首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The neutral gas temperature and circulation of the thermosphere are calculated for December solstice conditions near solar cycle maximum using NCAR's thermospheric general circulation model (TGCM). High-latitude heat and momentum sources significantly alter the basic solar-driven circulation during solstice. At F-region heights, the increased ion density in the summer hemisphere results in a larger ion drag momentum source for the neutral gas than in the winter hemisphere. As a result there are larger wind velocities and a greater tendency for the neutral gas to follow the magnetospheric convection pattern in the summer hemisphere than in the winter hemisphere. There is about three times more Joule heating in the summer than the winter hemisphere for moderate levels of geomagnetic activity due to the greater electrical conductivity in the summer E-region ionosphere.

The results of several TGCM runs are used to show that at F-region heights it is possible to linearly combine the solar-driven and high-latitude driven solutions to obtain the total temperature structure and circulation to within 10–20%. In the lower thermosphere, however, non-linear terms cause significant departures and a linear superposition of fields is not valid.

The F-region winds at high latitudes calculated by the TGCM are also compared to the meridional wind derived from measurements by the Fabry-Perot Interferometer (FPI) and the zonal wind derived from measurements by the Wind and Temperature Spectrometer (WATS) instruments onboard the Dynamics Explorer (DE−2) satellite for a summer and a winter day. For both examples, the observed and modeled wind patterns are in qualitative agreement, indicating a dominant control of high latitude winds by ion drag. The magnitude of the calculated winds (400–500 m s−1) for the assumed 60 kV cross-tail potential, however, is smaller than that of the measured winds (500–800 m s−1). This suggests the need for an increased ion drag momentum source in the model calculations due to enhanced electron densities, higher ion drift velocities, or some combination that needs to be further denned from the DE−2 satellite measurements.  相似文献   


3.
During the period October to December 1981, the Dynamics Explorer-2 (DE-2) spacecraft successively observed the South polar and the North polar regions, and recorded the temperature, composition and dynamical structure of the upper thermosphere. In October 1981, perigee was about 310 km altitude, in the vicinity of the South Pole, with the satellite orbit in the 09.00–21.00 L.T. plane. During late November and December, the perigee had precessed to the region of the North Pole, with the spacecraft sampling the upper thermosphere in the 06.00 18.00 L.T. plane. DE-2 observed the meridional wind with a Fabry-Perot interferometer (FPI), the zonal wind with the wind and temperature spectrometer (WATS), the neutral temperature with the FPI, and the neutral atmosphere composition and density with the neutral atmosphere composition spectrometer (NACS). A comparison between the South (summer) Pole and the North (winter) Pole data shows considerable seasonal differences in all neutral atmosphere parameters. The region of the summer pole, under similar geomagnetic and solar activity conditions, and at a level of about 300 km, is about 300 K warmer than that of the winter pole, and the density of atomic oxygen is strongly depleted (and nitrogen enhanced) around the summer pole (compared with the winter pole). Only part of the differences in temperature and composition structure can be related to the seasonal variation of solar insolation, however, and both polar regions display structural variations (with latitude and Universal Time) which are unmistakeable characteristics of strong magnetospheric forcing. The magnitude of the neutral atmosphere perturbations in winds, temperature, density and composition within both summer and winter polar regions all increase with increasing levels of geomagnetic activity.The UCL 3-dimensional time dependent global model has been used to simulate the diurnal, seasonal and geomagnetic response of the neutral thermosphere, attempting to follow the major features of the solar and geomagnetic inputs to the thermosphere which were present during the late 1981 period.In the UCL model, geomagnetic forcing is characterized by semi-empirical models of the polar electric field which show a dependence on the Y component of the Interplanetary Magnetic Field, due to Heppner and Maynard (1983), It is possible to obtain an overall agreement, in both summer and winter hemispheres, with the thermospheric wind structure at high latitudes, and to explain the geomagnetic control of the combined thermal and compositional structure both qualitatively and quantitatively. To obtain such agreement, however, it is essential to enhance the polar ionosphere as a consequence of magnetospheric particle precipitation, reflecting both widespread auroral (kilovolt) electrons, and “soft” cusp and polar cap sources. Geomagnetic forcing of the high latitude thermosphere cannot be explained purely by a polar convective electric field, and the thermal as well as ionising properties of these polar and auroral electron sources are crucial components of the total geomagnetic input.  相似文献   

