首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The circulation of the Levantine Intermediate Water (LIW) in the Algerian subbasin (western basin of the Mediterranean sea) has been much debated for more than fifteen years now. Together with the old circulation diagrams, several numerical models claim that a branch of LIW is permanently flowing westwards across the Algerian subbasin, i.e. directly from the Channel of Sardinia towards the Strait of Gibraltar. Only a few models support the fact that the unique continuous flow of LIW is structured as an alongslope counterclockwise vein, which is thus directed northwards off Sardinia in the Algerian subbasin, and hence support the diagram published by Millot in 1987 [Millot, C. (1987a) Circulation in the Western Mediterranean. Oceanologica Acta 10(2), 143–149]. According to this diagram, any little mixed LIW found in the central subbasin corresponds to fragments which have been pulled away from the vein and entrained there by mesoscale eddies originated from the Algerian Current. The ELISA experiment (1997–1998), as a follow-up of other ones conducted since about 15 years, was designed partly to validate the diagram. In addition to about 40 current meters set in place for one year, four main campaigns were conducted with a sampling strategy guided in real time by infrared satellite information. The data set we present clearly provides additional evidence that the little mixed LIW found in the central Algerian subbasin has been entrained there by the mesoscale eddies and not by a permanent westward flow.  相似文献   

2.
《Oceanologica Acta》1998,21(3):447-458
The hydrodynamical characteristics of the area south of Cyprus in the Levantine Sea were examined in late summer 1995 and in spring 1996. Analysis of the CTD data collected, provided a new dynamic picture of the Cyprus Basin and revealed the existence of the Cyprus Basin cyclonic eddy. The latter circulated to the south of Cyprus and exhibited marked seasonality. Production of Levantine Intermediate Water in the area of the latter eddy occurred. Occasionally, between the Cyprus Basin cyclonic eddy and the southern coast of Cyprus a warm current, the Cyprus coastal current appears to intrude from the east. In late summer 1995, the spatial fluctuations of the mid-Mediterranean jet, the main current of the Eastern Mediterranean Sea, caused the splitting of the Cyprus Basin cyclonic eddy, into two smaller cyclonic ones. During spring 1996, however, the Cyprus Basin cyclonic eddy appears as a single large vortex, occupying the greater part of the area south of Cyprus, and flanked to the south by the Cyprus anticyclonic eddy.  相似文献   

3.
Vertical profiles of dissolved organic carbon (DOC) from eight hydrological stations in the Tyrrhenian Sea, Sardinia Channel and Algerian Sea, are reported. DOC exhibits concentrations ranging from 58 to 88 μM in surface water, 43–57 μM in the intermediate layer and 49–63 μM in deep waters. The assessment of the hydrological characteristics allows different water masses in the study area to be identified; moreover, different hydrological processes are observed in the Tyrrhenian and Algerian basins. DOC exhibits different values in the different water masses. The lowest DOC concentrations (43–46 μM) were found in the Tyrrhenian Levantine Intermediate Water (LIW). Correlations between DOC and apparent oxygen utilization (AOU), investigated within each water mass, exhibit different behaviors in the intermediate and deep waters, suggesting the occurrence of different processes of oxygen consumption in the different water masses.  相似文献   

4.
During the Thetis-2/MAST-2 tomography experiment, T7-XBT calibrated (accuracy ∼0.05°C) probes were launched ∼28 km apart between France and Algeria, twice a month from Feb. to Sep. 1994. Combined with infrared images, altimetric data and ship drifts, they provide definite information on the structure, drift and role of the eddy-like mesoscale phenomena generated by the Algerian Current instability. When embedded in this alongslope current, these phenomena generally propagate downstream at a few km/day and are markedly asymmetrical. Because of the topography in the eastern part of the Algerian Basin, they separate from the current, become more symmetrical and follow an anticlockwise circuit in the open basin. These phenomena are deeper than ∼750 m and entrain seaward pieces of the Levantine Intermediate Water (LIW) vein flowing along the Sardinian slope, thus being responsible of the large spatial and temporal variability of the LIW distribution in the open basin. The non-existence of a LIW vein flowing westward across the Algerian Basin is definitely demonstrated. In the Gulf of Lions, new insights are provided into the formation and spreading of the Winter Intermediate Water (WIW), which is the Western Mediterranean counterpart of LIW. Considering the large amount of WIW formed during this mild winter, it is clear that this water has not received enough attention yet, and is certainly a major component of the Mediterranean outflow at Gibraltar. Finally, the XBT data account for the eastward flow of the Western Mediterranean Deep Water (WMDW) off Algeria.  相似文献   

