首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study examines the processes that control the oxidation attenuation of a pyrite-rich sludge (72 wt% pyrite) from the Iberian Pyrite Belt by the buffer capacity of a fly ash from Los Barrios power station (S Spain), using saturated column experiments. In addition, in order to understand the behaviour of both materials inside these experiments, a fly-ash leaching test and flow-through experiments with pyritic sludge were carried out. The fly-ash leaching test showed that after leaching this material with a slightly acid solution (Millipore MQ water; pH 5.6) the pH raised up to 10.2 and that the metals released by the fly-ash dissolution did not increase significantly the metal concentrations in the output solutions. The flow-through experiments with the pyritic sludge were performed at pH 9, 22 °C and O2 partial pressure of 0.21 atm, to calculate the dissolution rate of this residue simulating the fly-ash addition. In the experiments Fe bearing oxyhydroxides precipitated as the sludge dissolved. In two non-stirred experiments the iron precipitates formed Fe-coatings on the pyrite surfaces preventing the interaction between the oxidizing agents and the pyrite grains, halting pyrite oxidation (this process is known as pyrite microencapsulation), whereas in two stirred experiments, stirring hindered the iron precipitates to coat the pyrite grains. Thus, based on the release of S (aqueous sulphate) the steady-state pyritic sludge dissolution rate obtained was 9.0 ± 0.2 × −11 mol m−2 s−1.In the saturated column experiments, the sludge dissolution was examined at acidic and basic pH at 22 °C and oxygen-saturated atmosphere. In a saturated column experiment filled with the pyritic sludge, pyrite oxidation occurred favourably at pH approx. 3.7. As the leachates of the fly ash yielded high basic pH, in another saturated column, consisting of an initial thick layer of fly-ash material and a layer of pyritic sludge, the pyrite dissolution took place at pH approx. 10.45. In this experiment, iron was depleted completely from the solution and attenuation of the sludge oxidation was produced in this conditions. The attenuation was likely promoted by precipitation of iron-bearing phases upon the pyritic surface forming Fe-coatings (of ferrihydrite and/or Fe(III) amorphous phases) that halted the pyrite oxidation (as in non-stirred flow-through experiments). Results suggest that buffering capacity of fly ash can be used to attenuate the pyrite-rich sludge oxidation.  相似文献   

2.
The oxidation of sulfide-rich rocks, mostly leftover debris from Cu mining in the early 20th century, is contributing to metal contamination of local coastal environments in Prince William Sound, Alaska. Analyses of sulfide, water, sediment, precipitate and biological samples from the Beatson, Ellamar, and Threeman mine sites show that acidic surface waters generated from sulfide weathering are pathways for redistribution of environmentally important elements into and beyond the intertidal zone at each site. Volcanogenic massive sulfide deposits composed of pyrrhotite and (or) pyrite + chalcopyrite + sphalerite with subordinate galena, arsenopyrite, and cobaltite represent potent sources of Cu, Zn, Pb, As, Co, Cd, and Hg. The resistance to oxidation among the major sulfides increases in the order pyrrhotite ? sphalerite < chalcopyrite ? pyrite; thus, pyrrhotite-rich rocks are typically more oxidized than those dominated by pyrite. The pervasive alteration of pyrrhotite begins with rim replacement by marcasite followed by replacement of the core by sulfur, Fe sulfate, and Fe–Al sulfate. The oxi dation of chalcopyrite and pyrite involves an encroachment by colloform Fe oxyhydroxides at grain margins and along crosscutting cracks that gradually consumes the entire grain. The complete oxidation of sulfide-rich samples results in a porous aggregate of goethite, lepidocrocite and amorphous Fe-oxyhydroxide enclosing hydrothermal and sedimentary silicates. An inverse correlation between pH and metal concentrations is evident in water data from all three sites. Among all waters sampled, pore waters from Ellamar beach gravels have the lowest pH (∼3) and highest concentrations of base metals (to ∼25,000 μg/L), which result from oxidation of abundant sulfide-rich debris in the sediment. High levels of dissolved Hg (to 4100 ng/L) in the pore waters probably result from oxidation of sphalerite-rich rocks. The low-pH and high concentrations of dissolved Fe, Al, and SO4 are conducive to precipitation of interstitial jarosite in the intertidal gravels. Although pore waters from the intertidal zone at the Threeman mine site have circumneutral pH values, small amounts of dissolved Fe2+ in the pore waters are oxidized during mixing with seawater, resulting in precipitation of Fe-oxyhydroxide flocs along the beach–seawater interface. At the Beatson site, surface waters funneled through the underground mine workings and discharged across the waste dumps have near-neutral pH (6.7–7.3) and a relatively small base-metal load; however, these streams probably play a role in the physical transport of metalliferous particulates into intertidal and offshore areas during storm events. Somewhat more acidic fluids, to pH 5.3, occur in stagnant seeps and small streams emerging from the Beatson waste dumps. Amorphous Fe precipitates in stagnant waters at Beatson have high Cu (5.2 wt%) and Zn (2.3 wt%) concentrations that probably reflect adsorption onto the extremely high surface area of colloidal particles. Conversely, crystalline precipitates composed of ferrihydrite and schwertmannite that formed in the active flow of small streams have lower metal contents, which are attributed to their smaller surface area and, therefore, fewer reactive sorption sites. Seeps containing precipitates with high metal contents may contribute contaminants to the marine environment during storm-induced periods of high runoff. Preliminary chemical data for mussels (Mytilus edulis) collected from Beatson, Ellamar, and Threeman indicate that bioaccumulation of base metals is occurring in the marine environment at all three sites.  相似文献   