4.
One of the most consistent and often dramatic interactions between the high latitude ionosphere and the thermosphere occurs in the vicinity of the auroral oval in the afternoon and evening period. Ionospheric ions, convected sunward by the influence of the magnetospheric electric field, create a sunward jet-stream in the thermosphere, where wind speeds of up to 1 km s?1 can occur. This jet-stream is nearly always present in the middle and upper thermosphere (above 200 km altitude), even during periods of very low geomagnetic activity. However, the magnitude of the winds in the jet-stream, as well as its location and range in latitude, each depend on geomagnetic activity. On two occasions, jet-streams of extreme magnitude have been studied using simultaneous ground-based and satellite observations, probing both the latitudinal structure and the local time dependence. The observations have then been evaluated with the aid of simulations using a global, three-dimensional, time-dependent model of thermospheric dynamics including the effects of magnetospheric convection and particle precipitation. The extreme events, where sunward winds of above 800 ms?1 are generated at relatively low geomagnetic latitudes (60–70°) require a greatly expanded auroral oval and large cross-polar cap electric field ( ~ 150 kV). These in turn are generated by a persistent strong Interplanetary Magnetic Field, with a large southward component. Global indices such as Kp are a relatively poor indicator of the magnitude and extent of the jet-stream winds.  相似文献   

5.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

6.
Magnetohydrodynamic resonance theory is used to model the structure of the magnetospheric and ionospheric electric and magnetic fields associated with Pc5 geomagnetic pulsations. In this paper the variation of the fields across the invariant latitude of the resonance are computed. The results are combined with calculations of the variation along a field line to map the fields down to the ionosphere. In one case the results are compared with measurements obtained by the STARE auroral radar and show good agreement. The relationship between the width of the resonance region and ionospheric height-integrated Pedersen conductivity is computed and it is shown how auroral radar measurements of Pc5 oscillations could be used to determine ionospheric height-integrated Pedersen conductivity. It is pointed out that from these calculations it would be possible to identify the field line on which a satellite was located by comparing a Pc5 pulsation observed by the satellite, and the same pulsation observed by STARE.  相似文献   

7.
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases, the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury’s magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury’s magnetosphere.  相似文献   

8.
A three-dimensional, time-dependent model of thermospheric dynamics has been used to interpret recent experimental measurements of high altitude winds by rocket-borne and ground-based techniques. The model is global and includes a self-consistent treatment of the non-linear, Coriolis and viscosity terms. The solar u.v. and e.u.v. energy input provides the major energy source for the thermosphere. Solar u.v. and e.u.v. heating appear to be inadequate to explain observed thermospheric temperatures if e.u.v. heating efficiency (ε) lies in the range 0.3 < ε < 0.35. If the recent solar e.u.v. data are correct, then a value of ε between 0.4 and 0.45 would bring fluxes and observed temperatures into agreement. The Heppner (1977) and Volland (1978) models of high-latitude electric field are used to provide sources of both momentum (via ion drag) and energy (via Joule heating). We find that the Heppner Model CO (equivalent to Volland Model 1) is most appropriate for very quiet geomagnetic conditions (Kp ? 2) while Model A (equivalent to Volland Model 2) provides the necessary enhancement at high latitudes for conditions of moderate activity (Kp ~ 4). Even with the addition of a polar electric field, there still appears to be a shortage of high-latitude energy input in that model winds tend to be 10 m s?1 poleward of observed winds under quiet or average geomagnetic conditions. This extra energy cannot be provided by enhancing the polar electric fields since the extra momentum would cause disagreement with the observed high latitude winds. High latitude particulate sources of relatively low energies, ~100 eV, seem the most likely candidates depositing their energy above about 200km. Relatively modest amounts of energy are then required, < 1010W global, to bring the model into agreement with both high- and mid-latitude neutral wind results.  相似文献   

9.
The solar minimum of 2008 was exceptionally quiet, with sunspot numbers at their lowest in 75 years. During this unique solar-minimum epoch, however, solar-wind high-speed streams emanating from near-equatorial coronal holes occurred frequently and were the primary contributor to the recurrent geomagnetic activity at Earth. These conditions enabled the isolation of forcing by geomagnetic activity on the preconditioned solar minimum state of the upper atmosphere caused by Corotating Interaction Regions (CIRs). Thermosphere density observations around 400 km from the CHAMP satellite are used to study the thermosphere density response to solar-wind high-speed streams/CIRs. Superposed epoch results show that the thermosphere density responds to high-speed streams globally, and the density at 400 km changes by 75% on average. The relative changes of neutral density are comparable at different latitudes, although its variability is largest at high latitudes. In addition, the response of thermosphere density to high-speed streams is larger at night than in daytime, indicating the preconditioning effect of the thermosphere response to storms. Finally, the thermosphere density variations at the periods of 9 and 13.5 days associated with CIRs are linked to the spatial distribution of low?–?middle latitude coronal holes on the basis of the EUVI observations from STEREO.  相似文献   

