首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deep Quaternary groundwater is the main source for industrial, domestic, and agricultural water supply in the North China Plain (NCP). There is currently a regional decline of groundwater levels, deterioration of water quality and environmental geological problems induced by increasing exploitation of the NCP Quaternary aquifer system. To trace sources and transport processes of dissolved Cl in a regional aquifer system and to reveal hydrogeological characteristics of Quaternary complexes, δ37Cl, δ18O and δD, and chemical compositions (including F, Cl, Br) of the deep groundwater sampled from the northern flow system of the NCP were measured along the west–east groundwater flow paths. The measured δ37Cl values decreased from 0.39‰ to −2.22‰ (SMOC) along the groundwater flow direction, with increasing Cl concentrations. Marine aerosol input via rainfall is the main source of Cl in the deep groundwater near the recharge areas, and subsequent evaporation/evapotranspiration appears to be responsible for Cl accumulation. Mixing of recharge water with water of high-Cl and low-δ37Cl accounts for the pattern of δ37Cl and Cl concentration observed in Aquifer-3 along the west–east transect. The water with high-Cl and low-δ37Cl is likely from pore water released from compacted clays induced by over-exploitation of deep groundwater, suggesting that clay is a dominant subsurface source of Cl for groundwater where a regional depression cone is present in the Quaternary aquifers. The groundwater of Aquifer-4 in the Huang-Hua depression is potentially mixed with an upward flux of Cl from the Neogene aquifer through subvertical faults. Diffusion and ion filtration are two mechanisms invoked to explain the highly negative δ37Cl data for groundwater of Aquifer-4 in the Yanshan–Haixing areas, which provides new insight into solute migration and the hydraulic relationship in the strongly exploited groundwater system. This study using the conservative solute Cl provides additional important information for further investigations of the geochemistry of a wide range of reactive solutes in the Quaternary aquifer system, so guiding water resource management.  相似文献   

2.
Saline groundwaters were recovered from undisturbed (Restigouche deposit) and active (Brunswick #12 mine) Zn-Pb volcanogenic massive sulfide deposits in the Bathurst Mining Camp (BMC), northern New Brunswick, Canada. These groundwaters, along with fresh to brackish meteoric ground and surface waters from the BMC, have been analyzed to determine their major, trace element and stable isotopic (O, H, C, and B) compositions. Saline groundwaters (total dissolved solids = 22-45 g/L) are characterized by relatively high Na/Ca ratios compared to brines from the Canadian Shield and low Na/Clmolar and δ11B isotopic compositions (−2.5‰ to 11.1‰) compared to seawater. Although saline waters from the Canadian Shield commonly have oxygen and hydrogen isotopic compositions that plot to the left of the global meteoric water line, those from the BMC fall close to the water line. Fracture and vein carbonate minerals at the Restigouche deposit have restricted carbon isotopic compositions of around −5‰ to −6‰. The carbon isotopic compositions of the saline waters at the Restigouche deposit (+12‰ δ13CDIC) are the result of fractionation of dissolved inorganic carbon by methanogenesis. We suggest that, unlike previous models for shield brines, the composition of saline waters in the BMC is best explained by prolonged water-rock reaction, with no requirement of precursor seawater. We suggest that elevated Br/Cl ratios of saline waters compared to seawater may be explained by differential uptake of Br and Cl during groundwater evolution through water-rock reaction.  相似文献   

3.
The stable isotopic composition of dissolved Cl-Cl- in rainwater was measured from a coastal and an interior location in eastern Canada. At the interior Bonner Lake, Ontario, site the δ37Cl values of dissolved Cl-Cl- in precipitation ranged from −3.5‰ to −1.2‰ (SMOC) with an amount-weighted annual average of −2.3‰. At the coastal site, Bay D’Espoir, Newfoundland, δ37Cl values of dissolved Cl-Cl- values ranged from −3.1‰ to 0.0‰ with an amount-weighted annual average of −1.3‰. These negative δ37Cl values provide evidence that atmospheric HCl is 37Cl depleted, presumably from acidification of sea-salt aerosols. Accordingly, dissolved Cl-Cl- in the headwaters of two montane rivers in Western Canada had similarly depleted δ37Cl values. These results have implications to the interpretation of the isotopic compositions of dissolved Cl-Cl- in surface waters, formation fluids, and groundwaters.  相似文献   

