首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Through solving the single electron equation of motion and the Fokker-Planck equation including the terms of electric field strength and ion-acoustic turbulence, we study the influence of the ion-acoustic wave on the electron acceleration in turbulent reconnecting current sheets. It is shown that the ion-acoustic turbulence which causes plasma heating rather than particle acceleration should be considered. With typical parameter values, the acceleration time scale is around the order of 10^-6 s, the accelerated electrons may have approximately a power-law distribution in the energy range 20 ~100 keV and the spectral index is about 3~10, which is basically consistent with the observed hard X-ray spectra in solar flares.  相似文献   

2.
The influence of low-frequency electrostatic turbulence on the flux of precipitating magnetospheric electrons is analyzed in the framework of the quasilinear kinetic equation. It is shown that an electron population in a turbulent region, with an electric field parallel to the ambient magnetic field, can be separated into two parts by introducing a pitch angle dependent runaway velocity vr(θ). Lower energy electrons with parallel velocity v < vr are effectively scattered by plasma waves, so that they remain in the main population and are subjected to an anomalous transport equation. A distribution function fv?4 (or the particle flux vs energy JE?1) is established in this velocity range. Faster electrons with v ? vr are freely accelerated by a parallel electric field, so that they contribute directly to hot electron fluxes which are observed at ionospheric altitudes. New expressions are derived for the magnetic-field aligned current and the electron energy flux implied by this model. These expressions agree well with empirical relations observed in auroral inverted-V structures.  相似文献   

3.
An astrophysical electron acceleration process is described which involves turbulent plasma effects: the acceleration mechanism will operate in ‘collision free’ magnetoactive astrophysical plasmas when ion-acoustic turbulence is generated by an electric field which acts parallel to the ambient magnetic lines of force. The role of ‘anomalous’ (ion-sound) resistivity is crucial in maintaining the parallel electric field. It is shown that, in spite of the turbulence, a small fraction of the electron population can accelerate freely, i.e. runaway, in the high parallel electric potential. The number density n(B) of the runaway electron component is of order n(B)?n2(csU?)2, where n = background electron number density, cs = ion-sound speed and U? = relative drift velocity between the electron and ion populations. The runaway mechanism and the number density n(B) do not depend critically on the details of the non-linear saturation of the ion-sound instability.  相似文献   

4.
We have developed three types of mathematical models to describe the mechanisms of plasma heating in the corona by intense heat fluxes from a super-hot (T e ? 108 K) reconnecting current layer in connection with the problem of energy transport in solar flares. We show that the heat fluxes calculated within the framework of self-similar solutions using Fourier’s classical law exceed considerably the real energy fluxes known from present-day multi-wavelength observations of flares. This is because the conditions for the applicability of ordinary heat conduction due to Coulomb collisions of thermal plasma electrons are violated. Introducing anomalous heat conduction due to the interaction of thermal runaway electrons with ion-acoustic turbulence does not give a simple solution of the problem, because it produces unstable temperature profiles. Themodels incorporating the effect of collisional heat flux relaxation describe better the heat transport in flares than Fourier’s law and anomalous heat conduction.  相似文献   

5.
P. Steffen 《Solar physics》1975,44(1):149-153
Observing the total solar flux at 17 GHz a radio burst with unusual polarization characteristics (e.g. correlation of intensity maxima with maxima of polarization degree) has been recorded. The discussion shows that there is a possibility for a small optical depth of the source for at least one propagation mode during the burst maximum. Furthermore it could be found that the emission has been caused probably by synchroton radiation with a power law electron energy distribution (N(?)~? ) with γ≈4.  相似文献   

6.
7.
Shortly after the occurrence of the impulsive spikes of the two-ribbon flare of May 21, 1980, a temperature analysis of the X-ray emitting flare plasma showed the presence of a low-temperature component [n = 15 × 1010 cm#X2212;3; T = 20 × 106 K] and a high-temperature component [n = 2 × 1010 cm#X2212;3; T = 40 × 106 K]. The mean free path of an electron in the hot component is comparable to the size of the source (≈ 104 km). Heat losses from the hot source can therefore not be described with classical formulae. Theoretical arguments show that most likely the electron to ion temperature ratio T e/Ti in the hot plasma is close to unity. This implies the presence of a hot ion component (T i ≈ 40 × 106 K) as well. Under these conditions (T eT i) heat flux limitation by electrostatic turbulence is ineffective. However, reduction of the heat flux is still possible due to the breakdown of classical theory. It is demonstrated that only non-classical current dissipation processes can sustain a hot source against cooling by a saturated heat flux. Investigation of the collisionality as a function of position along a magnetic loop shows that the breakdown of classical theory should be expected to occur first near the base of the loop. We conclude that the newly discovered hot source is important for the energy budget of the flare, even if the heat losses are considerably reduced. It is estimated that for the May 21, 1980 flare a total of about 1031 ergs were necessary to maintain the hot source against heat losses over the time period that it was observed (≈ 10 min).  相似文献   

