首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Young volcanic rocks from different sections of the Aleutian Islands-Alaska Peninsula Arc have been measured for 87Sr/86Sr, 143Nd/144Nd and some trace elements. We found the 143Nd/144Nd to be highly restricted in range ( Nd=6 to 7) and low as compared to midocean ridge ba-salts (MORB). This indicates that the source of the Aleutian Arc magmas is different from MORB and remarkably isotopically homogeneous with respect to Nd. The range reported here for arc rocks is substantially smaller than found by other workers. However, the Sr isotope ratios vary considerably ( Sr=–24 to –14). Those samples from small volcanic centers north of the main arc (second arc) are characterized by low Sr. Our data in combination with previous studies suggest that there are slight geochemical differences between discrete sections of the arc. The general uniformity of Nd isotope ratios are thought to be the surface expression of an efficient mixing or homogenization process beneath the arc plate, but which still causes a wide dispersion in Sr isotopic composition.To relate the arc rocks to the broader tectonic setting and to identify possible sources of arc magmas, measurements were done on volcanic and sedimentary rocks from the North Pacific/Bering Sea area. Alkali basalts from the back-arc islands St. George, Nunivak and St. Lawrence and alkali-rich tholeiites from the fore-arc have Nd=+4 to +9 and are correlated on the Sr- Nddiagram parallel to the mantle array but shifted to lower Sr. These samples are thought to be isotopically representative of the mantle transported to that region. A tholeiitic basalt from the Kamchatka Basin ocean floor (back-arc), however, yielded typical MORB values ( Nd=10, Sr=–24). Composite sediment samples were made from DSDP cores in the Aleutian Abyssal Plain, Gulf of Alaska and the Alka Basin which represent mixtures of continentally and arc-derived materials. These composites have intermediate Nd isotopic ( Nd= –2 and +2) and high Sr isotopic values ( Sr=+9 and +37). These data show that possible source materials of the Aleutian Arc volcanics are isotopically different from and much more heterogeneous than the arc rocks themselves.On the basis of this study and of literature data, we developed a set of alternative models for volcanic arc magma generation, based on the restricted range in Nd and the wider range in Sr for arc rocks. Different isotopic and trace element characteristics found in different arcs or arc sections are explained by varying mixing proportions or concentrations in source materials. The basic observations require rather strict mixing ratios to obtain constant Nd. The preferred model is one where the melting of subducted oceanic crust is controlled by the amount of trapped sediment with the melting restricted to the upper part of the altered basaltic layer. Homogenization within the upper part of the oceanic crust is brought about by hydrothermal circulation attending dewatering of the slab during subduction and possibly some oxygen exchange of the magmas on ascent.Division Contribution Number 3849 (411)  相似文献   

2.
Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16–9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial Nd values (1 Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20–40% (by mass) wall-rock into magmas that were injected into the upper crust. The low Nd magmas most likely formed via the incorporation of low 18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher 18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13–14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70–80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0–10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing basification of a lower crustal magma source by repeated injection of mantle-derived mafic magmas.  相似文献   

3.
Initial Nd isotopic ratios are reported for 23 samples representing magmatic crustal components in the Svecokarelian terrain of South Finland. U-Pb zircon ages are determined for all geologic units, involving 21 separate upper concordia intercept ages based on more than 100 UP-b analyses. The ages range for all the rocks from 1.90 Ga for primitve plutonic rocks to 1.79 Ga for post-tectonic intrusions. The well-known gabbro-diorite-tonalite-trondhjemite association of the Kalanti district appears to consist of components with different ages: trondhjemites are probably 1.90 Ga or older, diorites/tonalites belong to the main Svecokarelian plutonic eposide at 1.89-1.87 Ga, and at least some gabbro has a post-tectonic age of 1.80 Ga. Nd (T) values range between +2 to +3 for meta-andesites, large gabbros and primitive granitoids to –0.5 for more evolved granitoids. A magma source with Nd of at least +2 to +3 was available during 1.90 to 1.87 Ga, but evolved granitoids have Nd close to zero. The preferred interpretation is that depleted mantle with Nd=+4 to +5 was present beneath the Svecokarelian crust forming during 1.9-1.8 Ga, and that all rocks have been affected more or less by addition of an Archean crustal component with Nd=–9 to –13. The primitive rocks with Nd=+2 to + 3 were only slightly affected, while granitoids with Nd close to zero include a 10% Archean component. The widespread nature of the Archean addition and the distance of up to 500 km to actual exposed Archean crust make it most realistic that the Archean component was added to the form of sediments delivered by subducting Proterozoic ocean crust. The plutonic rocks of the Finnish Svecokarelian crust in areas away from Archean cratons consist of 90% newly mantle-derived material.  相似文献   

