首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in the AOSR. At forested plots >90 km from the operations, SO4 deposition was ∼1.4 kg SO4-S ha−1 yr−1 for bulk deposition and ∼3.3 kg SO4-S ha−1 yr−1 for throughfall deposition. Throughfall SO4 deposition rates in the AOSR exceeded bulk deposition rates at all sites by a factor of 2–3, indicating significant inputs of dry deposition especially under forest canopies. Both bulk and throughfall SO4 deposition rates were elevated within 29 km distance of the industrial operations with deposition rates as high as 11.7 kg SO4-S ha−1 yr−1 for bulk deposition and 39.2 kg SO4-S ha−1 yr−1 for throughfall at industrial sites. Sulfur isotope ratio measurements of atmospheric SO4 deposited in the AOSR revealed that at a few selected locations 34S-depleted SO4, likely derived from H2S emissions from tailing ponds contributes to local atmospheric SO4 deposition. In general, however, δ34S values of SO4 deposition at distant forested plots (>74 km) with low deposition rates were not isotopically different from δ34S values at sites with high deposition rates in the AOSR and are, therefore, not suitable to determine industrial S contributions. However, O isotope ratios of atmospheric SO4 in bulk and throughfall deposition in the AOSR showed a distinct trend of decreasing δ18O-SO4 values with increasing SO4 deposition rates allowing quantification of industrial contributions to atmospheric SO4 deposition. Two-end-member mixing calculations revealed that open field bulk SO4 deposition especially at industrial sites in close proximity (<29 km) to the operations is significantly (17–59%) affected by industrial S emissions and that throughfall generally contained 49–100% SO4 of industrial origin. Hence, it is suggested that δ18O values of SO4 may constitute a suitable tracer for quantifying industrial contributions to atmospheric SO4 deposition in the AOSR.  相似文献   

2.
Despite reduced anthropogenic deposition during the last decades, deposition sulphate may still play an important role in the biogeochemical cycles of S and many catchments may act as net sources of S that may remain for several decades. The aim of this study is to elucidate the temporal and spatial dynamics of both SO42− and δ34SSO4 in stream water from catchments with varying percentage of wetland and forest coverage and to determine their relative importance for catchment losses of S. Stream water samples were collected from 15 subcatchments ranging in size from 3 to 6780 ha, in a boreal stream network, northern Sweden. In forested catchments (<2% wetland cover) S-SO42− concentrations in stream water averaged 1.7 mg L−1 whereas in wetland dominated catchments (>30% wetland cover) the concentrations averaged 0.3 mg L−1. A significant negative relationship was observed between S-SO42− and percentage wetland coverage (r2 = 0.77, p < 0.001) and the annual export of stream water SO42− and wetland coverage (r2 = 0.76, p < 0.001). The percentage forest coverage was on the other hand positively related to stream water SO42− concentrations and the annual export of stream water SO42− (r2 = 0.77 and r2 = 0.79, respectively). The annual average δ34SSO4 value in wetland dominated streams was +7.6‰ and in streams of forested catchments +6.7‰. At spring flood the δ34SSO4 values decreased in all streams by 1‰ to 5‰. The δ34SSO4 values in all streams were higher than the δ34SSO4 value of +4.7‰ in precipitation (snow). The export of S ranged from 0.5 kg S ha−1 yr−1 (wetland headwater stream) to 3.8 kg S ha−1 yr−1 (forested headwater stream). With an average S deposition in open field of 1.3 kg S ha−1 yr−1 (2002-2006) the mass balance results in a net export of S from all catchments, except in catchments with >30% wetland. The high temporal and spatial resolution of this study demonstrates that the reducing environments of wetlands play a key role for the biogeochemistry of S in boreal landscapes and are net sinks of S. Forested areas, on the other hand were net sources of S.  相似文献   

