首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fracture patterns produced in pitted pebble conglomerates from the Alpine Molasse and the Carboniferous of northern Spain, have been studied in relation to the stress concentrations which were produced in the conglomerates during their deformation. The stress distributions which develop around pebble contacts at different stages of their pitting history have been determined from photoelastic experiments. The development of different types of fracture, having dominantly tensile or shear components, and their distribution within the pebbles, are shown to be related to the mineralogy of the pebbles, the strength of the matrix and the amount of deformation the conglomerate has suffered.  相似文献   

2.
3.
Shale gas reservoirs are characterized by tight matrix, well-developed micro-fissures, and laminations. The study about the failure of shale under compression is of great significance to safe drilling operation and the subsequent reservoir stimulation. The variation of rock mechanical properties with the angle between the axial stress and bedding plane normal (coring angle) is analyzed based on laboratory tests. A failure criterion is applied and verified to describe the strength of shale. Moreover, ultrasonic technology is used to study the damage characteristics of shale during the uniaxial compression process. The experimental results show that shale strength decreases initially and then increases with the increase of the coring angle. The Young’s modulus and Poisson’s ratio increase with the increase of coring angle. In a compression process, damage is essentially the development of new micro-cracks induced by the compression. Shale failure is the microscopical reflection of the process of the generation and expansion of axial micro-cracks, so it is the result of damage accumulation. The variation of the lateral p wave velocity can function as a monitor of the development process of shale damage. The damage factor will increase in the linear elastic stage and then enlarge rapidly after entering the stage of unstable micro-crack expansion.  相似文献   

4.
脆性岩石的损伤与裂隙扩展   总被引:7,自引:2,他引:7  
岩石内部各种微裂隙的产生及发展,导致岩石的物理力学性质的劣化,此即损伤对岩石作用的结果。本文根据大理岩破坏过程中裂隙扩展的作用,定义了视损伤变量D=ε_v~k/ε_v~m,并导出了岩石的应力-应变关系和损伤变量D与D的关系。通过损伤试验,得出与理论值相吻合的结果。  相似文献   

5.
脆性岩石单轴压缩变形强度的试验   总被引:2,自引:0,他引:2  
主要讨论在单轴压缩条件下脆性岩石破坏的全过程,分析与破裂机制有关的问题及试验中主要影响因素,使试验结果为工程评价提供准确、可靠的保证。  相似文献   

6.
Summary A study on the peak strength of brittle rock materials having random strength distributions was carried out using the re-normalization group theory approach. A major advantage of the approach is that it is scale invariant, and therefore, one can relate the micro-fractures with macro-fractures of rocks at the critical state. The stress transfer from the broken sub-sections to the unbroken sub-sections is defined by a conditional probability. The critical probability P * and the relation between the peak strength and the mean strength of the elements have been obtained theoretically. On the other hand, the whole process of rock brittle fracture has also been simulated numerically from micro-fracture to macro-fracture by using the Rock Failure Process Analysis (RFPA) code. The peak strengths obtained by the numerical model agree fairly well with those obtained by the re-normalisation group theory. Due to the stress transfer from the broken subsections to the unbroken subsections, the peak strength is considerably less than the mean strength of the elements. Received October 24, 2000; accepted February 26, 2002 Published online September 2, 2002  相似文献   

7.
岩石类脆性材料的细观损伤本构关系   总被引:4,自引:0,他引:4  
岩石变形的非线性特征主要是岩石内存在的微裂纹或微空隙闭合和张开扩展的结果。本工作考虑这些微缺陷的影响建立损伤本构理论,将其应用于根据岩石所含孔隙度不同而提出的不同模型。理论曲线和实验曲线吻合。  相似文献   

8.
9.
The nonlinearty of rock deformation results mainly from closing, opening, and propagation of microcracks or microviods inside rock. Taking the influence of microdefects into account, a new constitutive relationship of damage is developed, and applied to different models of rock with different porosities. The theoretical curves consist with the experimental ones.  相似文献   

10.
11.
利用Paterson气体介质高温高压流变仪对纯叶蛇纹岩在100~400MPa围压、25~700℃温度和10-5~1.5×10-6s-1应变速率下进行了三轴压缩变形实验。实验结果表明叶蛇纹石在低压条件下表现为脆性破裂,高压或脱水条件下表现为半脆性破裂。随着温度的增加,叶蛇纹石的强度显示逐渐降低的趋势;尤其在脱水条件下,温度的增加可导致叶蛇纹石强度大幅度地降低,而且此时预热时间对强度的影响比未发生脱水时更加显著。结合前人的研究并对比发现,围压在室温下的增加导致叶蛇纹岩强度增加;但在高温下围压的增加导致试样强度整体上降低,这很可能是试样内聚力的局部损失与韧性增强引起的。围压和温度的升高,以及断层面上流体的增加很可能会增加破裂面的韧性,从而减小摩擦系数。此外,叶蛇纹石并非以往人们所认为的那样具有极低的强度,其强度要比低温蛇纹石(如利蛇纹石和纤蛇纹石)的大得多,即便在高温(大约600℃)下差应力大于约600MPa和中-低温(≤400℃)下差应力大于约1000MPa时仍没有表现出明显屈服的迹象。在脱水条件下,蛇纹岩并没有发生脱水致脆,相反脱水使得试样的断裂行为变得更加温和些。因此,俯冲带蛇纹岩脱水更可能诱发其周围更加脆性的岩石发生地震而不是脱水的蛇纹岩本身发生地震。  相似文献   

