首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to rapid economic growth of the country in the last 25 years, particulate matter (PM) has become a topic of great interest in China. The rapid development of industry has led to an increase in the haze created by pollution, as well as by high levels of urbanization. In 2012, the Chinese National Ambient Air Quality Standard (NAAQS) imposed ‘more strict’ regulation on the PM concentrations, i.e., 35 and 70 μg/m3 for annual PM2.5 and PM10 in average, respectively (Grade-II, GB3095-2012). The Pearson’s correlation coefficient was used to determine the linear relationship of pollution between pollution levels and weather conditions as well as the temporal and spatial variability among neighbouring cities. The goal of this paper was to investigate hourly mass concentration of PM2.5 and PM10 from June 1 to August 31, 2015 collected in the 11 largest cities of Gansu Province. This study has shown that the overall average concentrations of PM2.5 and PM10 in the study area were 26 and 66 μg/m3. In PM2.5 episode days (when concentration was more than 75 μg/m3 for 24 hrs), the average concentrations of PM2.5 was 2–3 times higher as compared to non-episode days. There were no observed clear differences during the weekday/weekend PM and other air pollutants (SO2, NO2, CO and O3) in all the investigated cities.  相似文献   

2.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

3.
The rapid urbanization, industrialization, modernization, and the frequent Middle Eastern dust storms have negatively impacted the ambient air quality in Bahrain. The objective of this study is to identify the most critical atmospheric air pollutants with emphasis on their potential risk to health based on calculated AQI (air quality index) values using EPA approach. The air quality datasets of particulate matters (PM10 and PM2.5), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) were measured in January 2012 and August 2012 using five mobile air quality monitoring stations located at different governorates. The results of this study demonstrated that PM10 and PM2.5 are the most critical air pollutants in Bahrain with PM2.5 prevailing during January 2012 and PM10 prevailing during August 2012. The corresponding AQI categories were utilized to evaluate spatial variability of particulate matters in five governorates. The impact of meteorological factors such as ambient air temperature, wind speed, relative humidity, and total precipitation on ambient air quality were discussed. The analysis demonstrated that the highest PM10 concentrations were observed in the Northern Governorate while the highest PM2.5 concentrations were observed in the Capital, Central, and Northern Governorates during August 2012. It was observed that the levels of PM2.5 pollution were higher within proximity of the industrial zone. The results suggested that the average PM2.5/PM10 ratio in August 2012 was lower than in January 2012 due to the Aeolian processes. This study concludes that higher wind speed, total precipitation, relative humidity rates, and lower ambient air temperature in January 2012 assisted with the dissipation of particulate matter thus lowering the pollution levels of both PM10 and PM2.5 in comparison to August 2012.  相似文献   

4.
This paper estimates CO2 fluxes in a municipal site for final disposal of solid waste, located in Gualeguaychu, Argentina. Estimations were made using the accumulation chamber methods, which had been calibrated previously in laboratory. CO2 fluxes ranged from 31 to 331 g m−2 day−1. Three different populations were identified: background soil gases averaging 46 g m−2 day−1, intermediate anomalous values averaging 110 g m−2 day−1 and high anomalous values averaging 270 g m−2 day−1. Gas samples to a depth of 20 cm were also taken. Gas fractions, XCO2 < 0.1, XCH4 < 0.01, XN2 ~0.71 and XO2 ~0.21, δ13C of CO2 (−34 to −18‰), as well as age of waste emplacement, suggest that the study site may be at the final stage of aerobic biodegradation. In a first approach, and following the downstream direction of groundwater flow, alkalinity and δ13C of dissolved inorganic carbon (−15 to 4‰) were observed to increase when groundwater passed through the disposal site. This suggests that the CO2 generated by waste biodegradation dissolves or that dissolved organic matter appears as a result of leachate degradation.  相似文献   

