首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Evaluations are presented of the momentum and energy flux divergences of the diurnal and semidiurnal tidal fields calculated by Forbes (1982a, b) from 0 to 400 km altitude. Results are presented in the form of meridional cross-sections from 0 to 78°N or S latitude with a 6° latitude interval. Comparisons are made with evaluations of the momentum flux divergences of the diurnal tide by Miyahara (1981, 1983) and good agreement is obtained in the lower thermosphere (below about 130 km) but a large disparity arises in the upper thermosphere. In the lower thermosphere momentum flux divergences of the semidiurnal tide are comparable with those of the diurnal tide and should be included in general circulation calculations of the 90–120 km region.  相似文献   

2.
The upward energy flux of the (2,2,2) mode of atmospheric oscillation generated by water vapour and ozone radiational heating is calculated at 125 km for mean January, April, July and October conditions. The values obtained for the global mean flux lie close to 0.05 mW m?2 with a small reduction in July amounting to 13% of the average for the other 3 months. The effect of semidiurnal tidal heating on exospheric temperature is discussed with reference to the earlier work of Lindzen and Blake (1970) and it is concluded that the semidiurnal tide causes a relatively small increase in exospheric temperature of ~ 33 K.  相似文献   

3.
A gridded spherical electrostatic analyzer aboard Injun 5 has been used to measure fluxes of thermal and hyperthermal electrons at subauroral latitudes in the midnight sector of the northern ionosphere between altitudes of 2500 and 850 km. Due to the offset between the geomagnetic and geographic poles hyperthermal fluxes, consisting of energetic photoelectrons that have escaped from the sunlit southern hemisphere are observed along orbits over the Atlantic Ocean and North America but not over Asia. The ambient electron temperatures (Te) near 2500 km have their highest values at trough latitudes for all longitudes. At altitudes near 1000 km elevated electron temperatures in the trough were not a consistent feature of the data. Equatorward of the trough, in the longitude sector to which conjugate photoelectrons have access, Te ~ 4000 K at 2500 km and ~ 3000 K at 1000 km. For regions with the conjugate point in darkness Te ? 2300 K over the 1000–2500 km altitude range. The effective thermal characteristics of conjugate photoelectrons are studied as functions of altitude and latitude. The observations indicate that (1) at trough latitudes elevated electron temperatures in the topside ionosphere are mostly produced by sources other than conjugate photoelectrons, and (2) at subtrough latitudes, in the Alantic Ocean-North American longitude sector, conjugate photoelectrons contribute significantly to the heating of topside electrons. Much of the conjugate photoelectron energy is deposited at altitudes >2500 km then conducted along magnetic field lines into the ionosphere.  相似文献   

4.
From rocket and radar-meteor wind observations, annual and semi-annual components of the zonal flow are derived for latitudes N at heights between 60 and 130 km. Height regions of maximum and minimum amplitude are described with reference to changes in phase. The annual components decrease with height throughout the mesosphere and, after a reversal of phase, enhance to 25 m/sec at 100 ± 5 km. The semi-annual components have maximum amplitudes of 25 m/sec over a wide range of latitude in two height regions at 90 and 120 km and in a limited range of latitude (near 50°) at 65 km.

Calculated temperatures and log densities are discussed in terms of amplitude and phase as functions of height and latitude. Below 100 km a comparison is made with temperature amplitudes derived from independent temperature data. Above 100 km the annual temperature variation maximizes at 115 km and is particularly large at high latitudes (exceeding 50°K). On the other hand, the semi-annual component increases rapidly with height between 110 and 120 km at all latitudes maximizing at the 120 km level, where amplitudes exceed 25°K at high and low latitudes and 10°K at mid-latitudes. The annual component of log density, like the temperature variation, is largest at high latitudes up to 125 km. The semi-annual variation has a minimum at 110–115 km, above which amplitudes increase with height, reaching 5–12 per cent at 130 km according to latitude. The phases at and near 130 km for the annual and semi-annual density variations are very close to those found at greater heights from satellite orbits and amplitudes could be readily extrapolated to agree with those in the satellite region.  相似文献   