3.
《Applied Geochemistry》2000,15(8):1219-1244
Arsenian pyrite, formed during Cretaceous gold mineralization, is the primary source of As along the Melones fault zone in the southern Mother Lode Gold District of California. Mine tailings and associated weathering products from partially submerged inactive gold mines at Don Pedro Reservoir, on the Tuolumne River, contain ∼20–1300 ppm As. The highest concentrations are in weathering crusts from the Clio mine and nearby outcrops which contain goethite or jarosite. As is concentrated up to 2150 ppm in the fine-grained (<63 μm) fraction of these Fe-rich weathering products.Individual pyrite grains in albite-chlorite schists of the Clio mine tailings contain an average of 1.2 wt.% As. Pyrite grains are coarsely zoned, with local As concentrations ranging from ∼0 to 5 wt.%. Electron microprobe, transmission electron microscope, and extended X-ray absorption fine-structure spectroscopy (EXAFS) analyses indicate that As substitutes for S in pyrite and is not present as inclusions of arsenopyrite or other As-bearing phases. Comparison with simulated EXAFS spectra demonstrates that As atoms are locally clustered in the pyrite lattice and that the unit cell of arsenian pyrite is expanded by ∼2.6% relative to pure pyrite. During weathering, clustered substitution of As into pyrite may be responsible for accelerating oxidation, hydrolysis, and dissolution of arsenian pyrite relative to pure pyrite in weathered tailings. Arsenic K-edge EXAFS analysis of the fine-grained Fe-rich weathering products are consistent with corner-sharing between As(V) tetrahedra and Fe(III)-octahedra. Determinations of nearest-neighbor distances and atomic identities, generated from least-squares fitting algorithms to spectral data, indicate that arsenate tetrahedra are sorbed on goethite mineral surfaces but substitute for SO4 in jarosite. Erosional transport of As-bearing goethite and jarosite to Don Pedro Reservoir increases the potential for As mobility and bioavailability by desorption or dissolution. Both the substrate minerals and dissolved As species are expected to respond to seasonal changes in lake chemistry caused by thermal stratification and turnover within the monomictic Don Pedro Reservoir. Arsenic is predicted to be most bioavailable and toxic in the reservoir’s summer hypolimnion.  相似文献   

4.
The abandoned Sb deposit Pezinok in Slovakia is a significant source of As and Sb pollution that can be traced in the upper horizons of soils kilometers downstream. The source of the metalloids are two tailing impoundments which hold ∼380,000 m3 of mining waste. The tailings and the discharged water have circumneutral pH values (7.0 ± 0.6) because the acidity generated by the decomposition of the primary sulfides (pyrite, FeS2; arsenopyrite, FeAsS; berthierite, FeSb2S4) is rapidly neutralized by the abundant carbonates. The weathering rims on the primary sulfides are iron oxides which act as very efficient scavengers of As and Sb (with up to 19.2 wt% As and 23.7 wt% Sb). In-situ μ-XANES experiments indicate that As in the weathering rims is fully oxidized (As5+). The pore solutions in the impoundment body contain up to 81 ppm As and 2.5 ppm Sb. Once these solutions are discharged from the impoundments, they precipitate or deposit masses of As-rich hydrous ferric oxide (As-HFO) with up to 28.3 wt% As2O5 and 2.7 wt% Sb. All As-HFO samples are amorphous to X-rays. They contain Fe and As in their highest oxidation state and in octahedral and tetrahedral coordination, respectively, as suggested by XANES and EXAFS studies on Fe K and As K edges. The iron octahedra in the As-HFO share edges to form short single chains and the chains polymerize by sharing edges or corners with the adjacent units. The arsenate ions attach to the chains in a bidentate-binuclear and monodentate fashion. In addition, hydrogen-bonded complexes may exist to satisfy the bonding requirements of all oxygen atoms in the first coordination sphere of As5+. Structural changes in the As-HFO samples were traced by chemical analyses and Fe EXAFS spectroscopy during an ageing experiment. As the samples age, As becomes more easily leachable. EXAFS spectra show a discernible trend of increasing number of Fe-Fe pairs at a distance of 3.3-3.5 Å, that is, increasing polymerization of the iron octahedra to form larger units with fewer adsorption sites. Therefore, although ferrihydrite is an excellent material for capturing arsenic, its use as a medium for a long-term storage of As has to be considered with a great caution because it will tend to release arsenic as it ages.  相似文献   