4.
Greenstone, blueschist and eclogite metabasaltic blocks from the Franciscan complex of California preserve extensive petrographic and chemical evidence for interaction with hydrous fluids at high-P, low-T metamorphic conditions. The Nd and Sr isotope variations within and among the blocks constrain the origin of the basaltic protoliths, the nature of the fluid metasomatism that occurred within the upper levels (15–45 km) of the paleosubduction zonc, and the character and provenance of the rock that generated the hydrous fluids within the paleosubduction zone. Samples with little or no petrographic evidence of retrograde alteration and unaltered garnet separates have Nd. With increasing degrees of retrograde alteration, Nd isotope compositions are consistently lower, ranging down to Nd(160)=5. Actinolitic alteration rinds which are present on some blocks have the least radiogenic compositions with Nd=1.6 to 6.1. While Nd isotope compositions of unaltered blockes are in the range expected for basalt derived from normal depleted mantle, the Sr isotope compositions are more radiogenic ranging from Sr(160)=–5 to +11. Compositions of unaltered eclogite and blue-schist blocks are consistent with a protolith origin in normal oceanic crust derived from depleted mantle. The Sr isotopy systematics indicate that the protoliths were modified by seawater alteration in an ocean-floor hydrothermal system. Isotopic compositions of samples from parts of blocks that have a retrograde metamorphic overprint show a strong correlation between less radiogenic Nd compositions and the extent of retrograde metamorphism. Maximum Nd isotope ratios of the metasomatizing fluid are provided by analyses of actinolitic rinds, and range from Nd(160)=1.6 to 6.1. A possible source for fluids of this composition is subducted sediment that was derived from a continental craton. Because rind formation occurred while the basaltic blocks were within an ultramafic matrix, the fluids must have migrated from sediments in the accretionary wedge into an overlying wedge of mantle material imbricated with blocks of oceanic crust. This suggests possibly km-scale movement of fluids that carry an amount of the rare-earth elements sufficient to significantly modify the trace-element budget of subducted basalt.  相似文献   

5.
18O values of unaltered olivine and pyroxene phenocrysts in boninites from several areas range from 5.8 to 7.4 and indicate that the source for most boninites is more 18O-rich than MORBs and other oceanic basalts. The source for oxygen and other major elements is most likely a refractory portion of the mantle having a 18O value of up to 7.0 to which must be added a small amount of H2O-rich fluid to induce partial melting. This fluid, which is derived from subducted crust, is the vehicle for LREEs including Nd. The variable, normally low Nd values typical of boninites do not correlate with the 18O values.Post eruptive exchange of oxygen in the glass of boninites with that of sea water at low temperatures (<150° C) produces 18O values of >10 in optically fresh glass. Hydration of the glass has increased the water contents of most boninites from estimated magmatic values of 1–2 wt% to 2–4 wt% and produced D values of < –80, which may be lower than the original magmatic D values. In contrast to most submarine pillow basalts, the magmatic volatile composition of boninite lavas has been extensively modified as a result of post eruptive interaction with seawater.  相似文献   