5.
Repeated hydrographic casts, mooring time series and satellite sea surface temperature collected during the CANALES experiment (1996–98) are used to describe the thermohaline circulation in the Balearic Channels (western Mediterranean) and to analyze its variability. Mass transports are estimated by inverse calculations. The role played by each channel in the meridional water exchange is clarified: the Ibiza Channel funnels southward cool, saline, northern waters whereas the Mallorca Channel appears as the preferred route for the northward progression of warm, fresh, southern waters. A neat interannual trend is revealed by the continuous decrease of the amount of Western Mediterranean Intermediate Waters (WIW) brought by the Northern Current, reflecting the increase in temperature of the winter mixed layer in the northern Mediterranean that occurred each year between 1996 and 1998. A clear seasonal signal was also seen in the transport of the Northern Current which decreased from 1 to 1.4 Sv in winter to < 0.5 Sv in summer. The current intensified again in fall. A number of mesoscale eddies, from 20 to 70 km in size, most of them anticyclonic vortex eddies were brought by the unstable Northern Current, these eddies strongly perturbed the water exchange in the Ibiza Channel forcing retroflections of northern waters back to the north-east into the Balearic Current. These eddies either stayed stalled for several months in the Gulf of Valencia to the north of the channel, or were slowly funnelled southward through the channel narrows. A decreasing trend was observed in the mesoscale activity of the Northern Current between 1996 and 1998. Conversely, large, anticyclonic eddies, 150-km diameter, progressively invaded the Algerian Basin to the south of the channels in 1997–98 and forcing northward inflows (up to 0.75 Sv) of fresh and warm waters of Atlantic origin (AW) into the Mallorca Channel. The marked interannual differences observed in both northern and southern eddy activity may be linked to the interannual variability of the large scale thermohaline circulation.  相似文献   

6.
Shipboard data from seven cruises covering April 1988–October 1990 are analyzed to follow the dynamical evolution of a persistent warm core eddy located to the southeast of Cyprus. The eddt is characterized by an isothermal, isohaline lens of water wedged between the seasonal and permanent thermoclines. In the winter, this thermostad extends from the surface to a depth of nearly 400 m, while in other seasons it lies in the layer from 200 to 400 m. The data indicate that the temperature and salinity of the core of the eddy remained constant throughout most of 1989 and then increased abruptly (with a slight increase in σφ) in the winter of 1989–1990. The velocity jet usually appears between the surface and 200 m at a mean distance of 35 km from the center of the eddy. Speeds in the jets typically exceed 25 cm s−1 and occasionally reach 50 cm s−1. During 1989 the eddy spins down as indicated by a loss of kinetic energy. This weakening permits an abrupt renewal or exchange of core water during the winter of 1989–1990. The remnants of the previous core are apparently forced to sink into the permanent thermocline where the water may be free to spread laterally if the cross-isopycnal gradient of potential vorticity is weak. This process could explain the cycle of Levantine Intermediate Water formation in the centers of warm core eddies and its eventual lateral spreading. Finally the eddy slowly begins to spin up again in 1990.  相似文献   