5.
This study investigates Sb speciation in sediments along the drainage of the Upper Peter adit at the Bralorne Au mine in southern British Columbia, Canada, and compares the behavior of Sb with that of As. The Upper Peter mineralization consists of native Au in quartz-carbonate veins with 1 wt.% sulfides dominated by pyrite and arsenopyrite although stibnite, the primary Sb-bearing sulfide mineral, can be locally significant. Dissolved Sb concentrations can reach up to 349 μg L−1 in the mine pool. Sediments were collected for detailed geochemical and mineralogical characterization at locations along the 350-m flow path, which includes a 100-m shallow channel within the adit, a sediment settling pond about 45 m beyond the adit portal and an open wetland another 120 m farther downstream. From the mine pool to the wetland outlet, dissolved Sb in the drainage drops from 199 μg L−1 to below the detection limit due to the combined effect of dilution and removal from solution. Speciation analyses using X-ray absorption near-edge structure (XANES) spectroscopy indicate that Sb(III)–S accounts for around 70% of total Sb in the sediments in the main pool at the far end of the adit. At a short distance (24 m) downstream of the main adit pool, however, Sb(III)–O and Sb(V)–O species represent ?50% of total Sb in the bulk sediments, indicating significant oxidation of the primary sulfides inside the adit. Although Sb appears largely oxidized in the bulk samples collected near the portal, Sb(III)–S species are nevertheless present in the <53-μm fraction, suggesting a higher oxidation rate for stibnite in the coarser grains, possibly due to galvanic interaction with pyrite. Secondary Sb species released from the sulfide oxidation are most likely sorbed/co-precipitated with Fe-, Mn-, and Al-oxyhydroxides along the flow channel in the adit and in the sediment settling pond, with the Fe phase being the dominant sink for Sb.  相似文献   

6.
Mineralogical, geochemical and microbial characterization of tailings solids from the Greens Creek Mine, Juneau, Alaska, was performed to evaluate mechanisms controlling aqueous geochemistry of near-neutral pH pore water and drainage. Core samples of the tailings were collected from five boreholes ranging from 7 to 26 m in depth. The majority of the 51 samples (77%) were collected from the vadose zone, which can extend >18 m below the tailings surface. Mineralogical investigation indicates that the occurrence of sulfide minerals follows the general order: pyrite [FeS2] >> sphalerite [(Zn,Fe)S] > galena [PbS], tetrahedrite [(Fe,Zn,Cu,Ag)12Sb4S13] > arsenopyrite [FeAsS] and chalcopyrite [CuFeS2]. Pyrite constitutes <20 to >35 wt.% of the tailings mineral assemblage, whereas dolomite [CaMg(CO3)2] and calcite [CaCO3] are present at ?30 and 3 wt.%, respectively. The solid-phase geochemistry generally reflects the mineral assemblage. The presence of additional trace elements, including Cd, Cr, Co, Mo, Ni, Se and Tl, is attributed to substitution into sulfide phases. Results of acid–base accounting (ABA) underestimated both acid-generating potential (AP) and neutralization potential (NP). Recalculation of AP and NP based on solid-phase geochemistry and quantitative mineralogy yielded more representative results. Neutrophilic S-oxidizing bacteria (nSOB) and SO4-reducing bacteria (SRB) are present with populations up to 107 and 105 cells g−1, respectively. Acidophilic S-oxidizing bacteria (aSOB) and iron-reducing bacteria (IRB) were generally less abundant. Primary influences on aqueous geochemistry are sulfide oxidation and carbonate dissolution at the tailings surface, gypsum precipitation–dissolution reactions, as well as Fe reduction below the zone of sulfide oxidation. Pore-water pH values generally ranged from 6.5 to 7.5 near the tailings surface, and from approximately 7–8 below the oxidation zone. Elevated concentrations of dissolved SO4, S2O3, Fe, Zn, As, Sb and Tl persisted under these conditions.  相似文献   