6.
Initial Nd and Sr isotopic ratios were obtained for middle Miocene igneous rocks as well as for related rocks from the Outer Zone of Southwest Japan to investigate the petrogenesis of acidic magmas and their relation to a peculiar tectonic environment bearing on the back-arc spreading of the Japan Sea. On the Nd- Sr diagram, data points for the acidic rocks fall in the – Nd, + Sr quadrant occupying different positions from those for sedimentary and old crustal rocks, and seem to define several subparallel lines which extend towards the lower-righthand sedimentary field. The S-type acidic rocks occupy an intermediate position between I-type rocks and sedimentary ones, a fact suggesting mixing of an igneous component and a sedimentary one. The linear mixing trend observed on the Nd- Sr diagram can be attained in the restricted case that the igneous component has similar Sr/Nd concentration ratios to that of the sedimentary one, which implies an intermediate to acidic composition for the igneous component. Inconsistency between the elemental and isotopic variations observed may be reconciled by considering that mixing, probably in the relatively deep part of the crust, might have occured prior to chemical differentiation processes. The episodic igneous activity and the high heat energy required to melt such materials involving sedimentary rocks may be explained by a model in which a hot mantle region probably corresponding to the rising part of the mantle convection supplied the heating energy to the Outer Zone of Southwest Japan when passing beneath Southwest Japan in the course of movement of the hot rising part from the Shikoku basin areas to the Japan Sea area.  相似文献   

7.
Ijolites from the type locality at Iivaara, Finland, form a continuous series of magmatic rocks ranging from urtites to melteigites. Both Ni and Cr, but also the large ion lithophile light-rare-earth elements, Zr, Hf, Nb, Rb, Sr and Ba are low in concentration. The Nd contents equal those of the neighboring fenites, Sr is distinctly less abundant, and there is no significant Eu anomaly. The 143Nd/144Nd and 87Sr/86Sr of the ijolites demonstrate a systematic covariation between the data of carbonaties from the Kola Alkaline Province (Sr – 13.8, Nd + 5.6) and those of the fenites at Iivaara (Sr + 132.9, Nd – 24.7) with Sr varying from +0.3 to +23.9 and Nd varying from-9.2 to-19.3. The trace element abundances and the isotopic data give evidence for a crystallization of the rocks from a liquid generated by melting (rheomorphism) of high-grade fenitized country rocks rather than from a primary mantle-derived magma which was contaminated at crustal levels. The fenitization of wall rocks preceding the ijolite magma formation was clement selective. Mixing of elements during the fenitization process between the designated components carbonatite (or derivative fenitizing fluid) and wall rock should have been dynamical depending on the stability of the wall rock mineral assemblages in contact with the fenitizing fluids, the migration velocity of these fluids, and their capacity of the respective elements. Such dynamical mixing explains best the variation of the isotope ratios withont systematic covariation of the respective element concentrations.  相似文献   

8.
The Peräpohja schist belt in northern Finland rests unconformably on Archaean granitoids, and marks the early stages of Proterozoic crustal evolution in the Fennoscandian (Baltic) shield. 2440 Ma old layered mafic intrusions predate the supracrustal , and ca. 2200 Ma old sills of the gabbro-wehrlite association intrude the lowest quartzites and volcanics (Runkaus) of the sequence. The Sm-Nd mineral isochron of the Penikat layered intrusion gives an age of 2410±64 Ma. The initial Nd-values of the Penikat intrusion (Nd(2440) = –1.6) and the Runkausvaara sill (Nd(2200) 0) suggest that these mafic magmas were contaminated by older crustal material. The Sm-Nd and Pb isotopic results on the 2.44–2.2 Ga old Runkaus volcanics indicate mobility of Pb, fractionation of Sm/Nd during late greenschist facies metamorphism, and crustal contamination. The Pb-Pb data provide an age of 1972±80 Ma with a high initial 207Pb/204Pb ratio (1 = 8.49), while scattered Sm-Nd data result in an imprecise age of 2330±180 Ma, with an initial Nd-value of about zero. Secondary titanite gives an U-Pb age of ca. 2250 Ma. The Jouttiaapa basalts, in contrast, ascended from the mantle without interaction with older crust. These LREE depleted tholeiites mark a break in continental sedimentation, and yield a Sm-Nd age of 2090±70 Ma. Their initial Nd = + 4.2 ±0.5 implies that the subcontinental early Proterozoic mantle had been depleted in LREE for a long period of time. The first lava flows are strongly depleted in LREE, suggesting that their source was significantly more depleted than the source of mid-ocean ridge basalts today.  相似文献   

