布式滑动模型,以此为约束,采用方差分量估计算法联合解算九寨沟地震三维形变场。结果表明,九寨沟地震同震三维形变场以水平位移为主,垂向形变较弱;南北向形变呈拉张趋势,断层上盘向南、下盘向北滑动,最大位移分别为-19.81 cm和14.38 cm;东西向形变不对称性明显,断层上盘西北部向东水平运动,最大位移为18.37 cm,下盘东南部向西运动,最大位移不足8 cm。将南北、东西向形变与6个全球导航卫星系统(global navigation satellite system,GNSS)台站观测数据进行比较,两者一致性较好且均方根误差较小,分别为1.44 cm和1.77 cm,表明联合升、降轨InSAR观测和地震位错模型约束构建同震三维形变场方法具有较高可行性,显著降低了大地测量数据不足、InSAR观测对南北向形变不敏感等问题的影响。  相似文献   

10.
2023年10月7日阿富汗西部赫拉特省在不足1 h内接连发生4次Mw 5.5+的地震,称之为“2023年赫拉特地震序列”,此次地震序列是阿富汗境内过去20多年来遭遇伤亡最严重的地震事件,研究该地震序列的发震断层几何和快速分析损坏建筑物的分布状况对理解Herat断裂系统的构造机制、保障高效救援以及灾后规划重建等工作具有重要科学意义。基于欧洲空间局Sentinel-1升降轨合成孔径雷达影像,利用InSAR技术(interferometric synthetic aperture radar)获取2023年赫拉特地震序列的同震形变场,以升降轨InSAR观测为约束,反演确定发震断层几何和断层滑动分布,并对发震构造进行分析;基于多时相InSAR相干性变化探测方法分析并提取本次震后建筑物损毁代理图(building damage proxy map, BDPM)。结果表明,升降轨同震形变场均位于Herat断裂带和Siakhubulak断裂带之间,升降轨数据观测得到的最大视线向形变量分别约为32.3 cm和58.9 cm。反演结果显示,同震位错以逆冲运动为主兼具少量右旋走滑运动,发震断层北倾,倾角约...  相似文献   

11.
为全面分析不同卫星导航系统(GNSS)组合监测地震形变的精度,本文首先基于青海玛多地震(Mw 7.4)周边近场及远场共8个区域CORS站的高频(采样率为1 Hz)GNSS观测数据,采用精密单点定位技术进行高频数据解算,初步分析了多系统组合相对单GPS系统的同震形变精度提升,然后对具有相同卫星系统数/不同卫星系统组合的同震形变误差进行对比分析,最后基于GREC2(GPS/GLONASS/Galileo/BD-2)和GREC3(GPS/GLONASS/Galileo/BD-3)两种组合情况分析了北斗二号与北斗三号的同震形变精度差异。研究结果表明,多系统组合观测同震形变的精度优于单系统,其中GEC2+3(GPS/Galileo/BD-2/BD-3)组合观测同震形变精度最优,相对于单系统GPS而言,在水平方向上的精度提升可达30%~60%,在垂向上的精度平均提升可达30%;在三系统卫星导航系统组合中,含北斗的多系统组合在水平方向上的精度提升最高可达38.75%,垂向上的精度提升最高可达41.46%;北斗三号观测的同震形变精度比北斗二号精度更高、效果更好。  相似文献   

12.
同震地表三维形变场是对地震引起的地表形变在真实空间中最直观的描述,在地震形变研究中,同震地表三维形变场的恢复具有重要意义。针对目前地表三维形变解算方法存在的不足和缺陷,提出了一种顾及形变梯度的同震地表三维形变场联合解算方法。该方法利用形变梯度信息将合成孔径雷达干涉(interferometric synthetic aperture radar,InSAR)观测的形变区域分解成形变梯度近似相等的互不相交的子区域,然后根据子区域内观测值数量选择加权最小二乘法(weighted least square,WLS)或基于应力-应变模型(stress-strain model,SM)和方差分量估计(variance components estimation,VCE)的InSAR三维形变解算方法(SM-VCE)获取同震地表三维形变场。模拟实验和实际震例研究结果表明,相比于传统的WLS和SM-VCE方法,通过形变梯度信息能有效恢复地震破裂带的地表三维形变,得到更加完整和可靠的同震地表三维形变场。  相似文献   

13.
2019年6月19日四川长宁县发生Ms6.0地震,提取地震同震形变场,反演震源机制,对于地震破裂分析、指导救灾具有重要意义。本文利用两轨差分干涉处理覆盖长宁地震影响区域的两景Sentinel-1A影像,在对D-InSAR关键技术和影像特征研究的基础上,配置处理方法和参数,提取了此次地震的同震形变场,采用Okada模型和正向建模对发震断层的几何参数及形变场进行了反演和模拟。结果表明,长宁地震形变场呈西北—东南走向的次级断层控制的不规则椭圆形,断层的两侧区域特征差异明显,断层左下侧为沉降区,右上侧为隆升区,两者的最大视线向形变分别为8、6 cm。断层的运动主要以左旋走滑为主,平均滑动距离约0.38 m,平均滑动角约55°,正向模拟的形变场与观测结果相符,这表明观测结果较可靠,同时也提高了低相干形变区的观测精度。  相似文献   