7.
The mechanism of pyrite oxidation in carbonate-containing alkaline solutions at 80 °C was investigated with the help of rate experiments, thermodynamic modeling and diffuse reflectance infrared spectroscopy (DRIFTS). Pyrite oxidation rate increased with pH and was enhanced by addition of bicarbonate/carbonate ions. The carbonate effect was found to be limited to moderately alkaline conditions (pH 8-11). Metastable Eh-pH diagrams, at 25 °C, indicate that soluble iron-carbonate complexes (FeHCO3, FeCO30, Fe(CO3)(OH) and FeCO32−) may coexist with pyrite in the pH range of 6-12.5. Above pH 11 and 13, the Fe(II) and Fe(III) hydroxocomplexes, respectively, become stable, even in the presence of carbonate/bicarbonate ions. Surface-bound carbonate complexes on iron were also identified with DRIFTS as products of pyrite oxidation in addition to iron oxyhydroxides and soluble sulfate species. The conditions under which thermodynamic and DRIFTS analyses indicate the presence of carbonate compounds also correspond to those in which the fastest rate of pyrite oxidation in carbonate solutions was observed. Following the Singer-Stumm model for pyrite oxidation in acidic solutions, it is assumed that Fe(III) is the preferred pyrite oxidant under alkaline conditions. We propose that carbonate ions facilitate the electron transfer from soluble iron(II)-carbonate to O2, increase the iron solubility, and provide buffered, favorable alkaline conditions at the reaction front, which in turn favors the overall kinetics of pyrite oxidation. Therefore, the electron transfer from sulfur atoms to O2 is facilitated by the formation of the cycle of Fe(II)-pyrite/Fe(III)-carbonate redox couple at the pyrite surface.  相似文献   

8.
It is well known that oxidation of sulphide-containing coal mine waste has considerable environmental impacts due to generation of acid mine drainage (AMD) containing high dissolved metal concentrations. This study is the first to evaluate seasonal trends in the release of AMD from high arctic coal mine waste rock. Runoff from an abandoned coal mine waste pile in Svalbard (78°N) was studied during the entire 3–4 month period with running water in 2005. Temporal variation in concentrations and fluxes of dissolved elements were quantified based on daily water sampling and used to evaluate weathering processes and estimate element budgets on a daily, seasonal and annual basis. Apart from alkali- and alkaline earth metals; Fe, Al, Mn, Zn and Ni were found to be the most abundant metals in the runoff. Element concentrations were highly correlated and suggest that the processes of sulphide oxidation, ion exchange and silicate weathering occurring within the waste pile were linked throughout the measuring period. Observed pH values varied from 2.8 to 5.2 and SO4 concentrations from 21 to 1463 mg L−1. Manganese and Al concentrations were observed above phytotoxic levels (up to 4 and 23 mg L−1, respectively) and were considered the most critical elements in terms of environmental impact. Throughout the summer a total dissolved quantity of 58 kg Mn, 238 kg Al and 13,700 kg SO4 was released from the pile containing approximately 200,000 m3 of pyritic waste material (<1% FeS2). The highest concentrations of metals, lowest pH values and a very high daily release of H2SO4 (up to twice as high as the following month) were observed during the first week of thaw. This is considered a result of an accumulation of weathering products, generated within the waste pile during winter and released as a pollution-flush during early spring. Similar accumulation/flush sequences were observed later in the summer where rain events following relatively long dry periods caused high daily metal fluxes and on some occasions also elevated dissolved metal concentrations. Despite highly variable weather/climate conditions during the rest of the summer the investigated waste rock pile acted like a relative constant pollution-source during this period. Future investigations regarding the environmental impact of mine waste in the region should include measurements of bioavailable metals in order to provide further details on the seasonal trends in environmental impact.  相似文献   

9.
The Hong (Red) River drains the prominent Red River Fault Zone that has experienced various tectonic activities—intrusion of magma, exhumation of basement rocks, and influx of thermal waters—associated with the Cenozoic collision of India and Eurasia. We report dissolved major element and Sr isotope compositions of 43 samples from its three tributary systems (Da, Thao/Hong main channel, and Lo) encompassing summer and winter seasons. Carbonic acid ultimately derived from the atmosphere is the main weathering agent, and sulfuric acid from pyrite oxidation plays a minor role. Seasonality is manifested in higher calcite saturation index and Mg/TZ+ and lower Ca/Mg in summer, suggesting calcite precipitation, and in higher Si/(Na + K) ratios in summer suggesting more intensive silicate weathering. We quantified the input from rain, evaporite, carbonate, and silicate reservoirs using forward and inverse models and examined the robustness of the results. Carbonate dissolution accounts for a significant fraction of total dissolved cations (55-97%), and weathering of silicates makes a minor contribution (1-40%). Our best estimate of the spatially averaged silicate weathering rate in the Hong basin is 170 × 103 mol/km2/yr in summer and 51 × 103 mol/km2/yr in winter. We tested for correlations between the rate of CO2 consumption by silicate weathering and various climatic (air temperature, precipitation, runoff, and potential evapotranspiration) and geologic (relief, elevation, slope, and lithology) parameters calculated using GIS. Clear correlations do not emerge (except for ?CO2 and runoff in winter) which we attribute to the complex geologic setting of the area, the seasonal regime change from physical-dominant in summer to chemical-dominant in winter, and the incoherent timescales involved for the different parameters tested.  相似文献   