9.
Sm-Nd systematics for nine whole-rock samples of hornblende norites, pyroxenites and a lamprophyre from various parts of the Cortlandt Complex were analyzed. Six of these samples from the central and eastern parts of the complex give an isochron age of 430±34 (2) Ma with an Nd value of –2.9±0.5, and the other three samples from the western part, including the lamprophyre, define a similar age of 394±33 (2) Ma but with a distinctly different Nd value of –1.4±0.4. The two different initial 143Nd/144Nd ratios corresponding to these -values are interpreted to reflect continental crustal contamination of the lamprophyric parental liquid prior to final emplacement and crystal fractionation to produce the different rock types of the complex. The intrusion age of 430 Ma for the complex clearly post-dates the major metamorphic event of the Taconic orogeny. The Nd-isotopic data also suggest a relationship between the Cortlandt Complex and a belt of lamprophyric dike rocks to the west, known as the Beemerville trend, which cuts across the metamorphic trends of the Taconic (Ratcliffe 1981).  相似文献   

10.
Initial 87Sr/86Sr and 143Nd/144Nd ratios of Phanerozoic granitoids and related intrusions of the New Zealand block display a mixing-type array indicative of the involvement in their sources of old continental crustal material, most likely of Proterozoic age. Sr(T) values range from –4 to +273 (87Sr/86Sr=0.7041–0.7233), while Nd(T) ranges from +2.7 to –11.0. Preexisting metasedimentary rocks have generally higher Sr and lower Nd (ranging to present-day values of +646 and –15.0, respectively), and, particularly for the Mesozoic intrusives, are isotopically appropriate mixing end-members. The widespread, early Paleozoic Greenland Group graywackes, which are derived from Proterozoic sources, are modeled as the source of the crustal end-member mixing with mantle-derived mafic magmas to produce the intrusive rocks. Four different types of models are applied to the isotopic and trace-element (Rb, Sr, Ba, REE) data: simple mixing; mixing with a partial melt of the metasedimentary rock, with or without isotopic equilibrium; and assimilation-fractional crystallization. Based on these models, some constraints may be applied on petrogenesis (e.g., the lack of high Rb concentrations points to the presence of biotite, and HREE depletion points to the presence of garnet); however, the models fail to adequately explain all the data. The New Zealand granitoids show similarities in isotopic character not only to rocks from offshore islands on the New Zealand block, but also to similar-aged granitoids in adjacent regions of Antarctica and Australia. This points to similarities in crustal character between continental blocks formerly proximal in Gondwanaland. We note an overall increase in Nd and decrease in Sr in felsic magmas from the Paleozoic to the Mesozoic to the Cenozoic in New Zealand, indicative of a decrease over time in the level of influence of recycled continental crust in subduction-related magmatism.Division Contribution No. 4538 (582)  相似文献   

11.
The ca. 2.7–2.5 Ga Slave Province is a granitegreenstone terrane comprising deformed sedimentary and subordinate volcanic belts extensively intruded by granitoid rocks. The Nd isotopic data are reported for 58 samples of supracrustal and granitoid rocks exposed along a 400 km, east-west, transect at 65°N across the structural grain of the province. Initial Nd values reveal distinctly different crustal sources in the eastern compared to the western parts of the province, as expected from tectonic assembly of the province through accretion of juvenile crust to older continental crust. Supracrustal sequences (ca. 2.71–2.65 Ga) from the central and eastern parts of the province have positive Nd(1) values (+0.3 to +3.6), consistent with juvenile sources and formation remote from significantly older crust. Syn to late-deformation (ca. 2.63–2.60 Ga), mantle-derived diorites and related tonalites (type I) from the central and eastern parts of the province have similar initial Nd values (-0.1 to +2.7). In contrast, samples from the westernmost plutons, which intrude exposed pre-3.1 Ga crust, have much lower Nd(1) values (-1.0 to4.6) suggesting contamination of these magmas by older crust. The Nd(1) values of post-deformation granites (s.s.) (type II) also vary systematically across the province: values for granites west of longitude 110°30W range from-0.2 to -5.3; those to the east range from +0.6 to +3.7. These data suggest mixed crustal sources dominated by Mid to Early Archean material ( Nd-2.6 to- 17 at 2.6 Ga) for the western granitoid rocks and juvenile sources for the eastern granites. The Nd isotopic data are consistent with the geology of the province in that exposures of Mid to Early Archean crustal rocks, predating the principal 2.7–2.5 Ga orogenic event are restricted to the western part of the province. The asymmetric pattern defined by the Nd isotopic data indicates the presence of distinct crustal rocks beneath the Slave Province. Similar isotopic variations observed across Phanerozoic collisional orogens have been interpreted to reflect tectonic assembly of crust by accretion of juvenile crustal terranes to an older continental margin. This process may also have been an important mechanism in the cratonization of the Slave Province.  相似文献   