5.
The expected diurnal waves with different harmonics in cosmic ray intensity arising from the semidiurnal anisotropy, due to the geometrical inclination of the Earth's axis, are calculated for different cosmic ray stations. The sensitivity of these waves to the exponent n of the latitude dependence function cosn λ for the semidiurnal anisotropy is investigated. The amplitudes of the geometrical tridiurnal waves for high latitude stations show a great sensitivity to n and, therefore, it is concluded that its value can be determined precisely from the tridiurnal wave rather than from the semidiurnal waves observed at different latitudes. Available data from high latitude neutron monitors were used to determine n and it was found as 2±0.4, which is of higher accuracy than the previously determined values. The present results are consistent with either the density gradient or loss cone models of the semidiurnal anisotropy. Furthermore, they show that the geometrical tridiurnal waves have a very small amplitude and can be neglected in any analysis concerning tridiurnal variations in cosmic ray intensity.  相似文献   

6.
Paul Withers  S.W Bougher 《Icarus》2003,164(1):14-32
Mars Global Surveyor accelerometer observations of the martian upper atmosphere revealed large variations in density with longitude during northern hemisphere spring at altitudes of 130-160 km, all latitudes, and mid-afternoon local solar times (LSTs). This zonal structure is due to tides from the surface. The zonal structure is stable on timescales of weeks, decays with increasing altitude above 130 km, and is dominated by wave-3 (average amplitude 22% of mean density) and wave-2 (18%) harmonics. The phases of these harmonics are constant with both altitude and latitude, though their amplitudes change significantly with latitude. Near the South Pole, the phase of the wave-2 harmonic changes by 90° with a change of half a martian solar day while the wave-3 phase stays constant, suggesting diurnal and semidiurnal behaviour, respectively. We use a simple application of classical tidal theory to identify the dominant tidal modes and obtain results consistent with those of General Circulation Models. Our method is less rigorous, but simpler, than the General Circulation Models and hence complements them. Topography has a strong influence on the zonal structure.  相似文献   

7.
We present the first 3-dimensional self-consistent calculations of the response of Saturn's global thermosphere to different sources of external heating, giving local time and latitudinal changes of temperatures, winds and composition at equinox and solstice. Our calculations confirm the well-known finding that solar EUV heating alone is insufficient to produce Saturn's observed low latitude thermospheric temperatures of 420 K. We therefore carry out a sensitivity study to investigate the thermosphere's response to two additional external sources of energy, (1) auroral Joule heating and (2) empirical wave heating in the lower thermosphere. Solar EUV heating alone produces horizontal temperature variations of below 20 K, which drive horizontal winds of less than 20 m/s and negligible horizontal changes in composition. In contrast, Joule heating produces a strong dynamical response with westward winds comparable to the sound speed on Saturn. Joule heating alone, at a total rate of 9.8 TW, raises polar temperatures to around 1200 K, but values equatorward of 30° latitude, where observations were made, remain below 200 K due to inefficient meridional energy transport in a fast rotating atmosphere. The primarily zonal wind flow driven by strong Coriolis forces implies that energy from high latitudes is transported equatorward mainly by vertical winds through adiabatic processes, and an additional 0.29-0.44 mW/m2 thermal energy are needed at low latitudes to obtain the observed temperature values. Strong upwelling increases the H2 abundances at high latitudes, which in turn affects the H+3 densities. Downwelling at low latitudes helps increase atomic hydrogen abundances there.  相似文献   

8.
《Icarus》1987,69(2):193-201
It is proposed that the equatorial wind speed near Venus' cloud top level is maintained by a balance between the pumping effect of the semidiurnal tide and vertical advection by the Hadley circulation, both integrated across the thermal driving region. A consequence of this hypothesis is that the maximum equatorial zonal wind speed is proportional to Nh where N is buoyancy frequency and h is a measure of the thickness of the driving region. The proportionality constant is a weakly increasing function of the heating rate and a decreasing function of λh, where λ is an inverse length characterizing the mean zonal wind shear. The equilibrium solution considered is shown to be stable. For the class of solutions investigated, there is a threshold value of heating rate below which there is no equilibrium satisfying the hypothesized balance, but this result depends on the assumption that the shape of the zonal wind profile is invariant with thermal forcing amplitude.  相似文献   