3.
This study presents a detailed discrimination between the natural and anthropogenic sources of dissolved major elements in the Têt River, a typical small coastal river in the south of France. The main objectives were to quantify the materials that were released by human activities in the basin, and to determine the specific element inputs for the major land use forms. The dissolved material fluxes were estimated by weekly monitoring over a hydrological year (2000–2001) along the major water gauging stations, and the flux relationships were examined in the context of anthropogenic and natural basin characteristics as determined by a Geographical Information System (GIS). Intensive agricultural land use in the form of fruit tree cultures and vineyards has a strong control on the dissolved element fluxes in the river. Area specific element releases for these cultures are greatest for SO4, with an estimated average of about 430 ± 18 keq km−2 a−1. This is ?11 times the natural SO4 release by rock weathering. Also for K, NO3, PO4 and Mg, the specific releases were ?6 times the natural weathering rates (respectively about 44, 60, 4 and 265 keq km−2 a−1). Waste-waters are the other major source of anthropogenic elements in the river. They have an important role for the fluxes of inorganic P and N, but they are also a considerable source of Cl and Na to the river. For example, the average annual release of Cl is around 150 moles/inhabitant in the rural basin parts. Further downstream, however, where population density strongly increases, industrial effluents can enhance this value (>300 moles/inhabitant). The waste-waters contribute more than 70% of the dissolved inorganic N export to the sea, although their contribution to the average DOC export is almost negligible (3%).  相似文献   

4.
To study the geological control on groundwater As concentrations in Red River delta, depth-specific groundwater sampling and geophysical logging in 11 monitoring wells was conducted along a 45 km transect across the southern and central part of the delta, and the literature on the Red River delta’s Quaternary geological development was reviewed. The water samples (n = 30) were analyzed for As, major ions, Fe2+, H2S, NH4, CH4, δ18O and δD, and the geophysical log suite included natural gamma-ray, formation and fluid electrical conductivity. The SW part of the transect intersects deposits of grey estuarine clays and deltaic sands in a 15–20 km wide and 50–60 m deep Holocene incised valley. The NE part of the transect consists of 60–120 m of Pleistocene yellowish alluvial deposits underneath 10–30 m of estuarine clay overlain by a 10–20 m veneer of Holocene sediments. The distribution of δ18O-values (range −12.2‰ to −6.3‰) and hydraulic head in the sample wells indicate that the estuarine clay units divide the flow system into an upper Holocene aquifer and a lower Pleistocene aquifer. The groundwater samples were all anoxic, and contained Fe2+ (0.03–2.0 mM), Mn (0.7–320 μM), SO4 (<2.1 μM–0.75 mM), H2S (<0.1–7.0 μM), NH4 (0.03–4.4 mM), and CH4 (0.08–14.5 mM). Generally, higher concentrations of NH4 and CH4 and low concentrations of SO4 were found in the SW part of the transect, dominated by Holocene deposits, while the opposite was the case for the NE part of the transect. The distribution of the groundwater As concentration (<0.013–11.7 μM; median 0.12 μM (9 μg/L)) is related to the distribution of NH4, CH4 and SO4. Low concentrations of As (?0.32 μM) were found in the Pleistocene aquifer, while the highest As concentrations were found in the Holocene aquifer. PHREEQC-2 speciation calculations indicated that Fe2+ and H2S concentrations are controlled by equilibrium for disordered mackinawite and precipitation of siderite. An elevated groundwater salinity (Cl range 0.19–65.1 mM) was observed in both aquifers, and dominated in the deep aquifer. A negative correlation between aqueous As and an estimate of reduced SO4 was observed, indicating that Fe sulphide precipitation poses a secondary control on the groundwater As concentration.  相似文献   