12.
New Hf isotopic compositions for island arc basalts from the Luzon arc (Philippines) define a remarkable sub-horizontal trend in Hf–Nd isotopic space with a small range of Hf (+5 to +17) associated with a large variation in Nd (–7 to +8). The data plot above and barely overlap the terrestrial array defined by oceanic basalts and continental crust. Mixing hyperbolas passing through the data intersect fields for depleted mantle and pelagic sediments suggesting that these two components formed the source of the Luzon arc lavas. An exception is the Batan Island where the low Nd ratios are associated with low Hf values. A mixing hyperbola fitting the Batan samples suggests that their mantle source was modified by subducted material prior to contamination by terrigenous clays. More generally, the geochemical relationships in Luzon lavas show that the mixing endmembers are source components rather than melts. The relationship between Nd and Hf isotopic compositions in the Luzon volcanics show that the type of sediment subducted under an island arc is a determining factor in the control of the two isotopic systems in island arc environments.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
Rb-Sr isotopic data for anorthosites, charnockites, ferrodioritic to quartz monzonitic plutons, and high-grade gneisses of the Blue Ridge of central Virginia show evidence of post-emplacement metamorphism, but in some cases retain Grenville ages. The Pedlar River Charnockite Suite yields an isochron age of 1021 +/-36 Ma, (initial 87Sr/86Sr ratio of 0.7047 +/-6), which agrees with published U-Pb zircon ages. Five samples of that unit which contain Paleozoic mylonitic fabrics define a regression line of 683 Ma, interpreted as a mixing line with no age significance. Samples of the Roseland Anorthosite Complex show excessive scatter on a Rb-Sr evolution diagram probably due to Paleozoic (475 m.y.) metamorphism. Data from the ferrodioritic to quartz monzonitic plutons of the area yield an age of 1009 +/-26 Ma (inital ratio=0.7058 +/-4), which is in the range of the U-Pb zircon ages of 1000–1100 Ma. The Stage Road Layered Gneiss yields an age of 1147 +/-34 Ma (initial ratio of 0.7047 +/- 5).Sm-Nd data for the Pedlar River Charnockite Suite reflect a pre-Grenville age of 1489 +/-118 Ma ( Nd=+6.7 +/-1.2). Data for the Roseland Anorthosite Complex and the ferrodioritic to quartz monzonitic plutons yield Grenville isochron ages of 1045 +/44 Ma ( Nd=+1.0 +/-0.3) and 1027 +/-101 Ma ( Nd=+1.4 +/-1.0), respectively. Two Roseland Anorthosite samples plot far above the isochron, demonstrating the effects of post-emplacement disturbance of Sm-Nd systematics, while mylonitized Pedlar River Charnockite Suite samples show no evidence of Sm-Nd redistribution.The disparity of the Sm-Nd age and other isotopic ages for the Pedlar River Charnockite Suite probably reflects a Sm-Nd source age, suggesting the presence of an older crust within this portion of the ca. 1 Ga old basement.  相似文献   

