首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic spatial panels: models, methods, and inferences   总被引:7,自引:1,他引:6  
This paper provides a survey of the existing literature on the specification and estimation of dynamic spatial panel data models, a collection of models for spatial panels extended to include one or more of the following variables and/or error terms: a dependent variable lagged in time, a dependent variable lagged in space, a dependent variable lagged in both space and time, independent variables lagged in time, independent variables lagged in space, serial error autocorrelation, spatial error autocorrelation, spatial-specific and time-period-specific effects. The survey also examines the reasoning behind different model specifications and the purposes for which they can be used, which should be useful for practitioners.  相似文献   

2.
互联网记录了人们的日常生活,对带有位置信息的搜索引擎数据进行分析和挖掘可以获得隐藏于其中的地理信息。本文通过分析中国各省流感月度发病数与相关关键词百度搜索指数之间的相关性,选取相关性较高关键词的百度指数作为解释变量,发病数作为因变量,在采用主成分分析法消除变量共线性后,分别使用普通最小二乘回归(OLS)、地理加权回归(GWR)及时空地理加权回归(GTWR)构建流感发病数的空间分布模型。模型的拟合度能够从OLS的0.737、GWR的0.915提高到GTWR的0.959,赤池信息准则(AIC)也表明,GTWR模型明显优于OLS与GWR模型。验证结果显示,GTWR模型能准确识别流感高发地区,将该方法与搜索引擎数据结合能较好地模拟流感空间分布,为空间流行病学的研究提供预测模型和统计解释。  相似文献   

3.
Ramsey’s regression specification error test (RESET) is thought to be robust to spatial correlation. Building on the literature on spurious spatial regression, we show that this is not so in presence of spatial correlation in both the error and the independent variable of an econometric model. Correcting the test for spatial correlation improves its performance, though in large samples this strategy is not completely successful. Once assuming that spatial autocorrelation in both the independent variable and in the error is produced by a spatial moving average model instead of a spatial autoregressive one, RESET displays more robustness.  相似文献   

4.
This study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least squares (OLS) and OLS containing a spatial lag variable (OLSL) and a commonly used local model: geographically weighted regression (GWR). To detect and account for any variation of the spatial autocorrelation of air pollution over space, we construct two extra local models which we call GWR with lagged dependent variable (GWRL) and MGWR with lagged dependent variable (MGWRL) by including the lagged form of the dependent variable in the GWR model and the MGWR model, respectively. The performances of these six models are comprehensively examined and the MGWR and MGWRL models outperform the two global models as well as the GWR and GWRL models. MGWRL is the most accurate model in terms of replicating the observed air quality index (AQI) values and removing residual dependency. The superiority of the MGWR framework over the GWR framework is demonstrated—GWR can only produce a single optimized bandwidth, while MGWR provides covariate‐specific optimized bandwidths which indicate the different spatial scales that different processes operate.  相似文献   

5.
Socio‐demographic data are typically collected at various levels of aggregation, leading to the modifiable areal unit problem. Spatial non‐stationarity of statistical associations between variables further influences the demographic analyses. This study investigates the implications of these two phenomena within the context of migration‐environment associations. Global and local statistical models are fit across increasing levels of aggregation using household level survey data from rural South Africa. We raise the issue of operational scale sensitivity, which describes how the explanatory power of certain variables depends on the aggregation level. We find that as units of analysis (households) are aggregated, some variables become non‐significant in the global models, while others are less sensitive to aggregation. Local model results show that aggregation reduces spatial variation in migration‐related local associations but also affects variables differently. Spatial non‐stationarity appears to be the driving force behind this phenomenon as the results from the global model mask this relationship. Operational scale sensitivity appears related to the underlying spatial autocorrelation of the non‐aggregated variables but also to the way a variable is constructed. Understanding operational scale sensitivity can help to refine the process of selecting variables related to the scale of analysis and better understand the effects of spatial non‐stationarity on statistical relationships.  相似文献   