8.
Low altitude satellite observations of precipitated and locally mirroring protons during periods of ground-based SAR arc observations are presented. The SAR arcs are found to be located in a region with significantly enhanced proton pitch angle scattering and enhanced electron temperature, but inside the plasmapause where the proton pitch angle distribution is anisotropic. The increase in the pitch angle scattering takes place in a localized region having a width of a few tenths of a L-value. The observations can favourably be accounted for by the Cornwall et al. (1971) theory for the SAR arc formation. Using observed proton fluxes and typical energy spectra, the expected intensity in the SAR arc region is estimated to be a few Rayleighs, and the energy flux from precipitated protons above a few keV to be 10?2?10?1erg/cm2s. These estimates are in reasonable agreement with previously published theoretical and experimental values. Simultaneous groundbased observations of Hα emissions were found in the region of intense, isotropic proton precipitation located outside the plasmapause.  相似文献   

9.
The stochastic acceleration of heavy ions by Alfvén turbulence is considered with allowance for Coulomb losses. The pattern of energy dependence of these losses gives rise to characteristic features in the energy spectra of the accelerated particles at energies of the order of several MeV nucleon?1. The manifestation of these features in the spectra is sensitive to the temperature and density of the medium, which can serve as a basis for plasma diagnostics in the flare region. Some impulsive solar energetic particle events during which features in the spectra of 3He and 4He were observed are considered as an example.  相似文献   

10.
The meridional circulation is considered in the surface layers of the stars where the optical depth τ?1. It is shown that the radial component of circulation velocity reaches its maximum value at τ≈1 and decreases at τ→0. The tangential velocity reverses its sign at τ≈1 — i.e., the meridional flows are closed in stellar atmospheres. The tangential velocities can be of the order of 106–107 cm s?1 in atmospheres of O-B-A stars. Such hydrodynamical motions can result in the generation of turbulence in the surface layers. Characteristic turbulent velocities are of the order of 105–106 cm s?1 in early-type stars. The small-scale turbulent motions generate the acoustic waves and the flux of such waves may be the source of energy to heat coronae in O and B stars.  相似文献   

11.
Starting with the quasi-linear equation of the distribution function of particles in a regular electric field, a combined diffusion coefficient in the momentum space conbining the effects of the regular field and a turbulent field is obtained and a combined mechanism of acceleration by the regular and turbulent fields in the neutral sheet of solar proton flares is proposed. It is shown by calculation that conditions in solar proton flares are such that the charged particles can be effectively accelerated to tens of MeV, even ~1 GeV. It is shown that the combined acceleration by a regular electric field and ion-acoustic turbulence pumps the protons and other heavy ions into ranges of energy where they can be accelerated by Langmuir turbulence. By considering the combined acceleration by Langmuir turbulence and the regular electric field, the observed spectrum of energetic protons and the power-law spectrum of energetic electrons can be reproduced.  相似文献   

12.
The solar cosmic ray (SCR) acceleration by the shocks driven by coronal mass ejections is studied by taking into account the generation of Alfvén waves by accelerated particles. Detailed numerical calculations of the SCR spectra produced during the shock propagation through the solar corona have been performed within a quasi-linear approach with a realistic set of coronal parameters. The resultant SCR energy spectrum is shown to include a power-law part N ∝ ? with an index γ = 1.7–3.5 that ends with an exponential tail. The maximum SCR energy lies within the range ? max = 0.01–10 GeV, depending on the shock velocity V S = 750–2500 km s?1. The decrease of the shock Alfvénic Mach number due to the increase Alfvén velocity with heliocentric distance r leads to the end of the efficient SCR acceleration when the shock size reaches R S ≈ 4R . In this case, the diffusive SCR propagation begins to exceed the shock velocity; as a result, SCRs escape intensively from the shock vicinity. The self-consistent generation of Alfvén waves by accelerated particles is accompanied by a steepening of the particle spectrum and an increase of their maximum energy. Comparison of the calculated SCR fluxes expected near the Earth’s orbit with the available experimental data shows that the theory explains the main observed features.  相似文献   