5.
Tissue N contents and δ15N signatures in 175 epilithic mosses were investigated from urban to rural sites in Guiyang (SW China) to determine atmospheric N deposition. Moss N contents (0.85–2.97%) showed a significant decrease from the urban area (mean = 2.24 ± 0.32%, 0–5 km) to the rural area (mean = 1.27 ± 0.13%, 20–25 km), indicating that the level of N deposition decreased away from the urban environment, while slightly higher N contents re-occurred at sites beyond 30 km, suggesting higher N deposition in more remote rural areas. Moss δ15N ranged from −12.50‰ to −1.39‰ and showed a clear bimodal distribution (−12‰ to −6‰ and −5‰ to −2‰), suggesting that there are two main sources for N deposition in the Guiyang area. More negative δ15N (mean = −8.87 ± 1.65‰) of urban mosses mainly indicated NH3 released from excretory wastes and sewage, while the less negative δ15N (from −3.83 ± 0.82‰ to −2.48 ± 0.95‰) of rural mosses were mainly influenced by agricultural NH3. With more negative values in the urban area than in the rural area, the pattern of moss δ15N variation in Guiyang was found to be opposite to cities where N deposition is dominated by NOx–N. Therefore, NHx–N is the dominant N form deposited in the Guiyang area, which is supported by higher NHx–N than NOx–N in local atmospheric deposition. From the data showing that moss is responding to NHx–N/NOx–N in deposition it can be further demonstrated that the variation of moss δ15N from the Guiyang urban to rural area was more likely controlled by the ratio of urban-NHx/agriculture-NHx than the ratio of NHx–N/NOx–N. The results of this study have extended knowledge of atmospheric N sources in city areas, showing that urban sewage discharge could be important in cities co-generic to Guiyang.  相似文献   

6.
The nucleation and growth of CaCO3 phases from aqueous solutions with SO42−:CO32− ratios from 0 to 1.62 and a pH of ∼10.9 were studied experimentally in batch reactors at 25 °C. The mineralogy, morphology and composition of the precipitates were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and microanalyses. The solids recovered after short reaction times (5 min to 1 h) consisted of a mixture of calcite and vaterite, with a S content that linearly correlates with the SO42−:CO32− ratio in the aqueous solution. The solvent-mediated transformation of vaterite to calcite subsequently occurred. After 24 h of equilibration, calcite was the only phase present in the precipitate for aqueous solutions with SO42−:CO32− ? 1. For SO42−:CO32− > 1, vaterite persisted as a major phase for a longer time (>250 h for SO42−:CO32− = 1.62). To study the role of sulfate in stabilizing vaterite, we performed a molecular simulation of the substitution of sulfate for carbonate groups into the crystal structure of vaterite, aragonite and calcite. The results obtained show that the incorporation of small amounts (<3 mole%) of sulfate is energetically favorable in the vaterite structure, unfavorable in calcite and very unfavorable in aragonite. The computer modeling provided thermodynamic information, which, combined with kinetic arguments, allowed us to put forward a plausible explanation for the observed crystallization behavior.  相似文献   

7.
The speciation of aqueous dissolved sulfur was determined in hydrothermal waters in Iceland. The waters sampled included hot springs, acid-sulfate pools and mud pots, sub-boiling well discharges and two-phase wells. The water temperatures ranged from 4 to 210 °C, the pHT was between 2.20 and 9.30 at the discharge temperature and the SO4 and Cl concentrations were 0.020-52.7 and <0.01-10.0 mmol kg−1, respectively. The analyses were carried out on-site within ∼10 min of sampling using ion chromatography (IC) for sulfate (SO42−), thiosulfate (S2O32−) and polythionates (SxO62−) and titration and/or colorimetry for total dissolved sulfide (S2−). Sulfite (SO32−) could also be determined in a few cases using IC. Alternatively, for few samples in remote locations the sulfur oxyanions were stabilized on a resin on site following elution and analysis by IC in the laboratory. Dissolved sulfate and with few exceptions also S2− were detected in all samples with concentrations of 0.02-52.7 mmol kg−1 and <1-4100 μmol kg−1, respectively. Thiosulfate was detected in 49 samples of the 73 analyzed with concentrations in the range of <1-394 μmol kg−1 (S-equivalents). Sulfite was detected in few samples with concentrations in the range of <1-3 μmol kg−1. Thiosulfate and SO32− were not detected in <100 °C well waters and S2O32− was observed only at low concentrations (<1-8 μmol kg−1) in ∼200 °C well waters. In alkaline and neutral pH hot springs, S2O32− was present in significant concentrations sometimes corresponding to up to 23% of total dissolved sulfur (STOT). In steam-heated acid-sulfate waters, S2O32− was not a significant sulfur species. The results demonstrate that S2O32− and SO32− do not occur in the deeper parts of <150 °C hydrothermal systems and only in trace concentrations in ∼200-300 °C systems. Upon ascent to the surface and mixing with oxygenated ground and surface waters and/or dissolution of atmospheric O2, S2− is degassed and oxidized to SO32− and S2O32− and eventually to SO42− at pH >8. In near-neutral hydrothermal waters the oxidation of S2− and the interaction of S2− and S0 resulting in the formation of Sx2− are considered important. At lower pH values the reactions seemed to proceed relatively rapidly to SO42− and the sulfur chemistry of acid-sulfate pools was dominated by SO42−, which corresponded to >99% of STOT. The results suggest that the aqueous speciation of sulfur in natural hydrothermal waters is dynamic and both kinetically and source-controlled and cannot be estimated from thermodynamic speciation calculations.  相似文献   

