首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
川东侏罗山式褶皱构造带的物理模拟研究   总被引:4,自引:0,他引:4  
川东地区发育一系列NE走向的侏罗山式褶皱构造,按照褶皱的组合形态,自东向西发育隔槽式褶皱和隔档式褶皱,齐岳山断裂是二者的分界线。本文采取物理模拟手段对川东侏罗山式褶皱形成的控制因素进行实验研究,选取硅树脂模拟滑脱层,石英砂和微玻璃珠模拟沉积盖层,改变盖层与基底之间摩擦力、盖层的物性、滑脱层的埋藏深度等因素。模拟实验研究表明,滑脱层的深度和盖层性质是川东侏罗山式褶皱形成的主要控制因素。齐岳山断裂以东地区主要是下寒武统膏页岩充当滑脱层,滑脱层埋深较大,地表构造形态表现为隔槽式褶皱;齐岳山断裂以西地区,下二叠统泥质灰岩充当滑脱层,埋深较浅,盖层表现为隔档式褶皱。微玻璃珠是模拟侏罗山式褶皱较好的实验材料,推测川东薄皮构造带形成时候以塑形变形为主。  相似文献   

2.
古元古代拉伸构造模式——以胶北,辽东和吉南地区为例   总被引:6,自引:0,他引:6  
对胶北、辽东和吉南地区元古代层状岩系和第一幕构造变形作用的详细研究和综合分析,并以此为典型实例,提出了古元古代拉伸构造模式,即隆起-顺层分层滑脱构造模式。该上部隆起和上部盖层及两者之间的拆离型韧性剪切带三部分组成。核部隆起常由岩浆隆起或基底隆起构成,上部盖层内发育有顺层分层滑脱构造体系,由底部主滑脱面和内部次级滑脱面,低级骨脱面及其间的流褶层和片理化带构成,靠近核部隆起的盖层表现为正向滑脱,而滑脱  相似文献   

3.
赣北地区属扬子准地台的一个组成部分,其地台盖层中的滑脱断裂与滑脱褶皱紧密伴生,共同构成滑脱构造。滑脱断裂沿地台盖层中的软弱面、润滑层发育。滑脱断裂的总体产状是后缘倾角较缓,向前缘逐渐变陡至倒转;在平面上与地层走向一致,方向变化较大,因地而异、各不相同。滑脱断裂的构造样式,以短轴背形、向形构造为主,另有穹窿构造、滑来峰构造、滑覆窗构造。滑脱断裂是良好的内生热液矿床的储矿构造;滑脱断裂形成于中生代,大多己褶皱变形,工程地质条件良好。  相似文献   

4.
天山南麓库车晚新生代褶皱-冲断带   总被引:2,自引:1,他引:1  
库车褶皱冲断带位于天山南麓,由近东西走向的多条构造带组成。三叠系暗色泥岩、侏罗系煤层、古近系库姆格列木组膏盐层和新近系吉迪克组膏盐层构成库车褶皱冲断带的区域性主滑脱面。褶皱冲断带底面由北向南逐渐抬高。褶皱冲断带主体发育盖层滑脱-冲断构造(薄皮构造),基底卷入型冲断构造(厚皮构造)见于北缘的根带。新生界膏盐层之上构造变形以滑脱褶皱为特色,之下以冲断构造为特色。库车褶皱冲断带是印度-亚洲碰撞远程效应下,(南)天山晚新生代造山过程的产物。褶皱冲断带构造变形的动力来源主要是造山楔向塔里木盆地推进所形成的挤压构造应力。褶皱冲断带构造变形的起始时间为约23Ma,构造变形具有阶段式加速的特点,已经识别出约23Ma、约10Ma、5~2Ma和1~0Ma共4个变形加速期。褶皱冲断带的演化过程为前展式,褶皱冲断带前锋向南推进的同时,后缘持续变形。  相似文献   