10.
A waste rock pile with initial high sulfide (10–20 wt.%) and low carbonate content (1–2 wt.%) located at Dlouhá Ves in the Czech Republic has been investigated in two profiles (excavation and outcrop) using powder X-ray diffraction, electron microprobe analysis, bulk composition analysis and Mössbauer spectroscopy. The mobility of arsenic and other contaminants was evaluated by leaching experiments. The primary source of the arsenic was arsenopyrite, which was significantly oxidized in both profiles. The principal As-bearing phase at the excavation profile was goethite, located at the top of the profile, and minerals of the jarosite group which were found down to its base. Melanterite, rich in copper and zinc, was found in a sulfide-rich, lower part of the profile together with anglesite. At the outcrop profile, minerals of the jarosite–beudantite group, scorodite and kaňkite prevail and no Fe(II)-minerals were found. The paste pH was lower at the excavation profile (minimum about 1.9) than at the outcrop profile (minimum of about 2.8). Processes in the pile are affected by the pyrite/arsenopyrite ratio, where high pyrite content decreases the As/S ratio and results in the formation of jarosite group minerals and low pH conditions. Where arsenopyrite predominates, sulphides are coated by scorodite and other Fe–As phases like schwertmannite, which limit their further oxidation.  相似文献   

11.
Insightful knowledge of geochemical processes controlling As mobility is fundamental to understanding the occurrence of elevated As in groundwater. A comparative study of As geochemistry was conducted in the Datong Basin (Shanxi) and Hetao Basin (Inner Mongolia), two strongly As-enriched areas in China. The results show that As concentrations ranged from <1–1160 μg L−1 (n = 37) in the Datong Basin and <1–804 μg L−1 (n = 62) in the Hetao Basin. The groundwater is of the Na-HCO3 type in the Datong Basin and Na-Cl-HCO3 type in the Hetao Basin. Silicate mineral weathering and cation exchange processes dominated the groundwater geochemistry in the two study areas. Principal component analysis of 99 groundwater samples using 12 geochemical parameters indicated positive correlations between concentrations of As and Fe/Mn in the Datong Basin, but no correlation of As and Fe/Mn in the Hetao Basin. Phosphate correlated well with As in the Datong Basin and Hetao Basin, suggesting phosphate competition might be another process affecting As concentrations in groundwater. High concentrations of As, Fe, and Mn occurred in the pe range −2 to −4. The results of this study further understanding of the similarities and differences of As occurrence and mobility at various locations in China.  相似文献   

12.
Trace and minor elements in sphalerite: A LA-ICPMS study   总被引:18,自引:0,他引:18  
Sphalerite is an important host mineral for a wide range of minor and trace elements. We have used laser-ablation inductively coupled mass spectroscopy (LA-ICPMS) techniques to investigate the distribution of Ag, As, Bi, Cd, Co, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, Pb, Sb, Se, Sn and Tl in samples from 26 ore deposits, including specimens with wt.% levels of Mn, Cd, In, Sn and Hg. This technique provides accurate trace element data, confirming that Cd, Co, Ga, Ge, In, Mn, Sn, As and Tl are present in solid solution. The concentrations of most elements vary over several orders of magnitude between deposits and in some cases between single samples from a given deposit. Sphalerite is characterized by a specific range of Cd (typically 0.2-1.0 wt.%) in each deposit. Higher Cd concentrations are rare; spot analyses on samples from skarn at Baisoara (Romania) show up to 13.2 wt.% (Cd2+ ↔ Zn2+ substitution). The LA-ICPMS technique also allows for identification of other elements, notably Pb, Sb and Bi, mostly as micro-inclusions of minerals carrying those elements, and not as solid solution. Silver may occur both as solid solution and as micro-inclusions. Sphalerite can also incorporate minor amounts of As and Se, and possibly Au (e.g., Magura epithermal Au, Romania). Manganese enrichment (up to ∼4 wt.%) does not appear to enhance incorporation of other elements. Sphalerite from Toyoha (Japan) features superimposed zoning. Indium-sphalerite (up to 6.7 wt.% In) coexists with Sn-sphalerite (up to 2.3 wt.%). Indium concentration correlates with Cu, corroborating coupled (Cu+In3+) ↔ 2Zn2+ substitution. Tin, however, correlates with Ag, suggesting (2Ag+Sn4+) ↔ 3Zn2+ coupled substitution. Germanium-bearing sphalerite from Tres Marias (Mexico) contains several hundred ppm Ge, correlating with Fe. We see no evidence of coupled substitution for incorporation of Ge. Accordingly, we postulate that Ge may be present as Ge2+ rather than Ge4+. Trace element concentrations in different deposit types vary because fractionation of a given element into sphalerite is influenced by crystallization temperature, metal source and the amount of sphalerite in the ore. Epithermal and some skarn deposits have higher concentrations of most elements in solid solution. The presence of discrete minerals containing In, Ga, Ge, etc. also contribute to the observed variance in measured concentrations within sphalerite.  相似文献   