4.
Changes in the climatic conditions during the Late Quaternary and Holocene greatly impacted the hydrology and geochemical evolution of groundwaters in the Great Lakes region. Increased hydraulic gradients from melting of kilometer-thick Pleistocene ice sheets reorganized regional-scale groundwater flow in Paleozoic aquifers in underlying intracratonic basins. Here, we present new elemental and isotopic analyses of 134 groundwaters from Silurian-Devonian carbonate and overlying glacial drift aquifers, along the margins of the Illinois and Michigan basins, to evaluate the paleohydrology, age distribution, and geochemical evolution of confined aquifer systems. This study significantly extends the spatial coverage of previously published groundwaters in carbonate and drift aquifers across the Midcontinent region, and extends into deeper portions of the Illinois and Michigan basins, focused on the freshwater-saline water mixing zones. In addition, the hydrogeochemical data from Silurian-Devonian aquifers were integrated with deeper basinal fluids, and brines in Upper Devonian black shales and underlying Cambrian-Ordovician aquifers to reveal a regionally extensive recharge system of Pleistocene-age waters in glaciated sedimentary basins. Elemental and isotope geochemistry of confined groundwaters in Silurian-Devonian carbonate and glacial drift aquifers show that they have been extensively altered by incongruent dissolution of carbonate minerals, dissolution of halite and anhydrite, cation exchange, microbial processes, and mixing with basinal brines. Carbon isotope values of dissolved inorganic carbon (DIC) range from −10 to −2‰, 87Sr/86Sr ratios range from 0.7080 to 0.7090, and δ34S-SO4 values range from +10 to 30‰. A few waters have elevated δ13CDIC values (>15‰) from microbial methanogenesis in adjacent organic-rich Upper Devonian shales. Radiocarbon ages and δ18O and δD values of confined groundwaters indicate they originated as subglacial recharge beneath the Laurentide Ice Sheet (14-50 ka BP, −15 to −13‰ δ18O). These paleowaters are isolated from shallow flow systems in overlying glacial drift aquifers by lake-bed clays and/or shales. The presence of isotopically depleted waters in Paleozoic aquifers at relatively shallow depths illustrates the importance of continental glaciation on regional-scale groundwater flow. Modern groundwater flow in the Great Lakes region is primarily restricted to shallow unconfined glacial drift aquifers. Recharge waters in Silurian-Devonian and unconfined drift aquifers have δ18O values within the range of Holocene precipitation: −11 to −8‰ and −7 to −4.5‰ for northern Michigan and northern Indiana/Ohio, respectively. Carbon and Sr isotope systematics indicate shallow groundwaters evolved through congruent dissolution of carbonate minerals under open and closed system conditions (δ13CDIC = −14.7 to−11.1‰ and 87Sr/86Sr = 0.7080-0.7103). The distinct elemental and isotope geochemistry of Pleistocene- versus Holocene-age waters further confirms that surficial flow systems are out of contact with the deeper basinal-scale flow systems. These results provide improved understanding of the effects of past climate change on groundwater flow and geochemical processes, which are important for determining the sustainability of present-day water resources and stability of saline fluids in sedimentary basins.  相似文献   

5.
Eight DSDP/ODP cores were analyzed for major ion concentrations and δ37Cl values of water-soluble chloride (δ37ClWSC) and structurally bound chloride (δ37ClSBC) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition.The average total Cl content of all 86 samples is 0.26 ± 0.16 wt.% (0.19 ± 0.10 wt.% as water-soluble Cl (XWSC) and 0.09 ± 0.09 wt.% as structurally bound Cl (XSBC)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl site and the water-soluble Cl site varies from − 1.08‰ to + 1.16‰, averaging to + 0.21‰. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk δ37Cl values (+ 0.05‰ to + 0.36‰); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk δ37Cl values (− 1.26‰ and − 0.54‰). The cores with negative δ37Cl values also have variable Cl / SO42 ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ∼1‰ with depth for both the water-soluble and structurally bound Cl fractions.Non-zero bulk δ37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive δ37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low δ37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative δ37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.  相似文献   