8.
9.
Rates of anaerobic respiration are of central importance for the long-term burial of carbon (C) in peatlands, which are a relevant sink in the global C cycle. To identify constraints on anaerobic peat decomposition, we determined detailed concentration depth profiles of decomposition end-products, i.e. methane (CH4) and dissolved inorganic carbon (DIC), along with concentrations of relevant decomposition intermediates at an ombrotrophic Canadian peat bog. The magnitude of in situ net production rates of DIC and CH4 was estimated by inverse pore-water modeling. Vertical transport in the peat was slow and dominated by diffusion leading to the buildup of DIC and CH4 with depth (5500 μmol L−1 DIC, 500 μmol L−1 CH4). Highest DIC and CH4 production rates occurred close to the water table (decomposition constant kd ∼ 10−3-10−4 a−1) or in some distinct zones at depth (kd ∼ 10−4 a−1). Deeper into the peat, decomposition proceeded very slowly at about kd = 10−7 a−1. This pattern could be related to thermodynamic and transport constraints. The accumulation of metabolic end-products diminished in situ energy yields of acetoclastic methanogenesis to the threshold for microbially mediated processes (−20 to −25 kJ mol−1 CH4). The methanogenic precursor acetate also accumulated (150 μmol L−1). In line with these findings, CH4 was formed by hydrogenotrophic methanogenesis at Gibbs free energies of −35 to −40 kJ mol−1 CH4. This was indicated by an isotopic fractionation αCO2-CH4 of 1.069-1.079. Fermentative degradation of acetate, propionate and butyrate attained Gibbs free energies close to 0 kJ mol−1 substrate. Although methanogenesis was apparently limited by some other factor in some peat layers, transport and thermodynamic constraints likely impeded respiratory processes in the deeper peat. Constraints on the removal of DIC and CH4 may thus slow decomposition and contribute to the sustained burial of C in northern peatlands.  相似文献   

10.
Dissolution experiments on a serpentinite were performed at 70 °C, 0.1 MPa, in H2SO4 solution, in open and closed systems, in order to evaluate the overall dissolution rate of mineral components over different times (4, 9 and 24 h). In addition, the serpentinite powder was reacted with a NaCl-bearing aqueous solution and supercritical CO2 for 24 h at higher pressures (9-30 MPa) and temperatures (250-300 °C) either in a stirred reactor or in an externally-heated pressure vessel to assess both the dissolution rate of serpentinite minerals and the progress of the carbonation reaction. Results show that, at 0.1 MPa, MgO extraction from serpentinite ranges from 82% to 98% and dissolution rate varies from 8.5 × 10−10 mole m−2 s−1 to 4.2 × 10−9 mole m−2 s−1. Attempts to obtain carbonates from the Mg-rich solutions by increasing their pH failed since Mg- and NH4- bearing sulfates promptly precipitated. On the other hand, at higher pressures, significant crystallization (5.0-10.4 wt%) of Ca- and Fe-bearing magnesite was accomplished at 30 MPa and 300 °C using 100 g L−1 NaCl aqueous solutions. The corresponding amount of CO2 sequestered by crystallization of carbonates is 9.4-15.9 mole%. Dissolution rate (from 6.3 × 10−11 mole m−2 s−1 to 1.3 × 10−10 mole m−2 s−1) is lower than that obtained at 0.1 MPa and 70 °C but it is related to pH values much higher (3.3-4.4) than that (−0.65) calculated for the H2SO4 solution.Through a thorough review of previous experimental investigations on the dissolution kinetics of serpentine minerals the authors propose adopting: (i) the log rate [mole m−2 s−1] value of −12.08 ± 0.16 (1σ), as representative of the neutral dissolution mechanism at 25 °C and (ii) the following relationship for the acidic dissolution mechanism at 25 °C:
log rate=-0.45(±0.09)×pH-10.01(±0.30).  相似文献   