13.
《Chemical Geology》2007,236(3-4):217-227
The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the excess-sulfide experiments yield pyrite with trace amounts of mackinawite. With increasing initially added As(V) concentrations the transformation of FeS to mackinawite and pyrite is retarded. At S:As = 1:1 and 2:1, elemental sulfur and green rust are the end products. As(V) oxidizes S(-II) in FeS and (or) in solution to S(0), and Fe(II) in the solid phase to Fe(III). Increasing initially added As(III) concentrations inhibit the transformation of FeS to mackinawite and pyrite and no oxidation products of FeS or sulfide, other than pyrite, were observed. At low arsenic concentrations, sorption onto the FeS surface may be the reaction controlling the uptake of arsenic into the solid phase. Inhibition of iron(II) sulfide transformations due to arsenic sorption suggests that the sorption sites are crucial not only as sorption sites, but also in iron(II) sulfide transformation mechanisms.  相似文献   

14.
Multiple sulfur isotope system is a powerful new tracer for atmospheric, volcanic, and biological influences on sulfur cycles in the anoxic early Earth. Here, we report high-precision quadruple sulfur isotope analyses (32S/33S/34S/36S) of barite, pyrite in barite, and sulfides in related hydrothermal and igneous rocks occurring in the ca. 3.5 Ga Dresser Formation, Western Australia. Our results indicate that observed isotopic variations are mainly controlled by mixing of mass-dependently (MD) and non-mass-dependently fractionated (non-MD) sulfur reservoirs. Based on the quadruple sulfur isotope systematics (δ34S-Δ33S-Δ36S) for these minerals, four end-member sulfur reservoirs have been recognized: (1) non-MD sulfate (δ34S = −5 ± 2‰; Δ33S = −3 ± 1‰); (2) MD sulfate (δ34S = +10 ± 3‰); (3) non-MD sulfur (δ34S > +6‰; Δ33S > +4‰); and (4) igneous MD sulfur (δ34S = Δ33S = 0‰). The first and third components show a clear non-MD signatures, thus probably represent sulfate and sulfur aerosol inputs. The MD sulfate component (2) is enriched in 34S (+10 ± 3‰) and may have originated from microbial and/or abiotic disproportionation of volcanic S or SO2. Our results reconfirm that the Dresser barites contain small amounts of pyrite depleted in 34S by 15-22‰ relative to the host barite. These barite-pyrite pairs exhibit a mass-dependent relationship of δ33S/δ34S with slope less than 0.512, which is consistent with that expected for microbial sulfate reduction and is significantly different from that of equilibrium fractionation (0.515). The barite-pyrite pairs also show up to 1‰ difference in Δ36S values and steep Δ36S/Δ33S slopes, which deviate from the main Archean array (Δ36S/Δ33S = −0.9) and are comparable to isotope effects exhibited by sulfate reducing microbes (Δ36S/Δ33S = −5 to −11). These new lines of evidence support the existence of sulfate reducers at ca. 3.5 Ga, whereas microbial sulfur disproportionation may have been more limited than recently suggested.  相似文献   

15.
Groundwater and sediment samples (∼ 1 m depth) at sites representative of different groundwater pathways were collected to determine the aqueous speciation of sulfur and the fractionation of sulfur isotopes in aqueous and solid phases. In addition, selected sediment samples at 5 depths (from oxic to anoxic layers) were collected to investigate the processes controlling sulfur biogeochemistry in sedimentary layers. Pyrite was the dominant sulfur-bearing phase in the capillary fringe and groundwater zones where anoxic conditions are found. Low concentrations of pyrite (< 5.9 g kg− 1) coupled with high concentrations of dissolved sulfide (4.81 to 134.7 mg L− 1) and low concentrations of dissolved Fe (generally < 1 mg L− 1) and reducible solid-phase Fe indicate that availability of reactive Fe limits pyrite formation. The relative uniformity of down-core isotopic trends for sulfur-bearing mineral phases in the sedimentary layers suggests that sulfate reduction does not result in significant sulfate depletion in the sediment. Sulfate availability in the deeper sediments may be enhanced by convective vertical mixing between upper and lower sedimentary layers due to evaporative concentration. The large isotope fractionation between dissolved sulfate and sedimentary sulfides at Owens Lake provides evidence for initial fractionation from bacterial sulfate reduction and additional fractionation generated by sulfide oxidation followed by disproportionation of intermediate oxidation state sulfur compounds. The high salinity in the Owens Lake brines may be a factor controlling sulfate reduction and disproportionation in hypersaline conditions and results in relatively constant values for isotope fractionation between dissolved sulfate and total reduced sulfur.  相似文献   