6.
7.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

8.
Modern seawater has a uniform δ37Cl value (0.0‰), with an exception in the upper current of the Bosphorus (0.4‰). Marine halite ranging in age from Cambrian to Miocene has δ37Cl values of 0.0 ± 0.9‰, with most of the data in the range 0.0 ± 0.5‰. Mean δ37Cl values differ measurably between basins, with no evident relationship to basin size or to age. Smaller evaporite bodies have the largest δ37Cl ranges. Potash facies halite has mean δ37Cl values lower than those of halite facies salt in the East Siberia and Zechstein basins. The bulk δ37Cl of bedded halite preserving sedimentary textures cannot be shifted measurably after deposition under plausible natural conditions. During the Phanerozoic, a detectable change in the δ37Cl values of the oceans is unlikely as a result of Cl fluxes to and from the mantle and evaporites. In halite, the values of δ37Cl that cannot be explained by fractionation occurring on crystallization are best explained by the addition of non-marine Cl with δ37Cl ≠ 0.0‰ to evaporite brine.  相似文献   

9.
The Quaternary coastal plain aquifer down gradient of the Wadi Watir catchment is the main source of potable groundwater in the arid region of south Sinai, Egypt. The scarcity of rainfall over the last decade, combined with high groundwater pumping rates, have resulted in water-quality degradation in the main well field and in wells along the coast. Understanding the sources of groundwater salinization and amount of average annual recharge is critical for developing sustainable groundwater management strategies for the long-term prevention of groundwater quality deterioration. A combination of geochemistry, conservative ions (Cl and Br), and isotopic tracers (87/86Sr, δ81Br, δ37Cl), in conjunction with groundwater modeling, is an effective method to assess and manage groundwater resources in the Wadi Watir delta aquifers. High groundwater salinity, including high Cl and Br concentrations, is recorded inland in the deep drilled wells located in the main well field and in wells along the coast. The range of Cl/Br ratios for shallow and deep groundwaters in the delta (∼50–97) fall between the end member values of the recharge water that comes from the up gradient watershed, and evaporated seawater of marine origin, which is significantly different than the ratio in modern seawater (228). The 87/86Sr and δ81Br isotopic values were higher in the recharge water (0.70,723 < 87/86Sr < 0.70,894, +0.94 < δ81Br < +1.28‰), and lower in the deep groundwater (0.70,698 < 87/86Sr < 0.70,705, +0.22‰ < δ81Br < +0.41‰). The δ37Cl isotopic values were lower in the recharge water (−0.48 < δ37Cl < −0.06‰) and higher in the deep groundwater (−0.01 < δ37Cl < +0.22‰). The isotopic values of strontium, chloride, and bromide in groundwater from the Wadi Watir delta aquifers indicate that the main groundwater recharge source comes from the up gradient catchment along the main stream channel entering the delta. The solute-weighted mass balance mixing models show that groundwater in the main well field contains 4–10% deep saline groundwater, and groundwater in some wells along the coast contain 2–6% seawater and 18–29% deep saline groundwater.A three-dimensional, variable-density, flow-and-transport SEAWAT model was developed using groundwater isotopes (87Sr/86Sr, δ37Cl and δ81Br) and calibrated using historical records of groundwater level and salinity. δ18O was used to normalize the evaporative effect on shallow groundwater salinity for model calibration. The model shows how groundwater salinity and hydrologic data can be used in SEAWAT to understand recharge mechanisms, estimate groundwater recharge rates, and simulate the upwelling of deep saline groundwater and seawater intrusion. The model indicates that most of the groundwater recharge occurs near the outlet of the main channel. Average annual recharge to delta alluvial aquifers for 1982 to 2009 is estimated to be 2.16 × 106 m3/yr. The main factors that control groundwater salinity are overpumping and recharge availability.  相似文献   