14.
郭天豪  解斐斐  霍志玲 《北京测绘》2021,35(9):1225-1229
针对地震导致的地表变形、建筑物损坏等问题,利用合成孔径雷达差分干涉测量技术检测受灾区,并利用深度卷积网络提取损坏建筑物.以2016年4月16日厄瓜多尔地震为例,利用Sentinel-1A雷达数据获取地震形变.结果表明:厄瓜多尔地区整体地震形变在0~0.226 m,可检测形变变化为0.028 m;结合光学遥感影像进行分析,结果表明:80%损坏严重的建筑物存在于形变变化区域,形变较大区域道路受阻更为严重.基于高分辨率Worldview2光学卫星数据,利用ENVINet5深度卷积网络提取损坏建筑物,分类精度为74%,验证其在震后建筑物提取应用的可行性.  相似文献   

15.
中国青海省门源县于2016年和2022年分别发生了Mw 5.9和Mw 6.7地震,相距不足40 km。利用欧洲空间局Sentinel-1A升降轨雷达影像,采用合成孔径雷达干涉测量(interferometric synthetic aperture radar, InSAR)技术分别获取两次地震的同震地表形变场,进而利用弹性半空间的位错模型确定上述事件的震源参数,基于分布式滑动模型反演确定两次地震断层面上的滑动分布,并探讨2016年门源地震对2022年门源地震的发震影响及触发机制。结果表明,2016年门源地震为逆冲型地震,并未破裂到地表,升、降轨同震形变场沿视线向的最大形变量分别为6.7 cm和7.0 cm,断层的最大滑动量为0.53 m,主要集中在地下4~12 km区域滑动。2022年门源地震同震形变场沿NWW-SEE向破裂,降轨影像最大视线向地表形变量为78 cm,断层的最大滑动值达到3.5 m,处于地下4 km左右,断层滑动分布模型揭示此次地震为左旋走滑型地震;结合冷龙岭断裂的运动性质和几何特征,可初步判定发震断层主要为冷龙岭断裂的西段、且极有可能破裂到了其西北端西侧的托莱山断裂。静态库仑应力触发关系显示,2016年门源地震对2022年门源地震的发生有一定的促进作用。  相似文献   

16.
差分雷达干涉测量(DInSAR)在地震形变监测中具有重要作用,但DInSAR仅能获取雷达视线向的形变量,无法准确反映地表三维形变.为了获取真实的地表形变,文中采用一种联合DInSAR和多孔径干涉技术(MAI)的地震三维形变场反演方法,以2017年九寨沟Ms7.0级地震为例,融合升降轨Sentinel-1A数据,联合解算...  相似文献   

17.
针对单一平台DInSAR技术仅能获取雷达视线方向同震形变场的问题,根据雷达成像的几何条件,融合不同轨道、不同平台的DInSAR数据解算了拉奎拉地震的三维同震形变场。三维形变结果反映的拉奎拉地震发震断层的特征与地质调查的结果较吻合。将得到的三维形变场数据与该地区GPS观测站数据进行比较,结果表明,得到的拉奎拉地震的三维同震形变场比较可靠且精度较高。  相似文献   

18.
针对矿区地表形变具有快速、连续、大梯度等特征,使其InSAR形变监测常出现低相干,甚至失相干等低效监测问题,该文采用21景重访周期仅为12 d的Sentinel-1A数据,利用小基线集时序InSAR技术(SBAS-InSAR),对山西省东坪煤矿2017年5月30日至2018年1月25日期间的地表形变进行了连续监测.结果表明:该监测区间快速沉陷区域有五处,沉陷总面积达3.146 km2,最大下沉值约为-57.47 mm,最大下沉速率约为-67.53 mm/a;形变场A处平均沉陷深度随时间推移呈线性增加;形变场E处工作面上方地表的沉陷响应较工作面边缘及以外更为剧烈.证明了短重访SAR数据能够准确反演地表沉陷速率和累积量,动态提取矿区快速形变场的空间分布形态和时序变化过程,为矿区地表形变动态监测和沉陷区地质灾害定量评估提供有效方法.  相似文献   

19.
利用Sentinel-1A卫星升轨、降轨合成孔径雷达影像数据,提取了2016年门源Mw5.9级地震的高精度合成孔径雷达干涉同震形变场,利用单纯形法和非负最小二乘法反演确定了地震断层几何和滑动分布,并构建了区域断裂带的深部几何形态模型。结果表明,门源Mw5.9级地震同震形变以地表抬升为主,沿升轨、降轨视线向的最大值分别为5.3 cm、7.1 cm;地震断层走向、倾角分别为133°、43°;地震滑动以逆冲为主,主要发生在地下6.14~12.28 km处,最大滑动量约0.5 m,平均滑动角为66.85°,地震矩为1.0×1018 N·m(Mw5.94);形变观测拟合残差均方根为0.36 cm;区域断裂带的深部几何形态以花状构造为特征,整体倾向南西,门源地震发震断裂为花状构造中未出露地表的盲断层。相关成果能够为研究区域地壳运动与变形、活动断裂与地震孕育发生等提供参考。  相似文献   

20.
2021年5月21日云南省漾濞县西侧发生Ms6.4地震,造成较大人员伤亡和经济财产损失。采用D-InSAR技术对云南省漾濞的升降轨Sentinel-1A数据分别进行解算得到Ms6.4地震同震形变场。降轨结果显示在震中的东-南向有两个明显的隆升和沉降区域,雷达视线向最大沉降量为-7 cm,最大隆升量为8 cm。升轨结果显示雷达视线向最大沉降量为-7 cm,最大隆升量为7 cm。根据震源机制解和同震滑动分布模拟计算此次地震导致的周边断裂库仑应力变化情况,联合升降轨结果解算本次地震的垂直向和东-西向形变场,并分别分析形变场的形变方向和形变量级,可以为研究地震震源参数和同震滑动模型精细化反演提供更可靠的约束条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号