9.
The effect of frictional heating by means of neutral winds on the ion and electron temperature in the undisturbed ionosphere is studied theoretically by solving a system of basic ionospheric and atmospheric equations. The study shows that both the electron and ion temperatures are increased in the night-time ionosphere through friction. In the region between 150 and 200 km Ti may exceed T6 by as much as 130°. The increase of Ti due to friction amounts to about 100–200°, depending on the atmospheric model employed in calculating the neutral wind velocity. It is illustrated that frictional heating may be very important for the determination of the neutral temperature from measured ion temperature values.  相似文献   

10.
We have developed a new general circulation model (GCM) for the venusian mesosphere and thermosphere (80-about 180 km). Our GCM simulations show that winds in the subsolar-to-antisolar direction (SS–AS) are predominant above about 90 km. A weak return flow of the SS–AS is seen below about 90 km. We performed GCM simulations imposing the planetary-scale waves (thermal tides, Rossby wave, and Kelvin wave) at the lower boundary. Although the diurnal and semidiurnal tides are damped below 95 km, the Rossby wave propagates up to around 130 km. However, the amplitude of the Rossby wave is too small (<1 m/s) to affect the general circulation. On the other hand, the Kelvin wave propagates up to about 130 km with a maximum zonal wind fluctuation of approximately 5.9 m/s on average. The amplitude of the Kelvin wave sometimes exceeds 10 m/s around the terminator. The Kelvin wave causes a temporal variation in the wind velocity at the altitude of the O2-1.27 μm nightglow emission (about 95 km). Using a newly developed 1-D nightglow model and the composition distribution calculated from our GCM, we investigated the impact of the Kelvin wave on the nightglow distribution. Our results suggest that the Kelvin wave would cause temporal variations in the nightglow emission in the 23:50–00:20 LT region with an intensity of 1.1–1.3 MR and a period of approximately 4 days.  相似文献   

11.
Total electron content (Nt) variations in the ionosphere above the magnetic equator (Thumba dip 0.6°S) obtained by the Faraday rotation measurements of beacon signals from S66 satellites are described for the period December 1965–August 1968. The Nt value reaches a minimum around 05 hr and a broad maximum between 14–18 hr, the diurnal ratio being more than 20. During no-echo condition at pre-sunrise hours, Nt is found to be abnormally low. The equivalent slab-thickness at Thumba is between 150 and 250 km except around 14 hr when it reaches a high value around 500 km. The electrons are almost equally distributed above and below the peak for the daytime hours, but in the latter part of the night the ratio of top-side to the bottom-side electron content exceeds the value of 5. This high ratio is suggested as being due to very low value of maximum electron density which during the pre-sunrise period becomes comparable to the electron density at great heights where there is no diurnal change of electron density. Combining the data of Thumba and Ahmedabad, the diurnal development of the equatorial anomaly in Nt is described.  相似文献   

12.
Richard W. Zurek 《Icarus》1981,45(1):202-215
A δ-Eddington radiative transfer algorithm is used to compute the thermal tidal heating of a dusty Martian atmosphere for a given set of dust optical depth, effective single scattering albedo, and phase function asymmetry parameter. The resulting thermal tidal forcing is used in a classical atmospheric tidal model to compute the amplitudes of the surface pressure oscillations at the Viking Lander 1 site for the two 1977 Martian great dust storms. Parametric studies show that the dust opacities and optical parameters derived from the Viking Lander imaging data are roughly representative of the global dust haze needed to reproduce the tidal surface pressure amplitudes also observed at Lander 1, except that the model-inferred asymmetry parameter is smaller during the onset of a great storm. The observed preferential enhancement during dust-storm onset of the semidiurnal tide at Viking Lander 1 relative to its diurnal counterpart is shown to be due primarily to the elevation of the tidal heating source in a very dusty atmosphere, although resonant enhancement of the main semidiurnal tidal mode makes an important secondary contribution.  相似文献   