10.
The carbon, oxygen, and strontium isotope compositions of carbonate rocks from the upper Miocene Kudankulam Formation, southern India, were measured to understand palaeoenvironment and carbonate diagenesis of this formation. Both carbon and oxygen isotope ratios of various carbonate phases including whole rocks, ooids, molluscan mold-fill and sparry pore-fill calcite cements are depleted in 18O and 13C compared to those of contemporaneous seawater, indicating that the Kudankulam carbonates underwent extensive meteoric diagenesis. Based on δ13C and δ18O values for sparry calcite cements (pore-fill and molluscan mold-fill) formed in the meteoric diagenetic realm (δ13C from −7.8‰ to −6.0‰ and −9.0‰ to −7.0‰; δ18O from −9.2‰ to −6.5‰ and −9.4‰ to −2.6‰, respectively), it is interpreted that the diagenetic system was open and was proximal to the vadose water recharge zone. The negative δ18O values of various carbonate components (about −9.4‰ to −4.1‰ for whole rocks; about −8.4‰ to −2.6‰ for ooids) suggest that during the late Miocene the paleoclimate of the study area was humid, unlike today, probably due to the intense Indian monsoon system. The carbon isotope compositions (−7.9‰ to −3.6‰ for whole rocks; −4.9‰ to −1.5‰ for ooids) are consistent with the interpretation that the paleo-ecosystem comprised a significant proportion of C4 type plants, supporting a scenario of expansion of C4 plants during the late Miocene in the Indian subcontinent as far south as the southern tip of India. The 87Sr/86Sr ratios of the Kudankulam carbonates (0.70920 to 0.72130) are much greater than those of the contemporaneous or modern seawater (between 0.7089 and 0.7091) and show a general decrease up-sequence. Such high Sr isotope ratios indicate significant radiogenic 87Sr influx to the system from the Archean rocks exposed in the drainage area, implying that the deep-seated Archean rocks were already exposed in southern India by the late Miocene.  相似文献   

11.
Groundwater is the most important source of water supply in southern Tunisia. Previous hydrogeologic and isotopic studies carried out in this region revealed the existence of two major aquifer systems: the “Complex Terminal” (CT) and the “Continental Intercalaire” (CI). Turonian carbonates constitute one of the major aquifer levels of the CT multilayered aquifer. It extends over most of southern Tunisia, and its hydrodynamic regime is largely influenced by tectonics, lithology and recharge conditions. Forty-eight groundwater samples from the CI and Turonian aquifers were collected between January and April 2004 for chemical and isotopic analyses. Hydrochemistry and isotopic tools were combined to get an insight into the processes controlling chemical composition of groundwater and wide-scale interaction of these two aquifer systems. Analysis of the dissolved constituents revealed that several processes control the observed chemical composition: (i) incongruent dissolution of carbonate minerals, (ii) dissolution of evaporitic minerals, and (iii) cation exchange. Dissolution alone cannot account for the observed high supersaturation states of groundwater with respect to calcite and dolomite. The observed supersaturation is most probably linked to geogenic CO2 entering water-bearing horizons of the CT and CI aquifers via deep tectonic faults and discontinuities and subsequent degassing in the exploitation wells. Presence of geogenic CO2 in the investigated region was confirmed by C isotope data of the DIC reservoir. The radiocarbon content of the Turonian samples varied between 9.5 and 43 pmc. For CI samples generally lower values were recorded, between 3.8 and 22.5 pmc. Stable isotope composition of Turonian groundwater samples varied from −8.3 to −5.3‰ for δ18O and from −60 to −25‰ for δ2H. The corresponding ranges of δ values for the Continental Intercalaire samples were from −8.9‰ to −6.9‰ for δ18O and from −68.2‰ to −45.7‰ for δ2H. Stable isotope composition of groundwater representing CT and CI aquifers provide strong evidence for regional interaction between both systems.  相似文献   

12.
We present some of the first analyses of the stable isotopic composition of dissolved silicon (Si) in groundwater. The groundwater samples were from the Navajo Sandstone aquifer at Black Mesa, Arizona, USA, and the Si isotope composition of detrital feldspars and secondary clay coatings in the aquifer were also analyzed. Silicon isotope compositions were measured using high-resolution multi-collector inductively coupled mass spectrometry (HR-MC-ICP-MS) (Nu1700 & NuPlasma HR). The quartz dominated bulk rock and feldspar separates have similar δ30Si of −0.09 ± 0.04‰ and −0.15 ± 0.04‰ (±95% SEM), respectively, and clay separates are isotopically lighter by up to 0.4‰ compared to the feldspars. From isotopic mass-balance considerations, co-existing aqueous fluids should have δ30Si values heavier than the primary silicates. Positive δ30Si values were only found in the shallow aquifer, where Si isotopes are most likely fractionated during the dissolution of feldspars and subsequent formation of clay minerals. However, δ30Si decreases along the flow path from 0.56‰ to −1.42‰, representing the most negative dissolved Si isotope composition so far found for natural waters. We speculate that the enrichment in 28Si is due to dissolution of partly secondary clay minerals and low-temperature silcretes in the Navajo Sandstone. The discovery of the large range and systematic shifts of δ30Si values along a groundwater flow path illustrates the potential utility of stable Si isotopes for deciphering the Si cycling in sedimentary basins, tracing fluid flow, and evaluating global Si cycle.  相似文献   