5.
库车坳陷盐下构造对盐上盖层变形的影响因素分析   总被引:1,自引:0,他引:1       下载免费PDF全文
库车坳陷是在地壳或者岩石圈尺度整体挤压作用下,收缩构造变形形成的一个构造单元,膏盐岩层等软弱岩层可能导致滑脱断层发育,并引起盐上和盐下不协调收缩变形,区域挤压作用下一些先存基底断裂带的逆冲位移是控制盐上层冲断褶皱变形的主要因素。运用地震资料、地表露头、钻测井资料以及非地震资料等,对库车坳陷区域大剖面的盐上层、盐下层的构造变形样式进行分析,认为南天山在挤压收缩变形中隆升,诱导盆山过渡带发育基底卷入的高角度逆冲断层,先前基底断层的复活影响了盆地沉积盖层的构造变形,基底断裂与盖层断层组合样式在走向上基本一致,盖层强变形带与基底断裂带上下呼应。  相似文献   

6.
福建省含煤区广泛发育各种型式的滑脱构造,可分为伸展机制的滑覆构造与收缩机制的推覆构造两类。煤系基底与盖层以及盖层内部的强度差异是滑脱构造发育的基础;基底隆起与盖层坳陷的构造格局为其发育的另一条件。滑脱构造表现出多层次、多成因、多期次.具有侏罗山式脱顶.拆离,不协调变形多种特点.滑脱构造对找煤有着密切的关系。  相似文献   

7.
显观、微观和超微观构造研究揭示了华北聚煤区南部三大滑脱构造系统所处的不同构造环境,聚煤区南缘逆冲推覆构造带作为秦岭—大别造山带北侧区域性逆断层系的前锋端元,具有中浅层次韧脆性变形域特点;徐淮推覆—滑覆构造系统为盖层薄皮构造,属于中浅层次—浅层次的韧脆性—脆性变形域;豫西滑覆构造区则主要属于板内伸展体制下的浅层次脆性变形域。  相似文献   

8.
克拉苏构造带位于库车坳陷与南天山盆山过渡带,特殊的受力环境使其构造变形机制具有特殊性。依据最新的地震和钻井资料,并结合前人研究成果,建立了克拉苏构造带新的地震解释方案,并据此分析该地区盐上、盐下层构造变形几何形态、演化过程、形成机制等方面的差异及其控制因素。结果表明:克拉苏构造带盐下层构造变形可分为两部分,包括由基底卷入的高角度正断层后期挤压形成的反转断裂系统,以及主断裂下盘发育的次生盖层滑脱逆冲叠瓦断裂系统。盐上层构造变形为褶皱相关断层,其演化经历了基底断裂向上传递形成传播褶皱、差异压实作用诱发底辟褶皱、以及褶皱核部在持续挤压作用下形成破冲断层等多个阶段。盐下层基底卷入断裂系统形成于侏罗纪盆山过渡带伸展环境,而叠瓦式盖层滑脱断裂系统和盐上层构造变形主要形成于中新世-第四纪的挤压构造环境。盆山过渡带特殊的构造部位及在不同地质时期应力场的转换控制了盐下层构造变形机制,而盐上层构造变形受到基底断裂复活、差异沉积负荷、膏盐岩底辟上涌、挤压应力增强以及北部山前地形高差等众多因素影响,且不同演化阶段主控因素有所差异。克拉苏构造带盐下、盐上层变形机制和毗邻区带相比有较大差异,这与其特殊的构造位置以及构造应力在盐下和盐上地层向前陆方向传递的方式和距离不同等因素有关。  相似文献   

9.
兴梅煤田滑脱构造包括滑覆构造、推覆构造两大类。属脆—韧性变形。前者为多层次顺层滑覆,其中以龙潭组与文笔山组间滑脱面(F_3)为主滑面,后者由震旦系浅变质岩系为主体组成四个大型推覆体,推覆在上古生界和中生界之上。区内各种滑脱构造可分为南北向构造、弧形构造及拉铺构造三种组合型式,皆属薄皮构造,该区今后找煤的重点应在推覆体下。  相似文献   