10.
A distinct feature of the ion composition results from the OGO-2, 4 and 6 satellites is the light ion trough, wherein the mid latitude concentrations of H+ and He+ decrease sharply with latitude, dropping to levels of 103 ions/cm3 or less near 60° dipole latitude (L=4). In contrast to the ‘main trough’ in electron density, Ne, observed primarily as a nightside phenomenon, the light ion trough persists during both day and night. For daytime winter hemisphere conditions and for all seasons during night, the mid latitude light ion concentration decrease is a pronounced feature. In the dayside summer and equinox hemispheres, the rate of light ion decrease with latitude is comparatively gradual, and the trough boundary is less well defined, particularly for quiet magnetic conditions. In response to magnetic storms, the light ion trough minimum moves equatorward, and deepens, consistent with earlier evidence of the contraction of the plasmasphere in response to storm time enhancements in magnetospheric plasma convection. The fact that a pronounced light ion trough is observed under conditions for which the dominant ion O+ may exhibit little or no simultaneous decrease appears to explain why earlier studies of the ‘main trough’ in topside distributions of Ne and Ni may, at times, have been inconclusive in relating the total ionization minimum with the mechanism of the plasmapause. In particular, the topside distribution of Ni appears to be the complex resultant of several variables within the ion composition, being governed by the competing processes of chemical production and loss, loss through magnetospheric convection, and large-scale dynamic transport resulting from neutral winds and electric fields. The net result is that in general, the light ion trough, rather than Ni, provides a more fundamental parameter for examining the structure and behavior of the plasmapause.  相似文献   

11.
Equivalent ionospheric current systems representing IMF sector effects on the geomagnetic field in high latitudes are examined for each of the twelve calendar months by spherical harmonic analyses of geomagnetic hourly data at 13 northern polar stations for seven years. The main feature of obtained equivalent current systems includes circular currents at about 80° invariant latitude mostly in the daytime in summer and reversed circular currents at about 70° invariant latitude mainly at night in winter. Field-aligned current distributions responsible for equivalent currents, as well as vector distributions of electric fields and ionospheric currents, are approximated numerically from current functions of equivalent current systems by taking assumed distributions of the ionospheric conductivity. Two sets of upward and downward field-aligned current pairs in the auroral region, and also a field-aligned current region near the pole show seasonal variations. Also, ionospheric electric-field propagation along geomagnetic field lines from the summer hemisphere to the winter hemisphere with auroral Hall-conductivity effects may provide an explanation for the winter reversal of sector effects.  相似文献   

12.
A detailed analysis of rapid-run magnetograms from Guam (geomagnetic latitude = 4.2°) revealed that there are two kinds of geomagnetic sudden commencement (SC) observed in nighttime. One is the ordinary SC consisting of a main impulse only which has a smooth rise of the H-component. The other is a superposition by a small positive impulse on the very beginning part of the smooth rise of the main impulse and consequently the SC starts with a small stepwise increase of the H-component. The latter type of SC occurs between 20 and 08 h L.T. and its occurrence rate takes the maximum value of about 50% around 03 h L.T. Corresponding magnetograms from a dayside equatorial station (Huancayo, geomagnetic latitude = ?0.7°) were examined and a good correlation was found between the stepwise SC at the nightside (Guam) and SC1 with a preliminary reverse impulse (PRI) at the dayside (Huancayo). Since PRI observed at the dayside equator may be interpreted as an extension of an ionospheric current due to an dusk-to-dawn electric field impressed on the polar ionosphere, our results show that a polar originating ionospheric current can extend to the nightside equator and produce a small but observable magnetic effect in spite of much reduced nighttime ionospheric conductivity.  相似文献   