13.
《Planetary and Space Science》1987,35(10):1323-1345
Observations of energetic water-group pick-up ions made by the EPAS instrument during the ICE fly-by of comet P/Giacobini-Zinner are investigated for evidence concerning the processes which accelerate the ions from initial pick-up energies of around 10 keV up to energies of a few hundred kilo-electronvolts. The form of the ion spectrum in the ion rest frame is first investigated and compared with theoretical suggestions that exponential energy distributions might be produced by either first or second order Fermi acceleration in the cometary environment. It is shown that such distributions do not fit the data at all well, but that rather (over the EPAS ion bulk rest frame energy range of ∼30 to <300 keV) the observed distribution functions closely approximate an exponential in ion speed. The higher energy (> 50 keV) data also fit a power law distribution very well, but at lower energies the data tend to show a flattening below the power law form. It is also shown that the observed spectra are much softer than those calculated by Ip and Axford (1986, Planet. Space Sci. 34, 1061) for the G-Z ion pick-up region upstream of the bow shock, indicating that if these distributions are indeed due to second order Fermi acceleration as they propose, then the ion mean free path must be rather larger than used in their calculations (i.e. rather larger than 5 water-group ion gyroradii). Overall, it is concluded that at the present stage of theoretical development it is premature to draw firm conclusions about acceleration mechanisms from studies of the ion spectrum alone. However, from the general spectral analysis it is also possible to investigate the variations of ion intensity and spectral hardness which take place during the comet encounter, and to gain an indication of the degree of isotropy of the ion distribution in the rest frame of the flow. We find that a ∼.5 × 104km-wide region (∼ 35 min along the spacecraft trajectory) of rapid ion intensification and spectral hardening occurs immediately upstream from the turbulent mass-loaded region, suggestive of a first order Fermi process in which ions are successively reflected between the outer layer of the slowed, turbulent region and waves in the faster upstream flow. It is shown that within the turbulent region the ion distribution becomes rapidly isotropized in its own bulk rest frame, indicative of a sudden reduction in ion mean free path. Additional processes (possibly second order Fermi acceleration) must also occur in order to account for the further modest intensifications of the energetic ion fluxes observed within the turbulent mass-loaded region, as well as the presence of ions in the outer pick-up region which have energies well in excess of the local pick-up energy.  相似文献   

14.
On the basis of issues raised by observations of BL Lac objects and the qualitative jet model proposed by Bakeret al. in 1988, we have been led to consider the quantitative role of coherent, stimulated emission in jets and construct a new jet model of blazars in which a relativistic electron beam with an axial symmetric, power-law distribution is injected from the central engine into the jet plasma. We study quantitatively the synchrotron emission of the relativistic electron beams. Using the weak turbulent theory of plasma, we discuss the interaction between relativistic electron beams and jet plasma, and the roles of stimulated emission. The main results are:
  1. The synchrotron emission increases sensitively with the increase of the angle between the direction of the beam and the magnetic field. When the direction of the beam is vertical to the magnetic field, the synchrotron emission reaches its maximum, i.e. the emitted waves are beamed in the direction of the jet axis. We suggest that radio selected BL Lac objects belong to this extreme classification.
  2. The synchrotron emission of the relativistic beam increases rapidly with the increase of the Lorentz factor of the relativistic electron,γ, whenγ ≤ 22.5, then decreases rapidly with increase ofγ.
  3. The stimulated emission also increases with increasing Lorentz factorγ of the relativistic electrons whenγ ≤ 35 and then decreases with the increasingγ. The maximum stimulated emission and the maximum synchrotron emission occur at different frequencies. Stimulated emission is probably very important and reasonable flare mechanism in blazars.
  4. The rapid polarization position angle (PA) swings may arise from the interaction between the relativistic electron beam and the turbulent plasma.
  相似文献   

15.
Two-dimensional distributions of kinetic temperature, density and turbulent velocity are obtained for four quiescent prominences observed at the Peruvian eclipse of 12 November, 1966.
  1. The kinetic temperature derived from line widths is around 6000–7000 K in the central part of prominences and rises to 12000K in both edges and possibly in the top of prominences.
  2. The turbulent velocity shows a similar tendency, being 7–9 km/sec in the central part and ≈ 20 km/sec in the outer part. The turbulent velocity also increases slowly towards higher heights in the prominence.
  3. The electron density derived both from the Stark effect and the intensity ratio of the continuous spectra turns out to be about 1010.2–1010.6 cm?3 in the central portion of two prominences.
  4. From the width and the intensity, neutral helium lines are shown to originate in the same region as hydrogen and metallic lines where the kinetic temperature goes down to 6000 K. This indicates that neutral helium is emitted after the ionization due to UV radiation from the corona and the transition region.
  相似文献   

16.
The evolution of a rotating star with a mass of 16M at the hydrogen burning phase is considered together with the hydrodynamic processes of angular momentum transport in its interior. Shear turbulence is shown to limit the amplitude of the latitudinal variations in mean molecular weight on a surface of constant pressure in a layer with variable chemical composition. The resulting nonuniformity in the mean molecular weight distribution and the turbulent energy transport along the surface of constant pressure reduce the absolute value of the meridional circulation velocity. Nevertheless, meridional circulation remains the main mechanism of angular momentum transport in the radial direction in a layer with variable chemical composition. The intensity of the processes of angular momentum transport by meridional circulation and shear turbulence is determined by the angular momentum of the star. At a fairly high angular momentum, more specifically, at J = 3.69 × 1052 g cm2 s?1, the star during the second half of the hydrogen-burning phase in its convective core has characteristics typical of classical early Be stars.  相似文献   