14.
Olivine clinopyroxenite xenoliths in the Oslo Rift,SE Norway   总被引:1,自引:0,他引:1  
Olivine clinopyroxenite xenoliths in a basalt flow at Krokskogen in the Oslo rift consist mainly of Al-Ti-rich clinopyroxene and alteration products after olivine (possibly also orthopyroxene). The clinopyroxene contains primary inclusions of Cr-Al-bearing titanomagnetite, pyrite and devitrified glass, and secondary fluid inclusions rich in CO2. On the basis of petrography, mineral compositions and bulk major and trace element chemistry, it is concluded that the xenoliths represent cumulates with about 5% trapped liquid, formed from a mildly alkaline basaltic magma. Microthermometrical analysis of secondary or pseudosecondary fluid inclusions give a minimum pressure of formation of 5.5 to 6 kbars, that is a depth greater than 16–17 km. The host lava has initial Nd=+4.16±0.17 and Sr=–5.50±0.26, which is believed to reflect the isotopic composition of the lithospheric mantle source region under south Norway in early Permian time. The isotopic character of the magma which gave rise to the xenoliths is preserved in clinopyroxenes which have Nd t =+1.9 to +2.6 and Sr t = –1.1 to –1.8. The isotopic differences between the host magma and the xenoliths reflect some degree of crustal contamination of the xenolith's parent magma.The xenoliths of this study represent an important source of information about the large masses of dense cumulates found at depth in the crust under the Oslo rift.  相似文献   

15.
Some plutons of the Central-Extremadura batholith show lateral widening at the final stage of their emplacement. Consequently, various fracture systems have developed, generally filled by aplites that appear both in the plutonic mass and in the metamorphic host rocks.The spatial arrangement of fractures may be interpreted in a simple model in which an important role is played by fluid pressure, as it determines the value of the acting effective stress and, naturally, the different failure mechanisms reflected in different dike systems.
Zusammenfassung In einigen Granit-Plutonen des Zentralextremadura-Batholithen konnte eine laterale Ausdehnung in den Endetappen ihrer Platznahme festgestellt werden. Dabei wurden verschiedene Bruchsysteme entwickelt, die im allgemeinen mit Aplit gefüllt sind und sowohl im Inneren der plutonischen Masse als auch im metamorphen Nebengestein auftreten.Die spezielle Anordnung der Bruchsysteme konnte anhand eines einfachen Modells interpretiert werden. Dabei spielt der Durchströmungsdruck eine wichtige Rolle, da er den Wert der effektiven Spannung bestimmt und verschiedene Bruchmechanismen, die sich in verschiedenen Gangsystemen widerspiegeln.

Résumé Quelques plutons du batholite de l'Estremadure centrale ont donné lieu à une expansion latérale au stade final de leur mise en place. Plusieurs systèmes de fractures se sont ainsi développées; elles sont généralement occupées par des aplites et apparaissent aussi bien à l'intérieur de la masse plutonique que dans l'encaissant métamorphique.La distribution spatiale de ces fractures a pu être interprétée par un modèle simple dans lequel la pression des fluides joue un rôle important: cette pression détermine la valeur de la contrainte effective et conditionne les divers mécanismes de facturation, qui se traduisent dans différents systèmes de filons.

, . , , , , . . , .. , .
  相似文献   

16.
The Mariánské Lázn complex (MLC) is located in the Bohemian Massif along the north-western margin of the Teplá-Barrandian microplate and consists of metagabbro, amphibolite and eclogite, with subordinate amounts of serpentinite, felsic gneiss and calcsilicate rocks. The MLC is interpreted as a metaophiolite complex that marks the suture zone between the Saxothuringian rocks to the north-west and the Teplá-Barrandian microplate to the south-east. Sm-Nd geochronology of garnet-omphacite pairs from two eclogite samples yields ages of 377±7, and 367±4 Ma. Samples of eclogite and amphibolite do not define a whole rock Sm-Nd isochron, even though there is a large range in Sm/Nd ratio, implying that the suite of samples may not be cogenetic. Eclogites do not have correlated Nd values and initial 87Sr/86Sr ratios. Five of the eight eclogite samples have high Nd values (+10.2 to +7.1) consistent with derivation from a MORB-like source, but variable 87Sr/86Sr ratios (0.7033 to 0.7059) which probably reflect hydrothermal seawater alteration. Three other eclogite samples have lower Nd values (+ 5.4 to –0.8) and widely variable 87Sr/86Sr ratios (0.7033 to 0.7096). Such low Nd values are inconsistent with derivation from a MORB, source and may reflect a subduction or oceanic island basalt component in their source. The MLC is an important petrotectonic element in the Bohemian Massif, providing evidence for Cambro-Ordovician formation of oceanic crust and interaction with seawater, Late Devonian (Frasnian-Famennian) high- and medium-pressure metamorphism related to closure of a Saxothuringian ocean basin, Early Carboniferous (Viséan) thrusting of the Teplá terrane over Saxothuringian rocks and Late Viséan extension.  相似文献   