12.
Results of an experimental programme on heterogeneous rock-like specimens of dental plaster confirm the pronounced role of tensile microcracks on brittle failure. Microbuckling of very small rock-columns formed amid closely located tensile cracks was observed as the key incident connecting stable phenomenon of tensile cracking to unstable phenomenon of shearing and subsequent macroscopic failure. Using the classical beam and buckling theories and considering geometry of the problem a new failure criterion is proposed. As a novel attempt, this new failure criterion relates the compressive strength of rock to three basic microstructural properties, i.e. degree of crystal interlocking, average Young modulus and average tensile strength of rock forming minerals.  相似文献   

13.
As technologies for deep underground development such as tunneling underneath mountains or mass mining at great depths (>1,000 m) are implemented, more difficult ground conditions in highly stressed environments are encountered. Moreover, the anticipated stress level at these depths easily exceeds the loading capacity of laboratory testing, so it is difficult to properly characterize what the rock behavior would be under high confinement stress conditions. If rock is expected to fail in a brittle manner, behavior changes associated with the relatively low tensile strength, such as transition from splitting to the shear failure, have to be considered and reflected in the adopted failure criteria. Rock failure in tension takes place at low confinement around excavations due to tensile or extensional failure in heterogeneous rocks. The prospect of tensile-dominant brittle failure diminishes as the confinement increases away from the excavation boundary. Therefore, it must be expected that the transition in the failure mechanism, from tensile to shear, occurs as the confinement level increases and conditions for extensional failure are prevented or strongly diminished. However, conventional failure criteria implicitly consider only the shear failure mechanism (i.e., failure envelopes touching Mohr stress circles), and thus, do not explicitly capture the transition of failure modes from tensile to shear associated with confinement change. This paper examines the methodologies for intact rock strength determination as the basic input data for engineering design of deep excavations. It is demonstrated that published laboratory test data can be reinterpreted and better characterized using an s-shaped failure criterion highlighting the transition of failure modes in brittle failing rock. As a consequence of the bi-modal nature of the failure envelope, intact rock strength data are often misinterpreted. If the intact rock strength is estimated by standard procedures from unconfined compression tests (UCS) alone, the confined strength may be underestimated by as much as 50 % (on average). If triaxial data with a limited confinement range (e.g., σ3 ? 0.5 UCS due to cell pressure limitations) are used, the confined strength may be overestimated. Therefore, the application of standard data fitting procedures, without consideration of confinement-dependent failure mechanisms, may lead to erroneous intact rock strength parameters when applied to brittle rocks, and consequently, by extrapolation, to correspondingly erroneous rock mass strength parameters. It follows that the strength characteristics of massive rock differ significantly in the direct vicinity of excavation from that which is remote with higher confinement. Therefore, it is recommended to adopt a differentiated approach to obtain intact rock strength parameters for engineering problems at lower confinement (near excavation; e.g., excavation stability assessment or support design), and at elevated confinement (typically, when the confinement exceeds about 10 % of the UCS) as might be encountered in wide pillar cores.  相似文献   

14.
压实黏土的脆性断裂模型及有限元算法   总被引:4,自引:0,他引:4  
利用弥散裂缝理论,提出了压实黏土拉伸状态下的脆性断裂模型.当压实黏土达到其极限抗拉强度后,通过建立单元的各向异性刚度矩阵,将土体裂缝弥散于实体单元,构造了平面应变条件下考虑压实黏土脆性开裂的有限元计算模式.通过对某压实黏土单轴拉伸试验成果的模拟计算,验证了构建的脆性断裂模型和有限元算法对土体拉伸破坏特性和裂缝发展过程的适用性.本文还进行了模拟软弱面水压“楔劈效应”的简单数值试验,表明压实黏土脆性开裂模型和算法可较好地模拟裂缝扩展行为.  相似文献   

15.
A biaxial testing program has been performed to study the process of brittle failure in crystalline rocks. Dental plaster has been selected as a model material, and mixing with different ratios of distilled water, different types of common minerals of crystalline rocks have been simulated in the form of brick-like small elements. These elements have been interlocked together according to four systematic patterns and final specimens with 180 × 180 × 76 mm dimensions have been obtained. Details of different types of cracks observed during loading process, effects of mechanical, geometrical and confining pressure on the cracking intensity, the influence of different types of heterogeneity on the macroscopic properties of a system of interlocked elements, and the sequence of events during the failure process are presented in this paper. Based on these observations, a revised mechanism for brittle failure is proposed.  相似文献   