10.
湘中涟源凹陷内的滑脱构造   总被引:5,自引:0,他引:5  
王义方 《湖南地质》1989,8(2):10-17
祁阳弧的成型和侏罗山式褶皱的发育,是在东西向挤压应力场作用下,盖层与前泥盆系基底之间的滑脱造成的。盖层内抗变形能力不同的海相地层在构造推挤和重力滑动中形成了多期次、多方向的滑脱构造。根据滑脱构造特征,涟源凹陷可划分为东部、中部和西部三个分区。  相似文献   

11.
塔北地区变形样式及其分布规律   总被引:23,自引:3,他引:23       下载免费PDF全文
张光亚  陈发景 《地球科学》1994,19(6):755-768
塔北地区包括库车前陆盆地和塔北前陆克拉通地区两大变形带,在库车前陆盆地,垂向上,主要受滑脱层发育及其展布、构造地层组合及岩层埋深等因素控制,深层一般为被动顶板双冲构造及断变褶皱,中层三角带、冲起构造,浅层为断展,滑脱及底辟褶皱;横向上,与挤压应力大小、地层岩石力学性质、滑脱层发育程度等相关,自造山带前缘向前陆克拉通方向,褶皱一般由紧闭,不对称或倒转变为平缓,开阔,并由断变,断展褶皱变为滑脱褶皱;变  相似文献   

12.
The major structural features of the Iberian Pyrite Belt are described in terms of geometry, deformation mechanisms, scale, timing, kinematics and the mutual relationships among the various architectural elements. The result of such an analysis allows this zone to be considered as a S-verging, thin-skinned, fold and thrust belt propagating southwards over a mid-crustal basal detachment. This was the response in the footwall of the suture to the major phase of Hercynian oblique collision between the South Portuguese Plate and the Ossa-Morena Zone of the Iberian Autochthon. This thin-skinned event inverted a previous extensional structure acquired during the initial stages of the collisional process and intimately linked to the formation of the ore deposits that make this region a world-class metallogenic province.  相似文献   

13.
The structure of the eastern Pyrenees consists mainly of south-directed thrusts involving basement and cover rocks. An antiformal stack developed by the piling up of basement thrust sheets which outcrop in the Axial zone. These structures account for a thin-skinned thrust model rather than a vertical fault model in which the Axial zone would be essentially autochthonous, and the North-Pyrenean fault the axial plane of a fan thrust system. New data from the Eastern Pyrenees and the thin-skinned model suggest that(1) the structure east of the Pedraforca nappe is similar to that of the Central Pyrenees; (2) the cover rocks of the South-Pyrenean units and of the Axial zone-after restoration—built up a northwards-thickening prism consistent with the existence of a unique Pyrenean sedimentary basin during Mesozoic time; (3) the Axial zone is only a complex antiformal stack developed as a part of South-Pyrenean system related to the Paleogene thrusting-tectonics. The Axial zone palaeogeographic area had no special meaning during Mesozoic time.  相似文献   

14.
During continent–continent convergence of the Arabian and Eurasian plates, and after the late Eocene inversion of a back-arc rift, the Iranian Plateau underwent broad subsidence resulting in the formation of the Central Basin (Morley et al., 2009). New 2D seismic data acquired by National Iranian Oil Company (NIOC) in the NW–SW-trending arm of the Central Basin suggest that during the main stage of shortening (middle–late? Miocene to Pliocene), strain concentrations resulted in the development of the thin-skinned Kuh-e-Gachab, Kuh-e-Gugerd, Garmsar and Sorkh-e-Kuh structures. These structures are built of Oligocene–Miocene/Pliocene(?) rocks belonging to the Lower Red, Qom and Upper Red formations. Seismic data suggest that one of these structures comprises the south-verging Kuh-e-Gachab anticline, which is bounded by the N-dipping Kuh-e-Gachab thrust and cored by a complex array of thrust sheets forming a triangle zone. During the deformation process, two salt evaporate levels played a significant role as detachment horizons. The main detachment horizon was rooted within the Lower Red Formation, whereas the second detachment horizon was located along evaporites belonging to the Upper Red Formation. Variations in the thin-skinned style of deformation between the larger triangle zone in the western part of the Kuh-e-Gachab structure contrasts with less shortening in the smaller triangle zone to the east. This suggests that the change resulted from the increase of thickness of the mobile detachment horizon to the east. Contraction deformations are still active south of the Alborz Mountains, which is confirmed by GPS data and present-day seismicity.  相似文献   