6.
Forest conservation is considered an option for mitigating the effect of greenhouse gases on global climate, hence monitoring forest carbon pools at global and local levels is important. The present study explores the capability of remote-sensing variables (vegetation indices and textures derived from SPOT-5; backscattering coefficient and interferometric coherence of ALOS PALSAR images) for modeling the spatial distribution of above-ground biomass in the Environmental Conservation Zone of Mexico City. Correlation and spatial autocorrelation coefficients were used to select significant explanatory variables in fir and pine forests. The correlation for interferometric coherence in HV polarization was negative, with correlations coefficients r = −0.83 for the fir and r = −0.75 for the pine forests. Regression-kriging showed the least root mean square error among the spatial interpolation methods used, with 37.75 tC/ha for fir forests and 29.15 tC/ha for pine forests. The results showed that a hybrid geospatial method, based on interferometric coherence data and a regression-kriging interpolator, has good potential for estimating above-ground biomass carbon.  相似文献   

7.
8.
DEM误差的空间自相关特征分析   总被引:3,自引:0,他引:3  
采用空间自相关分析方法,从空间角度对数字高程数据误差的空间分布特征进行了研究。实验表明,利用双线性曲面表示地形表面时,产生的数字高程数据误差的全局Moran’sI指数趋近于0,在整个区域单元上的分布不存在显著的全局空间自相关,邻近区域单元上高程数据误差之间的关系在整体上既不综合表现为趋同,也不综合表现为趋异,高程数据误差的整体空间格局为随机格局;而且数字高程数据误差在空间上的分布与地形坡度和地表粗糙度有一定的联系,一般情况下,平均坡度、地表粗糙度越大,高程数据的全局Moran’sI指数偏离0稍远一些;否则,距离0近一些,但全局空间自相关仍不显著,在整体上表现为随机格局。  相似文献   

9.
Fires threaten human lives, property and natural resources in Southern African savannas. Due to warming climate, fire occurrence may increase and fires become more intense. It is crucial, therefore, to understand the complexity of spatiotemporal and probabilistic characteristics of fires. This study scrutinizes spatiotemporal characteristics of fires and the role played by abiotic, biotic and anthropogenic factors for fire probability modelling in a semiarid Southern African savanna environment. The MODIS fire products: fire hot spots (MOD14A2 and MYD14A2) and burned area product MODIS (MCD45A1), and GIS derived data were used in analysis. Fire hot spots occurrence was first analysed, and spatial autocorrelation for fires investigated, using Moran's I correlograms. Fire probability models were created using generalized linear models (GLMs). Separate models were produced for abiotic, biotic, anthropogenic and combined factors and an autocovariate variable was tested for model improvement. The hierarchical partitioning method was used to determine independent effects of explanatory variables. The discriminating ability of models was evaluated using area under the curve (AUC) from the receiver operating characteristic (ROC) plot. The results showed that 19.2–24.4% of East Caprivi burned when detected using MODIS hot spots fire data and these fires were strongly spatially autocorrelated. Therefore, the autocovariate variable significantly improved fire probability models when added to them. For autologistic models, i.e. models accounting for spatial autocorrelation, discrimination was good to excellent (AUC 0.858–0.942). For models not counting spatial autocorrelation, prediction success was poor to moderate (AUC 0.542–0.745). The results of this study clearly showed that spatial autocorrelation has to be taken in to account in the fire probability model building process when using remotely sensed and GIS derived data. This study also showed that fire probability models accounting for spatial autocorrelation proved to be superior in regional scale burned area estimation when compared with MODIS burned area product (MCD45A1).  相似文献   