5.
Thermal behavior of two new exhalation copper-bearing minerals, bradaczekite and urusovite, from the Great Tolbachik Fissure Eruption (1975–1976, Kamchatka Peninsula, Russia) has been studied by X-ray thermal analysis within the range 20–700°C in air. The following major values of the thermal expansion tensor have been calculated for urusovite: α11 = 10, α22 = αb = 7, α33 = 4, αV = 21 × 10−6°C−1, μ = c∧α33 = 49° and bradaczekite: α11aver = 23, α22 = 8, α33aver = 6 × 10−6°C−1, μ(c∧α33) = 73°. The sharp anisotropy of thermal deformations of these minerals, absences of phase transitions, and stability of the minerals in the selected temperature range corresponding to conditions of their formation and alteration during the posteruption period of the volcanic activity are established.  相似文献   

6.
Given the relevance of desert aerosols to environmental issues such as dust storms, climate change and human health effects, we provide a demonstration of how the bedrock geology of an arid area influences the mineralogy and geochemistry of even the finest particulate matter (i.e., the inhalable fraction <10 μm in size: PM10). PM10 samples extracted from desert sediments at geologically contrasting off-road sites in central and southeastern Australia (granitic, high grade metamorphic, quartzitic sandstone) were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The “granitic” PM10 are highly alkali feldspathic and illitic, with a wide range of accessory minerals including rutile (TiO2), monazite [(Ce, La, Nd, Th, Y) PO4], xenotime (YPO4), apatite [Ca5(PO4)3 (F, OH, Cl)], hematite (Fe3O4), zircon (ZrSiO4) and thorite (ThSiO4). This mineralogy is reflected in the geochemistry which shows notable enrichments in rare earth elements (REE) and most high field strength elements (both held in the accessory minerals), and higher than normal levels of low (<2.0) ionic potential elements (Na, K, Li, Cs, Rb: held in alkali feldspar and illite). The “metamorphic” resuspended PM10 define a mineralogy clearly influenced by local exposures of pelitic and calc-silicate schists (sillimanite, muscovite, calcite, Ca-amphibole), a dominance of monazite over other REE-bearing phases, and a geochemistry distinguished by enrichments in alkaline earth metals (Ca, Mg, Ba, Sr) and depletion in heavy REE. The “quartzite” PM10, derived from rocks already recycled by Precambrian erosion and sedimentary transport, show a sedimentologically mature mineralogy of mostly quartz and kaolinite, detrital accessory ilmenite, rutile, monazite and hematite, and the strongest geochemical depletion (especially K, Rb, Cs, Na, Ca, Mg, Ba).  相似文献   

7.
The production of organic matter and calcium carbonate by a dense population of the brittle star Acrocnida brachiata (Echinodermata) was calculated using demographic structure, population density, and relations between the size (disk diameter) and the ash-free dry weight (AFDW) or the calcimass. During a 2-year survey in the Bay of Seine (Eastern English Channel, France), organic production varied from 29 to 50 gAFDW m−2 year−1 and CaCO3 production from 69 to 104 gCaCO3 m−2 year−1. Respiration was estimated between 1.7 and 2.0 molCO2 m−2 year−1. Using the molar ratio (ψ) of CO2 released: CaCO3 precipitated, this biogenic precipitation of calcium carbonate would result in an additional release between 0.5 and 0.7 molCO2 m−2 year−1 that represented 23% and 26% of total CO2 fluxes (sum of calcification and respiration). The results of the present study suggest that calcification in temperate shallow environments should be considered as a significant source of CO2 to seawater and thus a potential source of CO2 to the atmosphere, emphasizing the important role of the biomineralization (estimated here) and dissolution (endoskeletons of dead individuals) in the carbon budget of temperate coastal ecosystems.  相似文献   

8.
Aeolian (wind) erosion is most common in arid regions. The resulted emission of PM10 (particulate matter that is smaller than 10 μm in diameter) from the soil has many environmental and socioeconomic consequences such as soil degradation and air pollution. Topsoil resistance to aeolian transport highly depends on the surface composition. The study aim was to examine variations in PM10 fluxes in a desert-dust source due to surface composition and topsoil disturbance. Aeolian field experiments using a boundary layer wind tunnel alongside soil composition analysis were integrated in this study. The results show variations in PM10 fluxes (ranging from 9.5 to 524.6 mg m?2 min?1) in the studied area. Higher wind velocity increased significantly the PM10 fluxes in all surface compositions. A short-term natural disturbance caused changes in the aggregate soil distribution (ASD) and increased significantly PM10 emissions. Considering that PM10 contains clays, organic matter, and absorbed elements, the recorded PM10 fluxes are indicative of the potential soil loss and degradation by wind erosion in such resource-limited ecosystems. The findings have implications in modeling dust emission from a source area with complex surfaces.  相似文献   