7.
Relatively little is known about coherent vortices in the eastern South-Pacific along the Peruvian coast, even with regard to basic facts about their frequency of occurrence, longevity and structure. This study addresses these issues with nearly 15 years of relatively high-resolution satellite altimetry measurements.We first compare two distinct automated methods for eddy identification. The objective validation protocol shows that the rarely-used geometrical or “winding-angle method”, based on the curvature of the streamline functions, is more accurate than the commonly-used “Okubo–Weiss algorithm”, which defines a vortex as a simple connected region with values of Okubo–Weiss parameter weaker than a given threshold.We then investigate vortices off Peru using more than 20,000 mesoscale eddies identified by the winding-angle method. Coherent eddies, characterized by a high ratio of vorticity to deformation rate, are typically formed along the coast and propagate westward at 3–6 cm s−1. The vortices have a mean radius of 80 km, increasing northward, and are most frequently observed off of Chimbote (9°S) and south of San Juan (15°S). The mean eddy lifetime is about 1 month, but if eddies survive at least 2 months, the probability for surviving an additional week (or month) is constant at 90% (or 67%). Anticyclonic eddies tend to propagate northwestward whereas cyclonic vortices migrate southwestward. In general, cyclones and anticyclones are similar, except for eddies surviving at least 6 months. In this case, after a similar 3–4 months of radius and amplitude growth, amplitudes (or sizes) decay particularly rapidly for anticyclonic (or cyclonic) eddies. In terms of intensity, cyclonic eddies show a rapid decay during the first 3 months before arriving at a quasi-constant value, whereas anticyclones exhibit steady decline. Finally, eddy temporal variations were examined at seasonal and interannual scales in the “coastal” region favorable to the formation of energetic mesoscale structures. On seasonal scales, eddy activity is maximal in fall and minimum in spring. At interannual scales, the eddy activity index was maximal during the strong El Niño of 1997–1998 but another strong maximum of eddy activity also occurred late in 2004. These temporal variations are probably associated with the intensification of the upwelling thermal front and with the passage of coastal-trapped waves which generate baroclinic instabilities. Further investigation of the mechanisms involved on the eddy genesis is needed.  相似文献   

8.
The Levantine Basin circulation derived from recent data consists of a series of sub-basin-scale to mesoscale eddies interconnected by jets. The basin-scale circulation is masked by eddy variability that modulates and modifies it on seasonal and interannual time scales. Long-term qualitative changes in the circulation are reflected in the bifurcation pattterns of ther mid-basin jets, relative strengths of eddies and the hydrographic properties at the core of these eddies. Confinement within the Basin geometry strongly influences the co-evolution of the circulation features.Surface measurements, satellite images and the mass field indicate an entire range of scales of dynamical features in the region. The complexity of the circulation is consistent with the basin-wide and mesoscale heterogeneity of the hydrographic properties. The interannual variability of LIW (Levantine Intermediate Water) formation in the region appears correlated with the changes in the circulation. Wintertime convective overturning of water masses reach intermediate depths and constitute a dominant mechanism of LIW formation, especially in anticyclonic eddies and along the coasts of the northern Levantine Basin.  相似文献   

9.
Mesoscale eddies, particularly anticyclonic ones, are dominant features in the Kuril Basin of the Okhotsk Sea. In 1999, both surface drifter and hydrographic observations caught the same anticyclonic eddy northwest of Bussol’ Strait, which has a diameter of ∼100 km, typical surface velocity of 0.2–0.3 m s−1, and less dense core extending to a depth of ∼1200 m. Based on an idea that the generation of mesoscale eddies is caused by strong tidal mixing in and around Kuril Straits, we have conducted a series of three-dimensional numerical model experiments, in which strong tidal mixing is simply parameterized by increasing coefficients of vertical eddy viscosity and diffusivity along the eastern boundary. Initially, a regular series of disturbances with a wavelength of ∼70 km starts to develop. The disturbances can be clearly explained by a linear instability theory and regarded as the baroclinic instability associated with the near-surface front formed in the region between the enhanced mixing and offshore regions. In the mature phase, the disturbances grow large enough that some eddies pinch off and advect offshore (westward), with the scale of disturbances increasing gradually. Typical eddy scale and its westward propagation speed are ∼100 km and ∼0.6 km day−1, respectively, which are consistent with the observations by satellites. The westward propagation can be explained partly due to nonlinear effect of self-offshore advection and partly due to the β-effect. With the inclusion of the upper ocean restoring, the dominance of anticyclonic eddy, extending from surface to a depth of ∼1200 m, can be reproduced.  相似文献   