16.
This report describes a new form of arsenian pyrite, called As3+-pyrite, in which As substitutes for Fe [(Fe,As)S2], in contrast to the more common form of arsenian pyrite, As1−-pyrite, in which As1− substitutes for S [Fe(As,S)2]. As3+-pyrite has been observed as colloformic overgrowths on As-free pyrite in a hydrothermal gold deposit at Yanacocha, Peru. XPS analyses of the As3+-pyrite confirm that As is present largely as As3+. EMPA analyses show that As3+-pyrite incorporates up to 3.05 at % of As and 0.53 at. %, 0.1 at. %, 0.27 at. %, 0.22 at. %, 0.08 at. % and 0.04 at. % of Pb, Au, Cu, Zn, Ni, and Co, respectively. Incorporation of As3+ in the pyrite could be written like: As3++yAu++1-y(□)⇔2Fe2+; where Au+ and vacancy (□) help to maintain the excess charge. HRTEM observations reveal a sharp boundary between As-free pyrite and the first overgrowth of As3+-pyrite (20-40 nm thick) and co-linear lattice fringes indicating epitaxial growth of As3+-pyrite on As-free pyrite. Overgrowths of As3+-pyrite onto As-free pyrite can be divided into three groups on the basis of crystal size, 8-20 nm, 100-300 nm and 400-900 nm, and the smaller the crystal size the higher the concentration of toxic arsenic and trace metals. The Yanacocha deposit, in which As3+-pyrite was found, formed under relatively oxidizing conditions in which the dominant form of dissolved As in the stability field of pyrite is As3+; in contrast, reducing conditions are typical of most environments that host As1−-pyrite. As3+-pyrite will likely be found in other oxidizing hydrothermal and diagenetic environments, including high-sulfidation epithermal deposits and shallow groundwater systems, where probably kinetically controlled formation of nanoscale crystals such as observed here would be a major control on incorporation and release of As3+ and toxic heavy metals in oxidizing natural systems.  相似文献   

17.
《Geochimica et cosmochimica acta》1999,63(19-20):3171-3182
The oxidation rate of pyrite at pH 7, 25°C and at constant partial pressure of oxygen (0.21 and 0.177 atm) was measured in the presence of the Fe(III)-chelators NTA, oxalate, leucine, EDTA, citrate, IDA and the Fe(III)-reductant ascorbic acid. With the exception of leucine and EDTA, non-reducing Fe(III)-chelators increased the oxidation rate relative to the reference state of formation of the Fe(OH)2+ complex at pH 7. The rate increase was proportional to the logarithm of the conditional stability constant of the ligands for the complexation of Fe3+. No effect on the oxidation rate was observed in the presence of EDTA, which shifted the redox potential of the redox couple Fe2+/Fe3+ to a value below that in the absence of any ligand at pH 7. Ascorbic acid decreased the pyrite oxidation rate by a factor of 5 at ascorbic acid concentrations between 10−4 and 10−2 mol L−1. Comparison of the rate constants for the oxidation of ascorbic acid by surface bound Fe(III) in the absence and presence of pyrite shows that the pyrite surface accelerates this reaction by a factor of 10. The oxidation of both pyrite and ascorbic acid is of fractional order with respect to ascorbic acid (HAsc): rpy=0.55 c(HAsc)−0.35 rHAsc=3.6 c(HAsc)0.59. Both the results from experiments with Fe(III)-chelating ligands and the Fe(III)-reductant, suggest a very efficient interference in the electron cycling between Fe(II) and Fe(III) at the pyrite surface. The interference seems to be mainly related to the reductive side of the iron cycling. It is therefore concluded that the electron transfer between ferric iron and pyritic sulfur limits the pyrite oxidation rate at pH 7.  相似文献   