10.
This paper investigates the importance of spatial location of pixels in terms of row-column as an additional explanatory variable in classification along with available spectral bands of remotely sensed data. In view of this, a forward step-wise variable selection algorithm is used to select significant bands/variables and build an optimal model to extract the maximum accuracy. Author performed a case study on the area of town of Wolfville acquired by LANDSAT 5 TM data containing six 30 m resolution spectral bands and pixel location as an additional variable. Data are classified into seven classes using three advanced classifiers i.e. classification and regression trees (CART), support vector machines (SVM) and multi-class Bayesian additive classification tree (mBACT). Traditionally, it is assumed that addition of more explanatory variables always increase the accuracy of classified satellite images. However, results of this study show that adding more variables may sometimes confuse the classifier, that is, if selected carefully, fewer variables can provide the more accurate classification. Importance of row-column information turns out to be more beneficial for mBACT followed by SVM. Interestingly, spatial locations did not turn out to be useful for CART. Based on the findings of this study, mBACT appears to be a slightly better classifier than SVM and a substantially better than CART.  相似文献   

11.
The principal rationale for applying geographically weighted regression (GWR) techniques is to investigate the potential spatial non-stationarity of the relationship between the dependent and independent variables—i.e., that the same stimulus would provoke different responses in different locations. The calibration of GWR employs a geographically weighted local least squares regression approach. To obtain meaningful inference, it assumes that the regression residual follows a normal or asymptotically normal distribution. In many classical econometric analyses, the assumption of normality is often readily relaxed, although it has been observed that such relaxation might lead to unreliable inference of the estimated coefficients' statistical significance. No studies, however, have examined the behavior of residual non-normality and its consequences for the modeled relationships in GWR. This study attempts to address this issue for the first time by examining a set of tobacco-outlet-density and demographic variables (i.e., percent African American residents, percent Hispanic residents, and median household income) at the census tract level in New Jersey in a GWR analysis. The regression residual using the raw data is apparently non-normal. When GWR is estimated using the raw data, we find that there is no significant spatial variation of the coefficients between tobacco outlet density and percentage of African American and Hispanics. After transforming the dependent variable and making the residual asymptotically normal, all coefficients exhibit significant variation across space. This finding suggests that relaxation of the normality assumption could potentially conceal the spatial non-stationarity of the modeled relationships in GWR. The empirical evidence of the current study implies that researchers should verify the normality assumption prior to applying GWR techniques in analyses of spatial non-stationarity.  相似文献   

12.
The realization in the statistical and geographical sciences that a relationship between an explanatory variable and a response variable in a linear regression model is not always constant across a study area has led to the development of regression models that allow for spatially varying coefficients. Two competing models of this type are geographically weighted regression (GWR) and Bayesian regression models with spatially varying coefficient processes (SVCP). In the application of these spatially varying coefficient models, marginal inference on the regression coefficient spatial processes is typically of primary interest. In light of this fact, there is a need to assess the validity of such marginal inferences, since these inferences may be misleading in the presence of explanatory variable collinearity. In this paper, we present the results of a simulation study designed to evaluate the sensitivity of the spatially varying coefficients in the competing models to various levels of collinearity. The simulation study results show that the Bayesian regression model produces more accurate inferences on the regression coefficients than does GWR. In addition, the Bayesian regression model is overall fairly robust in terms of marginal coefficient inference to moderate levels of collinearity, and degrades less substantially than GWR with strong collinearity.  相似文献   

13.
This paper describes the results of a geo-statistical analysis carried out at the provincial level in Southern Europe to model wildfire occurrence from socio-economic and demographic indicators together with land cover and agricultural statistics. We applied a classical ordinary least squares (OLS) linear regression together with a geographically weighted regression (GWR) to explain long-term wild-fire occurrence patterns (mean annual density of >1 ha fires). The explanatory power of the OLS model increased from 52% to 78% as a result of the non-constant relationships between fire occurrence and the underlying explanatory variables throughout the Mediterranean Basin. The global model we developed (i.e., OLS regression) was not sufficient to fully describe the underlying causal factors in wildfire occurrence modeling. Indeed, local approaches (i.e., GWR) can complement the global model in overcoming the problem of non-stationarity or missing variables. Our results confirm the importance of agrarian activities, land abandonment, and development processes as underlying factors of fire occurrence. The identification of regions with spatially varying relationships can contribute to the better understanding of the fire problem, especially over large geographic areas, while at the same time recognizing its local character. This can be very important for fire management and policy.  相似文献   