10.
《Oceanologica Acta》1999,22(3):281-290
The hydrological structure and the seasonal variability of marine currents in the Tyrrhenian Sea, off the coasts of Latium, are analysed using a data set obtained during several cruises between February 1988 and August 1990. Of particular interest is the fact that the hydrological surveys show the intermittent presence of a current of Levantine Intermediate Water (LIW) flowing anticlockwise along the Italian slope, at 250–700 m. This current is of particular importance in inferring the pathways of the Levantine Intermediate Water in the western Mediterranean Sea and in particular in the Tyrrhenian basin, downstream of the Strait of Sicily. These phenomena remain an open problem: our observations give support to the Millot's proposed general scheme, on the existence of a general cyclonic circulation of the LIW from the Strait of Sicily to the western Mediterranean, as opposed to a direct injection of LIW towards the Algerian basin.  相似文献   

11.
During the autumn–winter of 1996–1997, drifting buoy trajectories and infrared satellite images provided new information on the characteristics of several mesoscale phenomena generated by the Algerian Current (AC) in the western Mediterranean Sea. A mesoscale event, as defined by previous studies, consists of a meander of the current associated with a surface anticyclonic eddy inside its crest, a transitory surface cyclonic eddy (Ec) upstream from the crest, and a deep anticyclonic eddy just below the meander. Most events propagate eastward along the coast at a few km per day until they are forced, mainly by the topography at the entrance to the channel of Sardinia, to detach from the coast and propagate seaward. They thus become open-sea anticyclonic eddies and generally complete an anticlockwise circuit in the Algerian basin. Surface buoys were launched upstream from an event and across it near 1°E. They made it possible to characterise the anticyclonic and cyclonic surface eddy features, and for the first time clearly showed the meander, which is in general not well depicted with images. It has thus been definitely demonstrated that most of the AC (speeds of several tens of cm/s) crosses the relatively slowly propagating events. As usual, the event we sampled reached a mature stage characterised by a vanishing of the Ec, and increased up to ∼100 km. Its arrest and decrease before it reached the channel of Sardinia, which is not so usual, was contemporaneous to the reappearance of the Ec and could be related to the growing of another coastal eddy upstream. At the entrance to the channel of Sardinia (near 7–8°E), the trajectories and images also documented another event which was larger (up to ∼120 km) and in the phase of detachment. Since the buoys drifted alternately to the west and to the east between this event and the coast, it is clear that an event can detach only temporarily and allow part of the AC to flow eastward directly. As indicated by infrared images, the definitive detachment occurred after all the buoys escaped from the event. The whole in situ and satellite data set is fully consistent with all the previous observations of the AC mesoscale variability, and quantitatively supports the proposed hypotheses for the event structure. It is consistent with laboratory experiments and some results of numerical models of coastal instability processes.  相似文献   

12.
Analysis of measurements from two long-term moored arrays in and near the Gulf Stream suggests a simple parameterization of eddy spatial covariance statistics: a parameterization that can be referred to as “quasi-homogeneous and isotropic”. Taking the normalized covariance function (i.e. the correlation function) for streamfunction to be homogeneous and isotropic and assuming motions to be horizontally nondivergent and hydrostatic permit the velocity and temperature covariances to be derived from the streamfunction covariance. Statistical tests indicate that deviations from these assumptions are indistinguishable from Gaussian random noise. The spatial correlation function used in Gaussian with a decay scale of about 140 km, which is only weakly depth dependent. A simple form is also suggested for the vertical lag dependence. This parameterization permits calculation of derived quantities such as the eddy vorticity flux divergence which is discussed in the context of the mean potential vorticity balances for the depth integrated circulation and for the subthermocline layer. The divergence of the relative vorticity flux is found capable of driving two counter-rotating gyres of strength 30–40 Sv on either side of the Stream, as are observed. The “thickness flux” dominates the lower layer eddy potential vorticity flux and is of the correct sign to make the recirculation more barotropic. The lower layer eddy forcing is weak and the gyres exist in a region of nearly uniform mean potential vorticity.  相似文献   