13.
Detailed numerical calculations of thermospheric heat sources and sinks are presented and their relative importance is discussed in reference to the energy balance phenomena of the neutral atmosphere. It is shown that the thermal energy available from the absorption in the Schumann-Runge continuum leading to photo-dissociation of O2 is by far the largest energy source in the lower thermosphere. Other sources of varying importance in different altitude ranges are: (1) energy from photoelectrons; (2) energy exchange from thermal plasma; (3) chemical reaction (ion-electron dissociative recombination) energy gain; (4) kinetic and dissipative energy associated with the neutral wind. The energy sinks of importance are (1) thermal conduction at the lower boundary (120km); and (2) radiative cooling of atomic oxygen.It is shown that the combined energy from processes 2–4 constitutes only a small fraction of the total energy available from photoelectrons and is in phase with the latter. These secondary sources (processes 2–4), therefore, do not constitute a significant energy source and their contribution can be simply incorporated into photoelectron energy (process 1) by defining an effective photo-ionization heating efficiency. The heating efficiencies for photo-ionization (including processes 2–4) and photo-dissociation are estimated to be 0.5 and 0.3, respectively.As the important heat input (photo-dissociation) and loss (conduction and radiation) rates are basically governed by the O2 and O densities, any diurnal or seasonal variation in these constituents at the lower boundary would have profound effects on the thermal structure of the overlying atmosphere. For this and other reasons, it is suggested that a choice of lower boundary much below 120km, e.g. near the mesopause level (90 km), should be more appropriate for general thermospheric studies.  相似文献   

14.
In the height range between 105 and 115 km sporadic E formation is due exclusively to the zonal (E-W) neutral winds and both theory and experiment indicate sporadic E will occur very close to a reversal point of this zonal wind. By studying the observed heights of sporadic E-layers from a global distribution of stations we can deduce some of the regular properties of the zonal winds at 110 km. The semidiurnal zonal wind pattern is shown to be well defined, is principally the 2,2 mode, and agrees well with theoretical predictions. The diurnal zonal wind pattern is less clearly defined and does not closely resemble any theoretical mode. Steady components agree with those found by other methods.  相似文献   

15.
Winds have been measured continuously at the Medium Frequency (MF) Radar Observatory at Saskatoon since 1978. A simple analysis has been used to obtain the characteristics of the lunar semidiurnal tide (12.42 h) for summer and winter months. Amplitudes increase with height to 3, 4 ms−1 in summer, winter respectively near 100 km, and the mainly circular tide has vertical wavelengths of ~ 75 km. Comparisons with other observatories and theoretical models are made.  相似文献   

16.
A multi-wavelength radio frequency observation of Venus was performed on April 5, 1996, with the Very Large Array to investigate potential variations in the vertical and horizontal distribution of temperature and the sulfur compounds sulfur dioxide (SO2) and sulfuric acid vapor (H2SO4(g)) in the atmosphere of the planet. Brightness temperature maps were produced which feature significantly darkened polar regions compared to the brighter low-latitude regions at both observed frequencies. This is the first time such polar features have been seen unambiguously in radio wavelength observations of Venus. The limb-darkening displayed in the maps helps to constrain the vertical profile of H2SO4(g), temperature, and to some degree SO2. The maps were interpreted by applying a retrieval algorithm to produce vertical profiles of temperature and abundance of H2SO4(g) given an assumed sub-cloud abundance of SO2. The results indicate a substantially higher abundance of H2SO4(g) at high latitudes (above 45°) than in the low-latitude regions. The retrieved temperature profiles are up to 25 K warmer than the profile obtained by the Pioneer Venus sounder probe at altitudes below 40 km (depending on location and assumed SO2 abundance). For 150 ppm of SO2, it is more consistent with the temperature profile obtained by Mariner 5, extrapolated to the surface via a dry adiabat. The profiles obtained for H2SO4(g) at high latitudes are consistent with those derived from the Magellan radio occultation experiments, peaking at around 8 ppm at an altitude of 46 km and decaying rapidly away from that altitude. At low latitudes, no significant H2SO4(g) is observed, regardless of the assumed SO2 content. This is well below that measured by Mariner 10 (Lipa and Tyler 1979, Icarus39, 192-208), which peaked at ∼14 ppm near 47 km. Our results favor ≤100 ppm of SO2 at low latitudes and ≤50 ppm in polar regions. The low-latitude value is statistically consistent with the results of Bézard et al. (1983, Geophs. Res. Lett.20, 1587-1590), who found that a sub-cloud SO2 abundance of 130±40 ppm best matched their observations in the near-IR. The retrieved temperature profile and higher abundance of H2SO4(g) in polar regions are consistent with a strong equatorial-to-polar, cloud-level flow due to a Hadley cell in the atmosphere of Venus.  相似文献   