15.
华北中地壳滑脱面及其活动分区的天然地震研究   总被引:2,自引:0,他引:2  
李涛  周世卿 《现代地质》2009,23(6):1003-1011
华北的上部地壳以脆性变形为主,下部地壳以韧性伸展为主,两种截然不同的变形状态却有着相同伸展方向、相同伸展量,使得上下地壳之间因差异运动而形成一个区域性界面-华北中地壳顶部滑脱面。以这个滑脱面为底边界发育起来的上地壳的结构构造,是控制华北盆山格局、基底构造发育形成的直接原因。华北构造是地壳脆性域“薄皮”伸展变形。滑脱面在华北基本上是连续分布的,呈断坡-断坪状,南北分带、东西分片,深度为12~22 km,一般为15~18 km,可识别出11个层状拆离区;上地壳以断块方式变形,断块的位置、形态及活动方式受滑脱面的断坡-断坪产状、与滑脱方向垂直的断叉线和与滑脱方向平行的调整断裂的组合控制,可识别出3个主裂陷轴、2条主断叉线和3条主调整断裂带。  相似文献   

16.
The Chos Malal fold and thrust belt (FTB) is a thick-skinned mountain belt formed by Mesozoic deposits of the Neuquén Basin during the Andean orogeny. Four structural cross-sections in the entire deformed area, supported by field and subsurface data, suggest a strong link between thick and thin-skinned structures. Major Andean thrusts branching from a detachment placed 12 km into the crust created large basement wedges, which were inserted in the cover producing minor order structures. The westernmost of these wedges is exposed forming the Cordillera del Viento, while others basement slices at depth were interpreted from seismic lines. These thick-skinned structures transferred deformation to the cover along the Auquilco Formation and contributed to create all thin-skinned structures surveyed in the Chos Malal FTB. We recognized half-graben geometries in the seismic lines, preserving their extensional configuration, which suggests that the main normal faults were not inverted. Shortenings calculated from the restoration of the four cross-sections are 16.9 km (29.7%), 16.9 km (29.7%), 14.7 km (26.9%) and 14.15 km (26.3%), which evidence a slight diminution of the contraction toward the south probably associated with the plunge of the Cordillera del Viento structure in this segment of the Chos Malal FTB.  相似文献   

17.
In the Yangtze Block (South China), a well-developed Mesozoic thrust system extends through the Xuefeng and Wuling mountains in the southeast to the Sichuan basin in the northwest. The system comprises both thin- and thick-skinned thrust units separated by a boundary detachment fault, the Dayin fault. To the northwest, the thin-skinned belt is characterized by either chevron anticlines and box synclines to the northwest or chevron synclines to the southeast. The former structural style displays narrow exposures for the cores of anticlines and wider exposures for the cores of synclines. Thrust detachments occur along Silurian (Fs) and Lower Cambrian (Fc) strata and are dominantly associated with the anticlines. To the southeast, this style of deformation passes gradually into one characterized by chevron synclines with associated principal detachment faults along Silurian (Fs), Cambrian (Fc) and Lower Sinian (Fz) strata. There are, however, numerous secondary back thrusts. Therefore, the thin-skinned belt is like the Valley and Ridge Province of the North American Applachian Mountains. The thick-skinned belt structurally overlies the thin-skinned belt and is characterized by a number of klippen including the Xuefeng and Wuling nappes. It is thus comparable to the Blue Ridge Province of Appalachia.The structural pattern of this thrust system in South China can be explained by a model involving detachment faulting along various stratigraphic layers at different stages of its evolution. The system was developed through a northwest stepwise progression of deformation with the earliest delamination along Lower Sinian strata (Fz). Analyses of balanced geological cross-sections yield about 18.1–21% (total 88 km) shortening for the thin-skinned unit and at least this amount of shortening for the thick-skinned unit. The compressional deformation from southeast to northwest during Late Jurassic to Cretaceous time occurred after the westward progressive collision of the Yangtze Block with the North China Block and suggests that the orogenic event was intracontinental in nature.  相似文献   