13.
The variability of two modes of Labrador Sea Water (LSW) (upper and deep Labrador Sea Water) and their respective spreading in the interior North Atlantic Ocean are investigated by means of repeated ship surveys carried out along the zonal WOCE line A2/AR19 located at 43–48°N (1993–2007) and along the GOOS line at about 48–51°N (1997–2002). Hydrographic section data are complemented by temperature, salinity, and velocity time series recorded by two moorings. They have been deployed at the western flank of the Mid-Atlantic Ridge (MAR) in the Newfoundland Basin during 1996–2004. The analysis of hydrographic anomalies at various longitudes points to a gradual eastward propagation of LSW-related signals, which happens on time scales of 3–6 years from the formation region towards the MAR. Interactions of the North Atlantic Current (NAC) with the Deep Western Boundary Current (DWBC) close to Flemish Cap point to the NAC being the main distributor of the different types of LSW into the interior of the Newfoundland Basin. Comparisons between the ship data and the mooring records revealed that the mooring sites are located in a region affected by highly variable flow. The mooring time series demonstrate an elevated level of variability with eddy activity and variability associated with the NAC considerably influencing the LSW signals in this region. Hydrographic data taken from Argo profiles from the vicinity of the mooring sites turned out to mimic quite well the temporal evolution captured by the moorings. There is some indication of occasional southward flow in the LSW layer near the MAR. If this can be considered as a hint to an interior LSW-route, it is at least of minor importance in comparison to the DWBC. It acts as an important supplier for the interior North Atlantic, distributing older and recently formed LSW modes southward along the MAR.  相似文献   

14.
In time, the circulation of the Atlantic Water (AW) in the eastern basin of the Mediterranean Sea has been described differently, according to two major representations. The historical one, which began with the scheme from Nielsen in 1912 and has been refined up to the 1980s, favours a counterclockwise circulation in the whole basin, with AW flowing in its southern part as a broad flow off Libya and Egypt (from the Ionian to the Levantine subbasins), then continuing along Middle-East and Turkey before flowing back westwards. The more recent one, issued in the 1990s, favours a clockwise circulation in the northern part of the Ionian continuing offshore across the basin from the Cretan to the central part of the Levantine as the so-called “Mid-Mediterranean Jet”. This jet is depicted then as splitting both clockwise in the southeastern part of the basin and counterclockwise off Turkey (where this representation agrees with the former). Because the recent representation cannot be considered as a refinement of the historical ones, we have been interested in understanding why a given data set available to everybody is interpreted in such different ways.In the Algerian subbasin, the combined use of satellite infrared images and a significant amount of in situ data sets (hydrology and both Eulerian and Lagrangian current measurements) allowed us to solve a similar controversy. Therefore, we examined the circulation features in the eastern basin, undertaking the detailed analysis of 1000 daily and weekly composite images spanning the period 1996–2000, and of monthly composite images available since 1985. Whenever in situ observations were available, we have confronted them with the satellite thermal signatures and have shown that both are consistent. This paper focuses on the overall (basin scale) results while the detailed ones are published in an other paper. The new scheme we propose is basically a refined version of the historical ones: the circulation of AW is counterclockwise in the whole eastern basin but it is more constrained alongslope than previously thought, and the broadening historically schematised appears to be due to intense mesoscale eddies mainly generated by the instability of this circulation.  相似文献   