14.
This study analyses the relationship between fire incidence and some environmental factors, exploring the spatial non-stationarity of the phenomenon in sub-Saharan Africa. Geographically weighted regression (GWR) was used to study the above relationship. Environment covariates comprise land cover, anthropogenic and climatic variables. GWR was compared to ordinary least squares, and the hypothesis that GWR represents no improvement over the global model was tested. Local regression coefficients were mapped, interpreted and related with fire incidence. GWR revealed local patterns in parameter estimates and also reduced the spatial autocorrelation of model residuals. All the covariates were non-stationary and in terms of goodness of fit, the model replicates the data very well (R 2 = 87%). Vegetation has the most significant relationship with fire incidence, with climate variables being more important than anthropogenic variables in explaining variability of the response. Some coefficient estimates exhibit locally different signs, which would have gone undetected by a global approach. This study provides an improved understanding of spatial fire–environment relationships and shows that GWR is a valuable complement to global spatial analysis methods. When studying fire regimes, effects of spatial non-stationarity need to be incorporated in vegetation-fire modules to have better estimates of burned areas and to improve continental estimates of biomass burning and atmospheric emissions derived from vegetation fires.  相似文献   

15.
Accurately monitoring the temporal, spatial distribution and severity of agricultural drought is an effective means to reduce the farmers’ losses. Based on the concept of the new drought index called VegDRI, this paper established a new method, named the Integrated Surface Drought Index (ISDI). In this method, the Palmer Drought Severity Index (PDSI) was selected as the dependent variable; for the independent variables, 12 different combinations of 14 factors were examined, including the traditional climate-based drought indicators, satellite-derived vegetation indices, and other biophysical variables. The final model was established by fully describing drought properties with the smaller average error (relative error) and larger correlation coefficients. The ISDI can be used not only to monitor the main drought features, including precipitation anomalies and vegetation growth conditions but also to indicate the earth surface thermal and water content properties by incorporating temperature information. Then, the ISDI was used for drought monitoring from 2000 to 2009 in mid-eastern China. The results for 2006 (a typical dry year) demonstrate the effectiveness and capability of the ISDI for monitoring drought on both the large and the local scales. Additionally, the multiyear ISDI monitoring results were compared with the actual drought intensity using the agro-meteorological disaster data recorded at the agro-meteorological sites. The investigation results indicated that the ISDI confers advantages in the accuracy and spatial resolution for monitoring drought and has significant potential for drought identification in China.  相似文献   

16.
遥感影像配准误差传递模型及模拟分析   总被引:3,自引:0,他引:3  
葛咏  梁怡  马江洪  王劲峰 《遥感学报》2006,10(3):299-305
在遥感影像配准过程中,通常假设控制点是“完美的”。然而,在实际情况中,由于控制点本身不可避免的带有一定的误差导致这种假设在一定情况下并不成立,并且将会影响遥感影像几何校正的精度。普通最小二乘方法OLS(O rd inary Least Square)是遥感影像配准常用的校正估计模型,令人遗憾的是,在控制点存在误差的情况下,它的估计是有偏的,并且不能够正确传递和估计校正影像的误差大小。引入一致校正最小二乘方法CALS(ConsistentAd justed Least Squares),在此基础上提出的一个改进的方法,称之为松弛一致校正最小二乘方法RCALS(Relaxed ConsistentAd justed Least Squares)。这类回归模型具有改正控制点(解释变量)中的误差和跟踪回归模型中的误差传递的能力。为了验证CALS和RCALS模型的有效性,本文利用模拟影像进行分析。这里着重分析OLS,CALS和RCALS模型在几何校正过程中的比较。结果表明,RCALS和CALS的结果优于OLS估计结果。  相似文献   