18.
The Subandean zone of southern Bolivia is a typical thin-skinned fold and thrust belt with remarkable regularity in the geometry of the structures. However, when the structural geometry and evolution are analyzed in detail, it is verified that there are many deviations from such regularity. In this paper, special emphasis has been placed on analyzing those processes that could explain the along strike variations in structural styles of the deformation front.Particularly, the role that played the upper detachment level in the development of the different structural styles observed along the deformation front is analyzed herein. This analysis is focused on the development of overpressures, which may have been essential for the activation of the detachment level in the Devonian shales of the Los Monos Formation. To do this, we made a series of 1D petroleum system models at different locations along the deformation front. This analysis allowed to model primary gas generation and secondary cracking — processes that are related to overpressure occurrence, and therefore, to the efficiency of the upper detachment level. The models suggest a close relationship between thermal evolution of the foreland basin and generation of gas, with different structural styles observed at the deformation front. Thus, it was possible to divide the deformation front of the southern Subandean zone into two distinct segments. In the northern segment, where models suggest that gas generation and overpressures of the Los Monos Formation would be well developed, the existence of composite roof duplexes is verified. On the other hand, where the models suggest that generation of gas in the Los Monos Formation would be limited, the upper detachment level is not involved in the deformation, and the existence of fault bend fold structures is verified.  相似文献   

19.
南大巴山前陆冲断带构造样式及变形机制分析   总被引:35,自引:9,他引:26  
大巴山构造带位于秦岭造山带和四川盆地的过渡部位,形成于印支-燕山期,定型于喜山期。按照构造变形样式及其组合特征,从北东向南西可依次划分为北大巴山逆冲推覆构造带、南大巴山前陆褶皱-冲断带(又包括叠瓦断层带、断层-褶皱带和滑脱褶皱带等3个亚带)和四川盆地东北部低缓构造区等3个构造带(区)。南大巴山冲断带地表构造以类侏罗山式褶皱为显著特征,主要发育叠瓦断层系、断层相关褶皱、被动顶板双重构造、反冲断层系和冲起构造等变形样式。北东-南西向挤压应力和滑脱层是控制南大巴山及其前缘构造变形的主要因素,结合区域地质研究成果,建立了南大巴山及其前缘地区依次从震旦系-下寒武统-志留系-中下三叠统逐渐抬高的多层次滑脱前展模式。  相似文献   

20.
The style of deformation in thin-skinned fold-and-thrust belts is critically dependent upon the resistance to sliding along the detachment between the mass of deforming sediments and the underlying rocks. Evaporites can provide an extremely weak horizon within which a basal detachment can form and along which only a relatively small shear traction can be supported. Fold-and-thrust belts that form atop a salt layer, such as the Appalachian Plateau, the Franklin Mountains in northwestern Canada, and the Jura of the Alps, among others, share several readily observable characteristics. As predicted by a simple mechanical model for fold-and-thrust belts, a detachment in salt permits a thrust belt to have an extremely narrow cross-sectional taper. In addition, predicted orientations of the principal stress axes over a salt décollement are consistent with the commonly observed lack of a consistently dominant vergence direction of structures within the thrust belt. Other common attributes of salt-basal thin-skinned deformation include the presence of several widely but regularly spaced folds and abrupt changes in deformational style at the edge of the salt basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号