16.
It is of great importance to investigate the effect of loading rate on the behaviour of brittle material such as concrete and rock because engineering structures are subjected to multiple loading conditions. Although material behaviour under single loading mode has been extensively studied, very limited research has been conducted to investigate the performance of brittle materials subjected to varying loading conditions. This paper presents an experimental study of the effects of single and multiple strain rates (ε) on cement mortar samples. The first set of samples was loaded at constant strain rates until failure. For the remaining samples, the first strain rate (0.005 mm/s) was applied to the sample up to a predetermined load, and then the second strain was initiated immediately by using the specially-designed gear system in place in the compression rig. As expected, the increase in strain rate showed an increase in peak strength of the sample with reduced ultimate strain. For multiple strain modes, it was observed that the highest peak strength occurred when the second strain was applied at 50 % of the peak strength of the first strain.  相似文献   

17.
为了准确评价油气储藏水力压裂及岩爆等工程中岩石的脆性,总结了目前国内外已有的基于能量理论计算岩石脆性的方法,并指出了它们的局限性.综合考虑岩石峰前和峰后的能量演化特征,建立了一种基于全应力应变曲线的反映岩石变形破坏全过程的脆性指数评价方法,更加全面地描述岩石的脆性特征.为了验证新方法的合理性,收集了4组岩石力学试验对新指数进行检验.试验结果表明:由峰前指数与峰后指数合成的脆性指数都随着围压的增加而减小,低围压下煤岩和页岩2组均具有较强的脆性,而高围压下红砂岩和页岩1组的脆性明显减弱,表现了随围压增大岩石发生脆延转换的特性.在实际边坡工程中通过对板岩进行脆性评价,验证了本文所提出的脆性指数在工程应用中的合理性,该成果有望对岩石脆性评价提供参考.   相似文献   

18.
The brittle failure behavior of an over-consolidated clay shale (Opalinus Clay) in undrained rapid triaxial compression was studied. The confining stress levels were chosen to simulate the range of confining stresses relevant for underground excavations at the Mont Terri Underground Research Laboratory, and to investigate the transition from axial splitting failure to macroscopic shear failure. Micro-crack initiation was observed throughout the confining stress range utilized in this study at a differential stress of 2.1 MPa on average, which indicates that friction was not mobilized at this stage of brittle failure. The rupture stress was dependent on confinement indicating friction mobilization during the brittle failure process. With increasing confinement net volumetric strain decreased suggesting that dilation was suppressed, which is possibly related to a change in the failure mode. At confining stress levels ≤0.5 MPa specimen rupture was associated with axial splitting. With increasing confinement, transition to a macroscopic shearing mode was observed. Multi-stage triaxial tests consistently showed lower strengths than single-stage tests, demonstrating cumulative damage in the specimens. Both the Mohr–Coulomb and Hoek–Brown failure criteria could not satisfactorily fit the data over the entire confining stress range. A bi-linear or S-shaped failure criterion was found to satisfactorily fit the test data over the entire confinement range studied.  相似文献   

19.
地应力对硬脆性岩体稳定性具有极为重要作用,已有研究主要集中于脆性破坏方式及其是否发生的预测上,而对地应力、洞形等因素与脆性破坏深度间关系的研究较为少见。基于硬脆性岩体脆性破坏准则,利用Examine2D软件,分析不同地应力环境及洞形时围岩脆性破坏深度d_f变化情况。结果表明:最小主应力量值较低时,破坏深度d_f与主应力比k近似为直线关系,较高时则为非线性增长;随着k值增加,屈服范围逐渐偏离最小主应力方向45°夹角发展;洞室断面长宽相近时,主应力方向较主应力量值对d_f的影响小,相同应力量值不同主应力方向,破坏位置不同,深度变化较小。洞形不同应力集中系数不同,选择长短轴长度之比与应力比k相接近的椭圆形谐洞,可有效降低破坏深度。  相似文献   

20.
为研究脆性岩石变形机制与渗透率- 应变的关系,根据脆性岩石应力- 应变和渗透率- 应变关系曲线分析指出:脆性 岩石经压密、弹性变形和非稳定破裂后,内部微裂隙出现丛集式发展,且不断合并、贯通,导致微观结构发生明显变化, 使渗透率在临界破坏点处急剧增大;当岩石宏观破坏后,内部结构面上的岩桥或凸起体部分被剪断或磨平,使得岩石强度 随变形突然下降,此时渗透率到达峰值。结合重整化群理论分析表明,脆性岩石在应力- 应变曲线拐点处应变和渗透率峰 值点处应变对应、临界破坏点处应变和渗透率急剧增大点处应变对应。通过试验研究和实例统计分析,验证了结论的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号