13.
178 groundwater and surface waters have been sampled from April to September 1994 in an endoreic basin located in the N of Mexico (Comarca Lagunera). In this area, groundwater has been exploited over the past century mainly for irrigation and cattle supply. Recent intensive pumping has caused the lowering of the water table at a rate of 1 m a−1 Chemical analyses have been performed on all collected samples and 37 of them have been selected for isotopic measurements (18O,2H,13C and14C). Water stable isotope contents (18O,2H) show an increasing evaporation of the groundwater towards the Nazas river. They also indicate that the recharge occurs from the Nazas river and from the mountains surrounding the depression (Sierra Madre Occidental). Water presents a large spatial variability of the chemical facies (SO4Ca, SO4ClNa, HCO3-Ca and HCO3-Na) which is in relation with (i) their interaction with the geological formations of the basin (carbonates, gypsum and various silicates) and (ii) evaporation. This evaporation occurs in the upper part of the unsaturated zone during infiltration especially for the groundwater sampled near the Nazas river. The14C activity varies between 110.4 (± 1.1) and 4.0 (±0.2) pmc. The13C contents of the total dissolved inorganic C (TDIC) range between −11.0 and −3.6‰. The calculated13C contents of the CO2 in equilibrium with the TDIC, varying between −18.4%0 to −10.9% indicate two origins of C in solution: the carbonate matrix (δ13C= +0.9‰) and the soil CO2 (δ13C from −27.7‰ to −21.7‰ for the cultivated areas). Mean residence times have been determined after correction of the initial activities for dead C from the rock matrix. The mean residence times confirm a modern recharge of the groundwater from the Nazas and indicate the presence of palaeowaters in the northern and southern parts of the basin (up to 30 ka BP).  相似文献   

14.
Equilibrium chlorine-isotope (37Cl/35Cl) fractionations have been determined by using published vibrational spectra and force-field modeling to calculate reduced partition function ratios for Cl-isotope exchange. Ab initio force fields calculated at the HF/6-31G(d) level are used to estimate unknown vibrational frequencies of 37Cl-bearing molecules, whereas crystalline phases are modeled by published lattice-dynamics models. Calculated fractionations are principally controlled by the oxidation state of Cl and its bond partners. Molecular mass (or the absence of C-H bonds) also appears to play a role in determining relative fractionations among simple Cl-bearing organic species. Molecules and complexes with oxidized Cl (i.e., Cl0, Cl+, etc.) will concentrate 37Cl relative to chlorides (substances with Cl). At 298 K, ClO2 (containing Cl4+) and [ClO4] (containing Cl7+) will concentrate 37Cl relative to chlorides by as much as 27‰ and 73‰, respectively, in rough agreement with earlier calculations. Among chlorides, 37Cl will be concentrated in substances where Cl is bonded to +2 cations (i.e., FeCl2, MnCl2, micas, and amphiboles) relative to substances where Cl is bonded to +1 cations (such as NaCl) by ∼2 to 3‰ at 298 K; organic molecules with C-Cl bonds will be even richer in 37Cl (∼5 to 9‰ at 298 K). Precipitation experiments, in combination with our results, provide an estimate for Cl-isotope partitioning in brines and suggest that silicates (to the extent that their Cl atoms are associated with nearest-neighbor +2 cations analogous with FeCl2 and MnCl2) will have higher 37Cl/35Cl ratios than coexisting brine (by ∼2 to 3‰ at room temperature). Calculated fractionations between HCl and Cl2, and between brines and such alteration minerals, are in qualitative agreement with both experimental results and systematics observed in natural samples. Our results suggest that Cl-bearing organic molecules will have markedly higher 37Cl/35Cl ratios (by 5.8‰ to 8.5‰ at 295 K) than coexisting aqueous solutions at equilibrium. Predicted fractionations are consistent with the presence of an isotopically heavy reservoir of HCl that is in exchange equilibrium with Claq in large marine aerosols.  相似文献   