13.
Using a three-dimensional, time-dependent, global model, we have simulated the response of the thermosphere to an isolated substorm. The substorm is characterized by a time variance of the high latitude convective electric field with an associated enhancement of auroral E region electron density, from an initially quiet thermosphere. We have simulated such an impulsive energy input with both separated and co-incident geographic and geomagnetic poles and have found that, in both cases, in the lower thermosphere ( ~ 120 km), a long-lived vortex phenomenon is generated. Initially, two contra-rotating vortices are generated by the effects of ion drag during the period of enhanced high latitude energy input centred on the polar cap/auroral oval boundary, one at dusk (18.00 L.T.) and the other at dawn (06.00 L.T.). After the end of the substorm, the cyclonic vortex (dawn) dissipates rapidly while the dusk anti-cyclonic vortex appears virtually self-sustaining and survives many hours after the substorm input has ceased. A theory is derived to explain and interpret the results and it appears that the effect is analogous to a meteorological weather system. In this case, however, the dusk anti-cyclonic vortex has, instead of pressure, the centrifugal acceleration balancing the Coriolis force. The equivalent anti-clockwise dawn vortex, unlike a low pressure system, has no balancing force, since Coriolis and the centrifugal term assist and this vortex rapidly disappears.  相似文献   

14.
The magnetospheric plasma convection is studied, taking into account the finite conductivity along magnetic field lines. Field-aligned currents flowing at the inner boundary of the magnetospheric plasma sheet give rise to parallel electric fields which insignificantly affect the convection on the ionospheric level but change drastically the convection system in the magnetosphere. Intense azimuthal convective streams arise along both sides of the plasma sheet boundary. A part of convection lines appears to be completely closed in the inner magnetosphere.  相似文献   

15.
The temporal response of ion and neutral densities to a geomagnetic storm has been investigated on a global scale with data from consecutive orbits of OGO-6 (>400km) for 4 days covering both magnetically quiet and disturbed conditions. The first response of the neutral atmosphere to the storm takes place in the H and He densities which start to decrease near the time of the storm sudden commencement. The maximum decreases in H and He were more than 40% of the normal density at high latitudes. A subsequent increase in O and N2 densities occurs about 8 hours later than the change in H and He densities, while the relative O and N2 density changes indicate a depletion of atomic oxygen in the lower thermosphere by more than a factor of two. The overall features of the change in the neutral atmosphere, especially the patterns of change for individual species, strongly support the physical picture that energy is deposited primarily at high latitudes during the storm, and the thermosphere structure changes through (1) heating of the lower thermosphere and (2) generation of large scale circulation in the atmosphere with upwelling at high latitudes and subsidence at the equator. The storm-time response of H+ occurs in two distinct regions separated by the low latitude boundary of the light ion trough. While on the poleward side of the boundary the H+ density decreases in a similar manner to the decrease in H density, on the equatorward side of the boundary the H+ decrease occurs about half a day later. It is shown that the decrease of H+ density is principally caused by the decrease in H density for both regions. The difference in H+ response between the two regions is interpreted as the difference in H+ dynamics outside and inside the plasmasphere. The O+ density shows an increase, the pattern of which is rather similar to that for O. Two possibilities for explaining the observed change in O+ density are suggested. One attributes the observed increase in O+ density to an increase in the plasma temperature during the storm. The other possibility is that the increase in the production rate of O+ due to an increase in O density exceeds the increase in the loss rate of O+ due to an increase in N2 density, especially around the time of sunrise. Hence the change in O+ density in the F-region may actually be controlled by the change in O density.  相似文献   

16.
The solar extreme ultraviolet (e.u.v.) flux and solar ultraviolet (u.v.) flux in the Schumann-Runge continuum region have been measured by spectrometers on board the Atmosphere Explorer satellites from about 1974 to 1981. The solar flux spectra measured on 23 April 1974 (a day the Atmosphere Explorer satellite reference spectrum was obtained), 13–28 July 1976 (a period of spotless conditions near solar cycle minimum), and 19 February 1979 (a day near solar cycle maximum) are used to examine the global mean temperature structure of the thermosphere above 120 km. The results show that for solar cycle minimum the calculated global mean exospheric temperature is in agreement with empirical model predictions, indicating that the energy absorbed by the thermosphere is balanced by downward molecular thermal conduction. For solar cycle maximum the energy absorbed by the thermosphere is not balanced by downward thermal conduction but agreement between the calculated and observed temperature is obtained with the inclusion of 5.3μm radiational cooling by nitric oxide. Model calculations of the minor neutral constituents in the thermosphere show that about three times more nitric oxide is produced during solar cycle maximum than solar cycle minimum conditions. The results suggest that nitric oxide cooling is small during solar cycle minimum, because of low nitric oxide densities and low thermospheric temperatures, but it becomes significantly larger during solar cycle maximum, when nitric oxide densities and thermospheric temperatures are larger.23 April 1974 was a moderately disturbed day and the results of the global mean temperature calculation indicate that it is necessary to consider a high latitude heat source associated with the geomagnetic activity to obtain agreement between the calculated and observed global mean temperature structure.  相似文献   