9.
Field experiments on the CO2 flux of alpine meadow soil in the Qilian Mountain were conducted along the elevation gradient during the growing season of 2004 and 2005. The soil CO2 flux was measured using the Li-6400-09 soil respiration chamber attached to the Li-6400 portable photosynthesis system. The effects of water and heat and roots on the soil CO2 flux were statistically analyzed. The results show that soil CO2 flux along the elevation gradient gradually decreases. The soil CO2 flux was low at night, with lowest value occurring between 0200 and 0600 hours, started to rise rapidly during 0700–0830 hours, and then descend during 1600–1830 hours. The peak CO2 efflux appears during 1100–1600 hours. The diurnal average of soil CO2 efflux was between 0.56 ± 0.32 and 2.53 ± 0.76 μmol m−2 s−1. Seasonally, soil CO2 fluxes are relatively high in summer and autumn and low in spring and winter. The soil CO2 efflux, from the highest to the lowest in the ranking order, occurred in July and August (4.736 μmol m−2 s−1), June and September, and May and October, respectively. The soil CO2 efflux during the growing season is positively correlated with soil temperature, root biomass and soil water content.  相似文献   

10.
Mangrove ecosystems play an important, but understudied, role in the cycling of carbon in tropical and subtropical coastal ocean environments. In the present study, we examined the diel dynamics of seawater carbon dioxide (CO2) and dissolved oxygen (DO) for a mangrove-dominated marine ecosystem (Mangrove Bay) and an adjacent intracoastal waterway (Ferry Reach) on the island of Bermuda. Spatial and temporal trends in seawater carbonate chemistry and associated variables were assessed from direct measurements of dissolved inorganic carbon, total alkalinity, dissolved oxygen (DO), temperature, and salinity. Diel pCO2 variability was interpolated across hourly wind speed measurements to determine variability in daily CO2 fluxes for the month of October 2007 in Bermuda. From these observations, we estimated rates of net sea to air CO2 exchange for these two coastal ecosystems at 59.8 ± 17.3 in Mangrove Bay and 5.5 ± 1.3 mmol m−2 d−1 in Ferry Reach. These results highlight the potential for large differences in carbonate system functioning and sea-air CO2 flux in adjacent coastal environments. In addition, observation of large diel variability in CO2 system parameters (e.g., mean pCO2: 390–2,841 μatm; mean pHT: 8.05–7.34) underscores the need for careful consideration of diel cycles in long-term sampling regimes and flux estimates.  相似文献   

11.
Outdoor PM2.5 easily flows into indoor and seriously influences indoor air quality due to its characteristics of flow, diffusion and penetration. It is a proper ‘gas’ tracer similar to CO2 to study building ventilation. Therefore, in this paper, a model for calculating air change rates by removing indoor PM2.5 was deduced. Also, some factors influencing the air change rate were qualitatively analyzed and the expression of possible air change rate error was given. The comparison between the results from PM2.5 removal method and the data from CO2 decay method validated the model. The relative error between the results of the two methods is less than 10%. On the basis of validating the model, this paper presented the research of air change rates in ten naturally ventilated house rooms in three Chinese cities. It is found that the rooms with the ventilation rates of 1.15–6.75 m3/h/person have inadequate ventilation.  相似文献   

12.
A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 day−1 were injected from a 100-m long, ~2.5-m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0–10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.  相似文献   