15.
《Chemical Geology》2002,182(2-4):565-582
Groundwater samples and a rock leachate sample from the Stripa mine and south central Sweden have been analysed for their δ37Cl values. Results reveal that the salinity found at depth in the groundwater is most likely derived form water–rock interaction. The overall distribution is one of δ37Cl enrichment with depth and with chloride concentration. This trend is comparable to other sites in the Fennoscandian Shield where it is believed that deep groundwaters derive their δ37Cl values from the local bedrock.  相似文献   

16.
Compound-specific Cl-isotope analysis was performed on the persistent and bioaccumulating compound tris-(4-chlorophenyl)methane (4,4′,4″-TCPMe, referred to as TCPMe in this study) to elucidate whether its main source is natural or anthropogenic. Blubber from the Baltic grey seal (Halichoerus grypus) was extracted by continuous acetonitrile partitioning, and the TCPMe was isolated from the extract by preparative-capillary gas chromatography. Chlorine isotope analysis was subsequently performed by sealed-tube combustion in conjunction with thermal-ionization mass spectrometry (TIMS). The δ37Cl of TCPMe was −3.5 ± 0.5‰, similar to the previously reported δ37Cl of technical grade p,p′-DDT (referred to as DDT in this study). The data is not consistent with a putative marine natural source of TCPMe, as enzymatic (biotic) production is reported to give values of δ37Cl < −10‰. The δ37Cl–TCPMe data thus supports the hypothesis that TCPMe is produced as a byproduct during DDT synthesis and is released to the environment through the same pathways as DDT. It is also consistent with tris-(4-chlorophenyl)methanol as the primary biotransformation product of TCPMe.  相似文献   

17.
《Applied Geochemistry》2005,20(9):1658-1676
Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na–HCO3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca–Mg–HCO3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 °C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ18O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ18O groundwaters. Altitudinal depletion of δ18O is 0.1‰/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude.  相似文献   

18.
Climate change in the SW USA is likely to involve drier conditions and higher surface temperatures. In order to better understand the evolution of water chemistry and the sources of aqueous SO4 in these semi-arid settings, chemical and S isotope compositions were determined of springs, groundwater, and bedrock associated with a Permian fractured carbonate aquifer located in the southern Sacramento Mountains, New Mexico, USA. The results suggest that the evolution of water chemistry in the semi-arid carbonate aquifer is mainly controlled by dedolomitization of bedrock, which was magnified by increasing temperature and increasing dissolution of gypsum/anhydrite along the groundwater flow path. The δ34S of dissolved SO4 in spring and groundwater samples varied from +9.0‰ to +12.8‰, reflecting the mixing of SO4 from the dissolution of Permian gypsum/anhydrite (+12.3‰ to +13.4‰) and oxidation of sulfide minerals (−24.5‰ to −4.2‰). According to S isotope mass balance constraints, the contribution of sulfide-derived SO4 was considerable in the High Mountain recharge areas, accounting for up to ∼10% of the total SO4 load. However, sulfide weathering decreased in importance in the lower reaches of the watershed. A smaller SO4 input of ∼2–4% was contributed by atmospheric wet deposition. This study implies that the δ34S variation of SO4 in semi-arid environments can be complex, but that S isotopes can be used to distinguish among the different sources of weathering. Here it was found that H2SO4 dissolution due to sulfide oxidation contributes up to 5% of the total carbonate weathering budget, while most of the SO4 is released from bedrock sources during dedolomitization.  相似文献   

19.
The quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl, 3H, tritiogenic helium-3 (3He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O2 (DO), H2S, CH4, δ18O, δD, and 14C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl, δ18O, δD, CFC-12, and the quantity (3H+3He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H2S, CH4, 14C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl and δ18O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water (δ18O=−2.5±0.3‰, Cl=12.2±2 mg/l), (2) regional infiltration water (δ18O=−4.2±0.1‰, Cl=2.3±0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer (δ18O=−3.4±0.1‰, Cl=2.6±0.1 mg/l) (uncertainties are ±1σ). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to the N and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining beds overlying the Upper Floridan aquifer.  相似文献   

20.
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号