17.
Using plasma parameters from a typical stormtime ionospheric energy balance model, we have investigated the effects of plasma turbulence on the auroral magnetoplasma. The turbulence is assumed to be comprised of electrostatic ion cyclotron waves. These waves have been driven to a nonthermal level by a geomagnetic field-aligned, current-driven instability. The evolution of this instability is shown to proceed in two stages and indicates an anomalous increase in field-aligned electrical resistivity and cross-field ion thermal conductivity as well as a decrease in electron thermal conductivity along the geomagnetic field. In addition, this turbulence heats ions perpendicular to the geomagnetic field and hence leads to a significant ion temperature anisotropy.  相似文献   

18.
A survey of metallic ions detected by the Bennett Ion Mass Spectrometers flown on the Atmosphere Explorer satellites, including both circular and eccentric orbital configurations, shows that patches of these ions of meteoric origin are frequently present during magnetically active periods on the bottomside of the F-layer at middle and high latitudes. In particular the F-region metals statistically tend to appear at night in the vicinity of the main ionospheric trough (in a band of invariant latitudes approx. 10 degrees wide) and on the day side of the polar cap. These distributions were previously associated with the expected dynamics of ions in the F-region above 140 km where meridional neutral wind drag and convection electric fields are the dominant ion transport mechanisms. However, the main meteor deposition layer—the presumed source region of the metals—is located below 100 km where these transport mechanisms do not prevail. It is demonstrated that the Pedersen ion drifts driven by intense electric fields such as those associated with sub-auroral ion drifts (SAID) are sufficient to transport the long-lived metallic ions upward from the main meteor layer to altitudes where the drag of equatorial directed neutral winds and electric field convection can support them against the downward pull of gravity and transport them to other locations. The spatial and temporal distribution of the middle and high latitude F-region metals are consistent with the known characteristics of the electric fields and with the expected F-region ion dynamics.  相似文献   

19.
Dynamic behavior of the coupled ionosphere-protonosphere system in the magnetospheric convection electric field has been theoretically studied for two plasmasphere models. In the first model, it is assumed that the whole plasmasphere is in equilibrium with the underlying ionosphere in a diurnal average sense. The result for this model shows that the plasma flow between the ionosphere and the protonosphere is strongly affected by the convection electric field as a result of changes in the volume of magnetic flux tubes associated with the convective cross-L motion. Since the convection electric field is assumed to be directed from dawn to dusk, magnetic flux tubes expand on the dusk side and contract on the dawn side when rotating around the earth. The expansion of magnetic flux tubes on the dusk side causes the enhancement of the upward H+ flow, whereas the contraction on the dawn side causes the enhancement of the downward H+ flow. Consequently, the H+ density decreases on the dusk side and increases on the dawn side. It is also found that significant latitudinal variations in the ionospheric structures result from the L-dependency of these effects. In particular, the H+ density at 1000 km level becomes very low in the region of the plasmasphere bulge on the dusk side. In the second model, it is assumed that the outer portion of the plasmasphere is in the recovery state after depletions during geomagnetically disturbed periods. The result for this model shows that the upward H+ flux increases with latitude and consequently the H+ density decreases with latitude in the region of the outer plasmasphere. In summary, the present theoretical study provides a basis for comparison between the equatorial plasmapause and the trough features in the topside ionosphere.  相似文献   

20.
High latitude geomagnetic field lines differ significantly from a dipole geometry. Time of flight calculations using the Mead-Fairfield (1975) model of the geomagnetic field are presented for different tilt angles and Kp conditions. Typical standing wave periods of geomagnetic pulsations are estimated for three different magnetospheric cold plasma regions, corresponding to waves guided in (i) the plasmatrough, (ii) the extended plasmasphere and (iii) regions of enhanced proton density (detached plasma) within the plasmatrough.Pc4/5 pulsation studies at high latitudes are briefly reviewed and some new results from Tromso are given. Many of the observations reveal hydromagnetic waves whose location and period are consistent with ducting in a region of enhanced plasma density within the plasmatrough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号