17.
This study develops an informed modelling approach that follows a bottom-up planning strategy to define plausible urban growth scenarios. In this case, landscape aesthetics suitability of the area was first generated using multi-criteria evaluation method. Then, a buffer zone of 1 km was considered to extract the average values of aesthetics suitability scores surrounding urban patches with medium physical size (10–30 hectares). The averaged values were considered as the dependent variable. In the next step, landscape metrics of these urban patches, as explanatory variables, were also computed to measure compositional and configuration-based attributes of urban clusters. Bivariate associations (Pearson correlation analysis) and statistical relationships (linear regression algorithm) between landscape metrics and their associated aesthetics values were measured and modelled. According to the results, both composition and configuration values are significantly correlated to the dependent variable in which configuration-based attributes depicted a stronger explanatory power.  相似文献   

18.
The hierarchid tessellation model belongs to a class of spatial data models based on the recursive decomposition of space. The quadtree is one such tessellation and is characterized by square cells and a 1:4 decomposition ratio. To relax these constraints in the tessellation, a generalized hierarchical tessellation data model, called Adaptive Recursive Tessellations (ART), has been proposed. ART increases flexibility in the tessellation by the use of rectangular cells and variable decomposition ratios. In ART, users can specify cell sizes which are intuitively meaningful to their applications, or which can reflect the scales of data. ART is implemented in a data structure called Adaptive Recursive Run-Encoding (ARRE), which is a variant of two-dimensional run-encoding whose running path can vary with the different tessellation structures incorporated in an ART model. Given the recognition of the benefits of implementing statistical spatial analysis in GIS, the use of hierarchical tessellation models such as ART in spatial analysis is discussed. Three examples are introduced to show how ART can: (1) be applied to solve the quadrat size problem in quadrat analysis of point patterns; (2) act as the data model in the variable resolution block kriging technique for geostatistical data to reduce variation in kriging error; and (3) facilitate the evaluation of spatial autocorrelation for area data at multiple map resolutions via the construction of a connectivity matrix for calculating spatial autocorrelation indices based on ARRE.  相似文献   

19.
In this paper, we analyse the ability of a dynamic spatial panel data model without explanatory variables to explain a variable of interest, in this case employment in the fifty Spanish provinces. The best model is a dynamic fixed effect with a spatial lag structure in an equation estimated through the unconditional ML procedure. Predictions derived from this selected model are compared with those derived from fifty seasonal ARIMA models that also treat outlier observations. The results indicate that forecasts derived from a single estimated spatial panel data model are as accurate as those derived from the estimation of fifty seasonal ARIMA models. This shows that spatial panel data models play an important role in forecasting.  相似文献   

20.
As an important GIS function, spatial interpolation is one of the most often used geographic techniques for spatial query, spatial data visualization, and spatial decision-making processes in GIS and environmental science. However, less attention has been paid on the comparisons of available spatial interpolation methods, although a number of GIS models including inverse distance weighting, spline, radial basis functions, and the typical geostatistical models (i.e. ordinary kriging, universal kriging, and cokriging) are already incorporated in GIS software packages. In this research, the conceptual and methodological aspects of regression kriging and GIS built-in interpolation models and their interpolation performance are compared and evaluated. Regression kriging is the combination of multivariate regression and kriging. It takes into consideration the spatial autocorrelation of the variable of interest, the correlation between the variable of interest and auxiliary variables (e.g., remotely sensed images are often relatively easy to obtain as auxiliary variables), and the unbiased spatial estimation with minimized variance. To assess the efficiency of regression kriging and the difference between stochastic and deterministic interpolation methods, three case studies with strong, medium, and weak correlation between the response and auxiliary variables are compared to assess interpolation performances. Results indicate that regression kriging has the potential to significantly improve spatial prediction accuracy even when using a weakly correlated auxiliary variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号