15.
The circulation and hydrography of the north-eastern North Atlantic has been studied with an emphasis on the upper layers and the deep water types which take part in the thermohaline overturning of the Oceanic Conveyor Belt. Over 900 hydrographic stations were used for this study, mainly from the 1987–1991 period. The hydrographic properties of Subpolar Mode Water in the upper layer, which is transported towards the Norwegian Sea, showed large regional variation. The deep water mass was dominated by the cold inflow of deep water from the Norwegian Sea and by a cyclonic recirculation of Lower Deep Water with a high Antarctic Bottom Water content. At intermediate levels the dominating water type was Labrador Sea Water with only minor influence of Mediterranean Sea Water. In the permanent pycnocline traces of Antarctic Intermediate Water were found.Geostrophic transports have been estimated, and these agreed in order of magnitude with the local heat budget, with current measurements, with data from surface drifters, and with the observed water mass modification. A total of 23 Sv of surface water entered the region, of which 20 Sv originated from the North Atlantic Current, while 3 Sv entered via an eastern boundary current. Of this total, 13 Sv of surface water left the area across the Reykjanes Ridge, and 7 Sv entered the Norwegian Sea, while 3 Sv was entrained by the cold overflow across the Iceland-Scotland Ridge. Approximately 1.4 Sv of Norwegian Sea Deep Water was involved in the overflow into the Iceland Basin, which, with about 1.1 Sv of entrained water and 1.1 Sv recirculating Lower Deep Water, formed a deep northern boundary current in the Iceland Basin. At intermediate depths, where Labrador Sea Water formed the dominant water type, about 2 Sv of entrained surface water contributed to a saline water mass which was transported westwards along the south Icelandic slope.  相似文献   

16.
High-resolution seismic reflection profiles and multibeam bathymetry data collected in 2006 and 2008 around Pantelleria Island show the widespread occurrence of contourite drifts and erosional elements ~30?km from the narrowest part (~145?km) of the Sicily Channel, where water masses from the Eastern Mediterranean flow towards the Western Mediterranean. The contourite drifts are rather small (up to 10?km long and 3.3?km wide), at water depths of ~250?C750?m. Most are elongated separated drifts with quite well-developed moats and crests, aligned roughly parallel to the regional bathymetric contours. Erosional elements include abraded surfaces, moats, scours and sub-circular depressions. In addition, a wide sector of the seafloor adjacent to a seamount located SW of Pantelleria Island is characterized by numerous biogenic build-ups colonized by deep-water corals (Madrepora oculata). The spatial distribution of sediment drifts, erosional features and biogenic build-ups suggests an origin from a north-westward-flowing bottom current, in this case the outflow of Levantine Intermediate Water and transitional Eastern Mediterranean Deep Water via the Sicily Channel. These findings for the Pantelleria offshore sector demonstrate that contourite processes are able to concentrate a high variety of closely spaced depositional and erosional features even in small areas (in this case, about 2,000?km2). This Pantelleria focusing can plausibly be related to a particular configuration of the prevailing bottom-current regime in complex interaction with an uneven bathymetry shaped mainly by tectonic and volcanic activity. The distribution of bottom currents seems to be strongly influenced by morphological features ranging from major seabed obstacles, such as the Pantelleria volcanic complex and the so-called southwest seamount, to smaller-scale escarpments and banks. This is consistent with previous findings for Mediterranean and other settings characterized by neotectonics and large topographic features.  相似文献   