18.
In addition to equilibrium isotopic fractionation factors experimentally derived, theoretical predictions are needed for interpreting isotopic compositions measured on natural samples because they allow exploring more easily a broader range of temperature and composition. For iron isotopes, only aqueous species were studied by first-principles methods and the combination of these data with those obtained by different methods for minerals leads to discrepancies between theoretical and experimental isotopic fractionation factors. In this paper, equilibrium iron isotope fractionation factors for the common minerals pyrite, hematite, and siderite were determined as a function of temperature, using first-principles methods based on the density functional theory (DFT). In these minerals belonging to the sulfide, oxide and carbonate class, iron is present under two different oxidation states and is involved in contrasted types of interatomic bonds. Equilibrium fractionation factors calculated between hematite and siderite compare well with the one estimated from experimental data (ln α57Fe/54Fe = 4.59 ± 0.30‰ and 5.46 ± 0.63‰ at 20 °C for theoretical and experimental data, respectively) while those for Fe(III)aq-hematite and Fe(II)aq-siderite are significantly higher that experimental values. This suggests that the absolute values of the reduced partition functions (β-factors) of aqueous species are not accurate enough to be combined with those calculated for minerals. When compared to previous predictions derived from Mössbauer or INRXS data [Polyakov V. B., Clayton R. N., Horita J. and Mineev S. D. (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochim. Cosmochim. Acta71, 3833-3846], our iron β-factors are in good agreement for siderite and hematite while a discrepancy is observed for pyrite. However, the detailed investigation of the structural, electronic and vibrational properties of pyrite as well as the study of sulfur isotope fractionation between pyrite and two other sulfides (sphalerite and galena) indicate that DFT-derived β-factors of pyrite are as accurate as for hematite and siderite. We thus suggest that experimental vibrational density of states of pyrite should be re-examined.  相似文献   

19.
The chemical weathering of primary Fe-bearing minerals, such as biotite and chlorite, is a key step of soil formation and an important nutrient source for the establishment of plant and microbial life. The understanding of the relevant processes and the associated Fe isotope fractionation is therefore of major importance for the further development of stable Fe isotopes as a tracer of the biogeochemical Fe cycle in terrestrial environments. We investigated the Fe mineral transformations and associated Fe isotope fractionation in a soil chronosequence of the Swiss Alps covering 150 years of soil formation on granite. For this purpose, we combined for the first time stable Fe isotope analyses with synchrotron-based Fe-EXAFS spectroscopy, which allowed us to interpret changes in Fe isotopic composition of bulk soils, size fractions, and chemically separated Fe pools over time in terms of weathering processes. Bulk soils and rocks exhibited constant isotopic compositions along the chronosequence, whereas soil Fe pools in grain size fractions spanned a range of 0.4‰ in δ56Fe. The clay fractions (<2 μm), in which newly formed Fe(III)-(hydr)oxides contributed up to 50% of the total Fe, were significantly enriched in light Fe isotopes, whereas the isotopic composition of silt and sand fractions, containing most of the soil Fe, remained in the range described by biotite/chlorite samples and bulk soils. Iron pools separated by a sequential extraction procedure covered a range of 0.8‰ in δ56Fe. For all soils the lightest isotopic composition was observed in a 1 M NH2OH-HCl-25% acetic acid extract, targeting poorly-crystalline Fe(III)-(hydr)oxides, compared with easily leachable Fe in primary phyllosilicates (0.5 M HCl extract) and Fe in residual silicates. The combination of the Fe isotope measurements with the speciation data obtained by Fe-EXAFS spectroscopy permitted to quantitatively relate the different isotope pools forming in the soils to the mineral weathering reactions which have taken place at the field site. A kinetic isotope effect during the Fe detachment from the phyllosilicates was identified as the dominant fractionation mechanism in young weathering environments, controlling not only the light isotope signature of secondary Fe(III)-(hydr)oxides but also significantly contributing to the isotope signature of plants. The present study further revealed that this kinetic fractionation effect can persist over considerable reaction advance during chemical weathering in field systems and is not only an initial transient phenomenon.  相似文献   

20.
At a watershed scale, sediments and soil weathering exerts a control on solid and dissolved transport of trace elements in surface waters and it can be considered as a source of pollution. The studied subwatershed (1.5 km2) was located on an As-geochemical anomaly. The studied soil profile showed a significant decrease of As content from 1500 mg kg−1 in the 135–165 cm deepest soil layer to 385 mg kg−1 in the upper 0–5 cm soil layer. Directly in the stream, suspended matter and the <63 μm fraction of bed sediments had As concentrations greater than 400 mg kg−1. In all these solid fractions, the main representative As-bearing phases were determined at two different observation scales: bulk analyses using X-ray absorption structure spectroscopy (XAS) and microanalyses using scanning electron microscope (SEM) and associated electron probe microanalyses (EPMA), as well as micro-Raman spectroscopy and synchrotron-based micro-scanning X-ray diffraction (μSXRD) characterization. Three main As-bearing phases were identified: (i) arsenates (mostly pharmacosiderite), the most concentrated phases As in both the coherent weathered bedrock and the 135–165 cm soil layer but not observed in the river solid fraction, (ii) Fe-oxyhydroxides with in situ As content up to 15.4 wt.% in the deepest soil layer, and (iii) aluminosilicates, the least concentrated As carriers. The mineralogical evolution of As-bearing phases in the soil profile, coupled with the decrease of bulk As content, may be related to pedogenesis processes, suggesting an evolution of arsenates into As-rich Fe-oxyhydroxides. Therefore, weathering and mineralogical evolution of these As-rich phases may release As to surface waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号