17.
The Ivrea zone represents a tilted cross section through deep continental crust. Sm-Nd isotopic data for peridotites from Baldissero and Balmuccia and for a suite of gabbros from the mafic formation adjacent to the Balmuccia peridotite provide evidence for an event of partial melting 607±19 Ma ago in an extended mantle source with 607 Nd =+0.4±0.3. The peridotites are interpreted as the corresponding melt residue, the lower part of the mafic formation as the complementary melts which underwent further differentiation immediately after extraction. The Finero body represents a complex with layers of phlogopite peridotite, hornblende peridotite, and amphibole-rich gabbro. The isotopic signatures fall into two groups: (1) highly radiogenic Nd and low-radiogenic Sr characterize the phlogopite-free, amphibole-rich rocks, whereas (2) low-radiogenic Nd and highly radiogenic Sr is found in ultramafics affected by phlogopite metasomatism. Phlogopite metasomatism in the Ivrea zone is dated by a Rb-Sr whole rock isochron yielding 293±13 Ma. It was fed by K-rich fluids which were probably derived from metasediments. The high initial 293 Nd value of about +7.5 for phlogopite-free samples indicates a high time-integrated Sm/Nd ratio in the Finero protolith 293 Ma ago. Sm-Nd analyses of metapelites from the paragneiss series yield Proterozoic crustal residence ages of 1.2 to 1.8 Ga. Internal Sm-Nd isochrons for three garnetiferous rocks show that closure of garnet at temperatures around 600° C or even lower occurred about 250 Ma ago.  相似文献   

18.
Sm-Nd and Rb-Sr isotopic analyses are reported for granulite facies orthogneisses from Fiordland southwest New Zealand. Whole-rock samples define a Rb-Sr isochron age of 120±15 Ma and an initial 87Sr/86Sr ratio of 0.70391±4. Nd values (at 120 Ma) show a relatively wide range of from –0.4 to 2.7 indicating decoupling of Sr-Nd isotope systems. Associated ultramafic rocks have initial 87Sr/86Sr ratios of from 0.70380 to 0.70430 and Nd values of from 0.1 to 3.0. The different initial ratios suggest that the various intrusions, although contemporaneous, were not derived through fractionation of a single parent magma. A metasedimentary enclave incorporated during emplacement of the granulitic rocks preserves a Proterozoic isotopic signature with a measured Nd(0) value of –10.2, 87Sr/86Sr ratio of 0.73679 and a T Nd provenance age of 1490 Ma. The Rb-Sr whole rock age of the granulites is the same as obtained from recent U-Pb zircon dating (Mattinson et al. 1986) and is interpreted as the time of magmatic emplacement and essentially contemporaneous granulite facies metamorphism. Rb-Sr and Sm-Nd analyses of mineral systems indicate that the terrain had cooled below 300° C by 100 Ma providing further evidence that high grade metamorphism was of exceptionally short duration.Unmetamorphosed leucogabbros from the Early Cretaceous Darran Complex of eastern Fiordland have significantly higher Nd values (3.9 to 4.6) and slightly lower 87Sr/ 86Sr (0.70373 to 0.70386) than the western Fiordland granulites. This indicates that the western and eastern Fiordland complexes are not correlative although both have geochemical similarities to Phanerozoic calc-alkaline island-arc suites. The Fiordland granulites are LREE enriched (LaN/ YbN=12 to 40) and have trace element characteristics (e.g. high K/Rb and low Rb/Sr ratios) typical of many Rb-depleted Precambrian granulite terrains. The Fiordland trace element trends, however are attributed to magmatic, not metamorphic processes, reflecting the character of the Early Cretaceous magma sources. The range of Nd values, but uniform initial 87Sr/86Sr of the western Fiordland granulites is consistent with derivation of the parent Early Cretaceous magmas at least in part from a LREE enriched, low Rb/Sr protoliths of mid-to late-Paleozoic age. Partial melting of this protolith occurred during or immediately preceding a period of great crustal thickening culminating in rapid thickening of existing crust by 20 km following emplacement of the granulitic rocks. The rapid crustal thickening was probably a consequence of a collisional event in which an Early Cretaceous magmatic arc was over-ridden by one or more thrust sheets.  相似文献   