13.
A single crystal X-ray diffraction study on lithium tetraborate Li2B4O7 (diomignite, space group I41 cd) has been performed under pressure up to 8.3 GPa. No phase transitions were found in the pressure range investigated, and hence the pressure evolution of the unit-cell volume of the I41 cd structure has been described using a third-order Birch–Murnaghan equation of state (BM-EoS) with the following parameters: V 0  = 923.21(6) Å3, K 0  = 45.6(6) GPa, and K′ = 7.3(3). A linearized BM-EoS was fitted to the axial compressibilities resulting in the following parameters a 0  = 9.4747(3) Å, K 0a  = 73.3(9) GPa, K′ a  = 5.1(3) and c 0  = 10.2838(4) Å, K 0c  = 24.6(3) GPa, K′ c  = 7.5(2) for the a and c axes, respectively. The elastic anisotropy of Li2B4O7 is very large with the zero-pressure compressibility ratio β 0c 0a  = 3.0(1). The large elastic anisotropy is consistent with the crystal structure: A three-dimensional arrangement of relatively rigid tetraborate groups [B4O7]2− forms channels occupied by lithium along the polar c–axis, and hence compression along the c axis requires the shrinkage of the lithium channels, whereas compression in the a direction depends mainly on the contraction of the most rigid [B4O7]2− units. Finally, the isothermal bulk modulus obtained in this work is in general agreement with that derived from ultrasonic (Adachi et al. in Proceedings-IEEE Ultrasonic Symposium, 228–232, 1985; Shorrocks et al. in Proceedings-IEEE Ultrasonic Symposium, 337–340, 1981) and Brillouin scattering measurements (Takagi et al. in Ferroelectrics, 137:337–342, 1992).  相似文献   

14.
This paper is concerned with the estimation of the removal efficiency of PM10 by large-scale precipitation under no-wind conditions in a background (rural) and urban areas. The changes in PM10 concentrations before, during and after the presence of rainfall were studied from 2007 to 2013. The study was conducted in two different locations identified with regard to air quality. DAVIS weather stations were used to determine the meteorological conditions. The concentration of PM10 was calculated with the use of the gravimetric reference method. Two hundred and ninety-nine measurement series were carried out. A linear relationship was found between the intensity and duration of rainfall and the value of the removal coefficient (ΔC). It was proved that except light rains, for the near-to-ground troposphere, the effectiveness of the removal of PM10C) did not assume different values at various locations for rainfall with the same intensity and duration. It was found that a temporary interaction of the effect of the purification by wet deposition was being minimised in areas characterised by low air quality. It was confirmed that intense rains resulted in the maintenance of higher values of air quality.  相似文献   

15.
Laboratory culture experiments have been conducted to evaluate the effects of light intensity on the growth of Cryptomonas sp. (Cryptophyceae) and the discrepancy in absorption of iron and phosphorus under different light conditions. Results show that there is an exponential correlation between algal growth rate and light intensity. The saturating and semi-saturating light values for Cryptomonas sp. cells are 150 and 47 μmol photons m−2 s−1, respectively. More uptake of Fe, P, and other trace elements such as Zn, Mn, Co, and Mo is observed in the low light cultures, although the algal growth rates are slow. The growth rate at 10 μmol photons m−2 s−1 is only 10% of that at 150 μmol photons m−2 s−1, whereas Fe and P uptake increases by 150 and 100%, respectively. These results suggest potential implications of differentiation in absorption of iron and phosphorus at different light intensities for the occurrence of harmful algal blooms (HABs). The mechanisms of light intensity regulating nutrient uptake as well as the occurrence of HABs are also discussed.  相似文献   

16.
Motivated by the rapid increase in atmospheric CO2 due to human activities since the Industrial Revolution, and the climate changes it produced, the world’s concerned scientific community has made a huge effort to investigate the global carbon cycle. However, the results reveal that the global CO2 budget cannot be balanced, unless a “missing sink” is invoked. Although numerous studies claimed to find the “missing sink”, none of those claims has been widely accepted. This current study showed that alkaline soil on land are absorbing CO2 at a rate of 0.3–3.0 μmol m−2 s−1 with an inorganic, non-biological process. The intensity of this CO2 absorption is determined by the salinity, alkalinity, temperature and water content of the saline/alkaline soils, which are widely distributed on land. Further studies revealed that high salinity or alkalinity positively affected the CO2 absorbing intensity, while high temperature and water content had a negative effect on the CO2 absorbing intensity of these soils. This inorganic, non-biological process of CO2 absorption by alkaline soils might have significant implications to the global carbon budget accounting.  相似文献   