17.
We consider the dissipation by Fermi acceleration of magnetosonic turbulence in the Reynolds layer of the interstellar medium. The scale in the cascade at which electron acceleration via stochastic Fermi acceleration (STFA) becomes comparable to further cascade of the turbulence defines the inner scale. For any magnetic turbulent spectra equal to or shallower than Goldreich–Sridhar this turns out to be ≥1012 cm, which is much larger than the shortest length-scales observed in radio scintillation measurements. While STFA for such spectra then contradict models of scintillation which appeal directly to an extended, continuous turbulent cascade, such a separation of scales is consistent with the recent work of Boldyrev & Gwinn and Boldyrev & Konigl suggesting that interstellar scintillation may result from the passage of radio waves through the Galactic distribution of thin ionized boundary surfaces of H  ii regions, rather than density variations from cascading turbulence. The presence of STFA dissipation also provides a mechanism for the non-ionizing heat source observed in the Reynolds layer of the interstellar medium. STFA accommodates the proper heating power, and the input energy is rapidly thermalized within the low-density Reynolds layer plasma.  相似文献   

18.
The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) “diffusion region”, where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as \({<}10^{-5}\) per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape \(W_b\propto k^{-\alpha }\) in wavenumber k with power becoming as low as \(\alpha \approx 2\). Spontaneous reconnection generates small-scale turbulence. Imposed external turbulence tends to temporarily increase the reconnection rate. Reconnecting ultra-relativistic current sheets decay into large numbers of magnetic flux ropes composed of chains of plasmoids and lepton exhausts. They form highly structured current surfaces, “current carpets”. By including synchrotron radiation losses, one favours tearing-mode reconnection over the drift-kink deformation of the current sheet. Lepton acceleration occurs in the reconnection-electric field in multiple encounters with the exhausts and plasmoids. This is a Fermi-like process. It results in power-law tails on the lepton energy distribution. This effect becomes pronounced in ultra-relativistic reconnection where it yields extremely hard lepton power-law energy spectra approaching \(F(\gamma )\propto \gamma ^{-1}\), with \(\gamma \) the lepton energy. The synchrotron radiation limit becomes substantially exceeded. Relativistic reconnection is a probable generator of current and magnetic turbulence, and a mechanism that produces high-energy radiation. It is also identified as the ultimate dissipation mechanism of the mechanical energy in collisionless magnetohydrodynamic turbulent cascades via lepton-inertial-scale turbulent current filaments. In this case, the volume-filling factor is large. Magnetic turbulence causes strong plasma heating of the entire turbulent volume and violent acceleration via spontaneous lepton-scale reconnection. This may lead to high-energy particle populations filling the whole volume. In this case, it causes non-thermal radiation spectra that span the entire interval from radio waves to gamma rays.  相似文献   

19.
A Langevin equation for charged particles in a plasma with electrostatic turbulence is developed from first principles and in consistency with the kinetic theory in polarization approximation. For the case of ion-acoustic and electrostatic lower-hybrid-drift turbulence approximate expressions for the space-time spectral density of the wave energy are given and estimates of the intensities of the stochastic wave forces are made. The application is done for the plasmas of the earth's magnetosphere, the solar wind and solar flares. It seems, that ion-acoustic and electrostatic lower-hybrid-drift waves can contribute to electron chaotization in different regions of the space plasma.  相似文献   

20.
Strong X-ray and γ–ray flares have been detected in February 2010 from the high synchrotron peaked blazar Mrk 421 (z = 0.031). With the motivation of understanding the physics involved in this flaring activity, we study the variability of the source in X-ray and γ–ray energy bands during the period February 10–23, 2010 (MJD 55237–55250). We use near simultaneous X-ray data collected by MAXI, Swift-XRT and γ–ray data collected by Fermi-LAT and TACTIC along with the optical V-band observations by SPOL at Steward Observatory. We observe that the variation in the one day averaged flux from the source during the flare is characterized by fast rise and slow decay. Besides, the TeV γ–ray flux shows a strong correlation with the X-ray flux, suggesting the former to be an outcome of synchrotron self Compton emission process. To model the observed X-ray and γ–ray light curves, we numerically solve the kinetic equation describing the evolution of particle distribution in the emission region. The injection of particle distribution into the emission region, from the putative acceleration region, is assumed to be a time dependent power law. The synchrotron and synchrotron self Compton emission from the evolving particle distribution in the emission region are used to reproduce the X-ray and γ–ray flares successfully. Our study suggests that the flaring activity of Mrk 421 can be an outcome of an efficient acceleration process associated with the increase in underlying non-thermal particle distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号