17.
The mechanisms of the global circulation in the atmosphere of Venus have been studied with the use of numerical models. To calculate the heating/cooling of the atmosphere due to absorption/emission of electromagnetic radiation under initially weak and strong superrotation of the atmosphere, the complete system of gas dynamics equations in the relaxation approximation was considered. It has been shown that at sufficiently high rates of heating of the atmosphere by radiation on the day side and at sufficiently high rates of cooling on the night side, a thermal tide develops at altitudes of 40?C70 km, and its energy and impulse is transferred to the zonal superrotation of the atmosphere. Due to the interaction between the superrotation and the meridional transfer of the air mass through the polar region from the day side of the planet to the night side, near-polar vortices are formed at altitudes of 40?C70 km near the morning terminator.  相似文献   

18.
V. Ramanathan  R.D. Cess 《Icarus》1975,25(1):89-103
A dynamical model is presented for the observed strong zonal circulation within the stratosphere of Venus. The model neglects rotational effects and considers a compressible and radiating atmosphere. It is shown that diurnal radiative heating is negligible within the lower stratosphere, a region below 85km, while observational evidence for the strong zonal circulation pertains to the lower stratosphere within which a direct thermal driving for the circulation is absent. The analysis, however, suggests that propagating internal gravity waves generated by diurnal solar heating of the upper stratosphere induce mean zonal velocities within the upper and lower stratosphere.Considering the linearized equations of motion and energy, and following Stern's (1971) analysis for an analogous problem, it is shown that the zonal velocity induced by internal gravity waves is retrograde in direction, a result which is in agreement with observation. The nonlinear equations of motion and energy are then solved by an approximate analytical method to determine the magnitude of the zonal velocity. This velocity increases from zero at the tropopause to about 200 msec?1 at the 85 km level. The velocity near the uv-cloud level compares favorably with the observed value of 100 msec?1.  相似文献   

19.
The thermal balance of the plasma in the day-time equatorial F region is examined. Steady-state solutions of electron and ion temperatures are obtained, assuming the ions are O+ and H+. The theoretical concentrations of O+ and H+ and the field-aligned velocity were obtained following Moffett and Hanson (1973), while theoretical photoelectron heating rates of the electron gas were taken from Swartz et al. (1975).The results demonstrate the gross features in the electron and ion temperatures as observed at the Jicamarca Observatory and in the ion temperatures observed on the OGO-6 satellite. The rapid increase in electron temperature above 500 km at the magnetic equator is due to heating by photoelectrons created at higher latitudes and travelling up along the field lines. The rapid increase in ion temperature is due to good thermal contact with the electrons rather than the neutrals. It is shown that field-aligned interhemispheric thermal plasma flows appreciably affect these temperatures, and that, with a net plasma flow from the summer hemisphere to the winter hemisphere, the temperatures are higher in the winter hemisphere. These effects are related to the character of the ion temperature minimum observed by OGO-6 near the magnetic equator.  相似文献   

20.
Auroral E region neutral winds determined from incoherent scatter radar observations at Chatanika, AK, during geomagnetic disturbances (15 May 1974) are compared with detailed theoretical calculations of neutral velocities for these conditions. The theoretical velocities are obtained by numerically solving the ion and neutral momentum equations in the ion drag approximation, including coriolis and viscous forces, using observed electric fields and electron densities. Large vertical gradients are found in the calculated velocities for altitudes below about 130 km. As a consequence of this structure and fluctuations in the electron density profiles, the data analysis procedure of Brekke et al. (1973) for obtaining neutral winds from radar data is found to underestimate the wind speed by up to 40%, but it determines the direction and temporal structure reasonably well. Comparison of observed neutral velocities with calculated values shows that ion drag alone cannot account for the observations. An equation is derived to estimate the pressure gradients required to resolve the discrepancy between calculated and observed neutral winds. Accelerations due to these pressure gradients are of the same order as those due to ion drag, but at least an order of magnitude larger than those due to solar heating. Directions of the horizontal pressure gradients are consistent with expected locations of auroral heating. During geomagnetic disturbances, ion drag and auroral heating both appear to play important roles in the generation and modification of neutral winds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号