17.
Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen. These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and 2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m 2 h 1, respectively, in 2004, and 898.59 and 2,154.17 mg m 2 h 1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m 2 h 1 and 0.72 and 1.88 mg m 2 h 1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 + CH4 + N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale.  相似文献   

18.
A pristine magnetite (Fe3O4) specimen was studied by means of Neutron Powder Diffraction in the 273–1,073 K temperature range, in order to characterize its structural and magnetic behavior at high temperatures. An accurate analysis of the collected data allowed the understanding of the behavior of the main structural and magnetic features of magnetite as a function of temperature. The magnetic moments of both tetrahedral and octahedral sites were extracted by means of magnetic diffraction up to the Curie temperature (between 773 and 873 K). A change in the thermal expansion coefficient around the Curie temperature together with an increase in the oxygen coordinate value above 700 K can be observed, both features being the result of a change in the thermal expansion of the tetrahedral site. This anomaly is not related to the magnetic transition but can be explained with an intervened cation reordering, as magnetite gradually transforms from a disordered configuration into a partially ordered one. Based on a simple model which takes into account the cation-oxygen bond length, the degree of order as a function of temperature and consequently the enthalpy and entropy of the reordering process were determined. The refined values are ΔH0 = −23.2(1.7) kJ mol−1 and ΔS0 = −16(2) J K−1 mol−1. These results are in perfect agreement with values reported in literature (Mack et al. in Solid State Ion 135(1–4):625–630, 2000; Wu and Mason in J Am Ceramic Soc 64(9):520–522, 1981).  相似文献   

19.
Raman spectroscopy and heat capacity measurements have been used to study the post-perovskite phase of CaIr0.5Pt0.5O3, recovered from synthesis at a pressure of 15 GPa. Laser heating CaIr0.5Pt0.5O3 to 1,900 K at 60 GPa produces a new perovskite phase which is not recoverable and reverts to the post-perovskite polymorph between 20 and 9 GPa on decompression. This implies that Pt-rich CaIr1−xPtxO3 perovskites including the end member CaPtO3 cannot easily be recovered to ambient pressure from high P–T synthesis. We estimate an increase in the thermodynamic Grüneisen parameter across the post-perovskite to perovskite transition of 34%, of similar magnitude to those for (Mg,Fe)SiO3 and MgGeO3, suggesting that CaIr0.5Pt0.5O3 is a promising analogue for experimental studies of the competition in energetics between perovskite and post-perovskite phases of magnesium silicates in Earth’s lowermost mantle. Low-temperature heat capacity measurements show that CaIrO3 has a significant Sommerfeld coefficient of 11.7 mJ/mol K2 and an entropy change of only 1.1% of Rln2 at the 108 K Curie transition, consistent with the near-itinerant electron magnetism. Heat capacity results for post-perovskite CaIr0.5Rh0.5O3 are also reported.  相似文献   

20.
We present results from low-temperature heat capacity measurements of spinels along the solid solution between MgAl2O4 and MgCr2O4. The data also include new low-temperature heat capacity measurements for MgAl2O4 spinel. Heat capacities were measured between 1.5 and 300 K, and thermochemical functions were derived from the results. No heat capacity anomaly was observed for MgAl2O4 spinel; however, we observe a low-temperature heat capacity anomaly for Cr-bearing spinels at temperatures below 15 K. From our data we calculate standard entropies (298.15 K) for Mg(Cr,Al)2O4 spinels. We suggest a standard entropy for MgAl2O4 of 80.9 ± 0.6 J mol−1 K−1. For the solid solution between MgAl2O4 and MgCr2O4, we observe a linear increase of the standard entropies from 80.9 J mol−1 K−1 for MgAl2O4 to 118.3 J mol−1 K−1 for MgCr2O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号