17.
Another description of the Mediterranean Sea outflow   总被引:1,自引:0,他引:1  
Papers about the outflow in the Strait of Gibraltar assume that (i) it is composed of only two Mediterranean Waters (MWs), the Levantine Intermediate Water (LIW) and the Western Mediterranean Deep Water (WMDW) from the eastern and western basins, respectively, (ii) both MWs are mixed near 6°W, hence producing a homogeneous outflow that is then split into veins, due to its cascading along different paths and to different mixing conditions with the Atlantic Water (AW).A re-analysis of 1985–1986 CTD profiles (Gibraltar Experiment) indicates two other MWs, the Winter Intermediate Water (WIW) from the western basin and the Tyrrhenian Dense Water (TDW) basically originated from the eastern basin. In the central Alboran subbasin, these four MWs are clearly differentiated, roughly lying one above the other in proportions varying from north to south. Proportions also vary with time, so that the outflow can be mostly of either eastern or western origin. While progressing westward, the MWs can still be differentiated and associated isopycnals tilt up southward as much as being, in the sill surroundings, roughly parallel to the Moroccan continental slope where the densest MWs are. The MWs at the sill are thus juxtaposed and they all mix with AW, leading to an outflow that is horizontally heterogeneous just after the sill (5°45′W) before progressively becoming vertically heterogeneous as soon as 6°15′W. There can be little LIW and/or no WMDW outflowing for a while.An analysis of new 2003–2008 time series from two CTDs moored (CIESM Hydro-Changes Programme) at the sill (270 m) and on the Moroccan shelf (80 m) confirms the juxtaposition of the MWs, their individual and generally intense mixing with AW, as well as the large temporal variability of the outflow composition. Only LIW and TDW were indicated at the sill while, on the shelf, only LIW, TDW sometimes denser there than 200 m below, and WMDW were indicated; but none of the MWs has been permanently outflowing at one or the other place.The available data can be analyzed coherently. Intermediate and deep MWs are formed in both basins in amounts that, although variable from year to year, allow their tracing up to the strait. Four major MWs circulate alongslope counterclockwise as density currents and as long as they are not trapped within a basin, which is necessarily the case for the deep MWs. In the Alboran, the intermediate MWs (WIW, LIW and upper-TDW) circulate in the north while the deep MWs (lower-TDW and WMDW) are uplifted, hence relatively motionless and mainly pushed away in the south. Since both the intermediate and deep MWs outflow at the sill, they are considered as light and dense MWs, the light–dense MWs interface possibly intersecting the AW–MWs interface in the sill surroundings. Considering an outflow east of the sill composed of only two (light–dense) homogeneous layers gives significant results. Across the whole strait, the outflow has spatial and temporal variabilities much larger than previously assumed. The MWs are superposed in the sea and lead at the sill to juxtaposed and vertically stratified suboutflows that will cascade independently before forming superposed veins in the ocean. These veins can have similar densities and hydrographic characteristics even if associated with different MWs, which accounts for the features permanency assumed up to now. The outflow structure downstream of the sill depends on its composition upstream and, more importantly, on that of AW in the sill surroundings where fortnightly and seasonal signals are imposed on the whole outflow.  相似文献   

18.
Water masses in the East Sea are newly defined based upon vertical structure and analysis of CTD data collected in 1993–1999 during Circulation Research of the East Asian Marginal Seas (CREAMS). A distinct salinity minimum layer was found at 1500 m for the first time in the East Sea, which divides the East Sea Central Water (ESCW) above the minimum layer and the East Sea Deep Water (ESDW) below the minimum layer. ESCW is characterized by a tight temperature–salinity relationship in the temperature range of 0.6–0.12 °C, occupying 400–1500 m. It is also high in dissolved oxygen, which has been increasing since 1969, unlike the decrease in the ESDW and East Sea Bottom Water (ESBW). In the eastern Japan Basin a new water with high salinity in the temperature range of 1–5 °C was found in the upper layer and named the High Salinity Intermediate Water (HSIW). The origin of the East Sea Intermediate Water (ESIW), whose characteristics were found near the Korea Strait in the southwestern part of the East Sea in 1981 [Kim, K., & Chung, J. Y. (1984) On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan), In T. Ichiye (Ed.), Ocean Hydrodynamics of the Japan and East China Seas (pp. 55–65). Amsterdam: Elsevier Science Publishers], is traced by its low salinity and high dissolved oxygen in the western Japan Basin. CTD data collected in winters of 1995–1999 confirmed that the HSIW and ESIW are formed locally in the Eastern and Western Japan Basin. CREAMS CTD data reveal that overall structure and characteristics of water masses in the East Sea are as complicated as those of the open oceans, where minute variations of salinity in deep waters are carefully magnified to the limit of CTD resolution. Since the 1960s water mass characteristics in the East Sea have changed, as bottom water formation has stopped or slowed down and production of the ESCW has increased recently.  相似文献   