19.
Alkalic and tholeiitic basalts were erupted in the central Arizona Transition Zone during Miocene-Pliocene time before and after regional faulting. The alkalic lava types differ from the subalkaline lavas in Sr, Nd and Pb isotopic ratios and trace element ratios and, despite close temporal and spatial relationships, the two types appear to be from discrete mantle sources. Pre-faulting lava types include: potassic trachybasalts (87Sr/86Sr = 0.7052 to 0.7055, Nd= –9.2 to –10.7); alkali olivine basalts (87Sr/ 86Sr = 0.7049 to 0.7054, Nd= –2 to 0.2); basanite and hawaiites (87Sr/86Sr = 0.7049 to 0.7053, Nd= –3.5 to –7.8); and quartz tholeiites (87Sr/86Sr = 0.7047, Nd= –1.4 to –2.6). Post-faulting lavas have lower 87Sr/86Sr (<0.7045) and Nd from –3.2 to 2.3. Pb isotopic data for both preand post-faulting lavas form coherent clusters by magma type with values higher than those associated with MORB but within the range of values found for crustal rocks and sulfide ores in Arizona and New Mexico. Pb isotopic systematics appear to be dominated by crustal contamination. Effects of assimilation and fractional crystallization are inadequate to produce the Sr isotopic variations unless very large amounts of assimilation occurred relative to fractionation. It is impossible to produce the Nd isotopic variations unless ancient very unradiogenic material exists beneath the region. Moreover the assumption that the alkalic lavas are cogenetic requires high degrees of fractionation inconsistent with major- and trace-element data. Metasomatism of the subcontinental lithosphere above a subduction zone by a slab-derived fluid enriched in Sr, Ba, P and K could have produced the isotopic and elemental patterns. The degree of metasomatism apparently decreased upward, with the alkalic lavas sampling more modified regions of the mantle than the tholeiitic lavas. Such metasomatism may have been a regional event associated with crustal formation at about 1.6 Ga. Disruption and weakening of the subcontinental lithosphere in the Transition Zone of the Colorado Plateau by volcanism probably made deformation possible.  相似文献   

20.
The Sr-Nd isotopic data for selected granitoids of the Central Bohemian Pluton show a broad negative correlation with the total range of (87Sr/86Sr)330 = 0.7051–0.7129 and Nd 330 = +0.2 to –8.9. The older intrusions have more depleted Sr-Nd compositions and calc-alkaline geochemistry (Sázava suite), whereas the younger intrusions shift towards K-rich calc-alkaline (Blatná suite) and shoshonitic rocks (íany and ertovo bemeno suites) with more evolved isotopic signatures. The distribution of the data is interpreted as reflecting a diversity of sources and processes, rather than a single progressive crustal contamination trend. The Sázava suite could have originated by partial melting of metabasites, or of a mantle source with an isotopic composition close to bulk earth, or by hybridization of crustally-derived tonalitic and mantle-derived magmas. Variation within the Blatná suite is modelled by mixing between a moderately enriched [(87Sr/86Sr)330 0.708, Nd 330 –3] mantle component with either an isotopically evolved metasedimentary component, or with more evolved magmas of the suite. The íany suite was most probably produced by partial melting of peraluminous lithologies, possibly of the adjacent Moldanubian unit. The ertovo bemeno suite evolved from strongly enriched mantle-derived magmas [(87Sr/86Sr)3300.7128, Nd 330 –7], either through closed-system fractional crystallization or interaction with magma corresponding to leucogranites of the Central Bohemian Pluton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号