19.
In this study, we construct a 3-D shear wave velocity structure of the crust and upper mantle in South China Sea and its surrounding regions by surface wave dispersion analysis. We use the multiple filter technique to calculate the group velocity dispersion curves of fundamental mode Rayleigh and Love waves with periods from 14 s to 120 s for earthquakes occurred around the Southeast Asia. We divide the study region (80° E–140° E, 16° S–32° N) into 3° × 3° blocks and use the constrained block inversion method to get the regionalized dispersion curve for each block. At some chosen periods, we put together laterally the regionalized group velocities from different blocks at the same period to get group velocity image maps. These maps show that there is significant heterogeneity in the group velocity of the study region. The dispersion curve of each block was then processed by surface wave inversion method to obtain the shear wave velocity structure. Finally, we put the shear wave velocity structures of all the blocks together to obtain the three-dimensional shear wave velocity structure of crust and upper mantle. The three-dimensional shear wave velocity structure shows that the shear wave velocity distribution in the crust and upper mantle of the South China Sea and its surrounding regions displays significant heterogeneity. There are significant differences among the crustal thickness, the lithospheric thickness and the shear wave velocity of the lid in upper mantle of different structure units. This study shows that the South China Sea Basin, southeast Sulu Sea Basin and Celebes Sea Basin have thinner crust. The thickness of crust in South China Sea Basin is 5–10 km; in Indochina is 25–40 km; in Peninsular Malaysia is 30–35 km; in Borneo is 30–35 km; in Palawan is 35 km; in the Philippine Islands is 30–35 km, in Sunda Shelf is 30–35 km, in Southeast China is 30–40 km, in West Philippine Basin is 5–10 km. The South China Sea Basin has a lithosphere with thickness of about 45–50 km, and the shear wave velocity of its lid is about 4.3–4.7 km/s; Indochina has a lithosphere with thickness of about 55–70 km, and the shear wave velocity of its lid is about 4.3–4.5 km/s; Borneo has a lithosphere with thickness of about 55–60 km, and the shear wave velocity of its lid is about 4.1–4.3 km/s; the Philippine Islands has a lithosphere with thickness of about 55–60 km, and the shear wave velocity of its lid is about 4.2–4.3 km/s, West Philippine Basin has a lithosphere with thickness of about 50–55 km, and the shear wave velocity of its lid is about 4.7–4.8 km/s, Sunda Self has a lithosphere with thickness of about 55–65 km, and the shear wave velocity of its lid is about 4.3 km/s. The Red-River Fault Zone probably penetrates to a depth of at least 200 km and is plausibly the boundary between the South China Block and the Indosinia Block.  相似文献   

20.
In order to understand the actual formation process of the North Pacific Intermediate Water (NPIW), structure of subsurface intrusions of the Oyashio water and the mixing of the Oyashio and the Kuroshio waters in and around the Kuroshio Extension (KE) were examined on the basis of a synoptic CTD observation carried out in May-June 1992. The fresh Oyashio water in the south of Hokkaido was transported into KE region through the Mixed Water Region (MWR) in the form of subsurface intrusions along two main paths. The one was along the east coast of northern Japan through the First Branch of the Oyashio (FBO) and the other along the eastern face of a warm streamer which connected KE with a warm core ring through the Second Branch of the Oyashio (SBO). The fresh Oyashio water extended southward through FBO strongly mixed with the saline NPIW transported by the Kuroshio in the south of Japan (old NPIW) in and around the warm streamer. On the other hand, the one through SBO well preserved its original properties and extended eastward beyond 150°E along KE with a form of rather narrow band. The intrusion ejected Oyashio water lens with a diameter of 50–60 km southward across KE axis and split northward into the MWR involved in the interaction of KE and a warm core ring, which were supposed to be primary processes of new NPIW formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号