11.
The availability of dissolved O2 can limit biodegradation of organic compounds in aquifers. Where O2 is depleted, biodegradation proceeds via anaerobic processes, including NO3-, Mn(IV)-, Fe(III)- and SO4-reduction and fermentation/methanogenesis. The environmental controls on these anaerobic processes must be understood to support implementation of management strategies such as monitored natural attenuation (MNA). In this study stable isotope analysis is used to show that the relative significance of two key anaerobic biodegradation processes (bacterial SO4 reduction (BSR) and methanogenesis) in a phenol-contaminated sandstone aquifer is sensitive to spatial and temporal changes in total dissolved phenols concentration (TPC) (= phenol + cresols + dimethylphenols) over a 5-a period. In general, 34SO4-enrichment (characteristic of bacterial SO4 reduction) is restricted spatially to locations where TPC < 2000 mg L−1. In contrast, 13C-depleted CH4 and 13C-enriched CO2 isotope compositions (characteristic of methanogenesis) were measured at TPC up to 8000 mg L−1. This is consistent with previous studies that demonstrate suppression of BSR at TPC of >500 mg L−1, and suggests that methanogenic microorganisms may have a higher tolerance for TPC in this contaminant plume. It is concluded that isotopic enrichment trends can be used to identify conditions under which in situ biodegradation may be limited by the properties of the biodegradation substrate (in this case TPC). Such data may be used to deduce the performance of MNA for contaminated groundwater in similar settings.  相似文献   

12.
This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and that the most abundant metals were K, Ca, Mg, Al, Fe, and Ti (1.5-50 μg m−3). Minor and trace element concentrations ranged from about 0.001 to 1 μg m−3. From such analysis, we derived an aerosol mass flux ranging from 3000 to 8000 t a−1. Most analysed elements had higher concentrations close to the emission vent, confirming the prevailing volcanic contribution to bulk deposition. Calculated deposition rates were integrated over the whole Etna area, to provide a first estimate of the total deposition fluxes for several major and trace elements. These calculated deposition fluxes ranged from 20 to 80 t a−1 (Al, Fe, Si) to 0.01-0.1 t a−1 (Bi, Cs, Sc, Th, Tl, and U). Comparison between volcanic emissions and atmospheric deposition showed that the amount of trace elements scavenged from the plume in the surrounding of the volcano ranged from 0.1% to 1% for volatile elements such as As, Bi, Cd, Cs, Cu, Tl, and from 1% to 5% for refractory elements such as Al, Ba, Co, Fe, Ti, Th, U, and V. Consequently, more than 90% of volcanogenic trace elements were dispersed further away, and may cause a regional scale impact. Such a large difference between deposition and emission fluxes at Mt. Etna pointed to relatively high stability and long residence time of aerosols in the plume.  相似文献   

13.
The distribution and speciation of mercury (Hg) in the water column, the inputs (wet deposition and tributaries) and the outputs (atmospheric evasion and outlet) of an artificial partially anoxic tropical lake (Petit-Saut reservoir, French Guiana) were investigated on a seasonal basis in order to appraise the cycling and transformations of this metal. The total mercury (HgT) concentrations in the oxygenated epilimnetic waters averaged 5 ± 3 pmol L−1 in the unfiltered samples (HgTUNF) and 4 ± 2 pmol L−1 in the dissolved (HgTD) phase (<0.45 μm). On average, the monomethylmercury (MMHg) constituted 8%, 40% and 18% of the HgT in the dissolved phase, the particulate suspended matter and in the unfiltered samples, respectively. Covariant elevated concentrations of particulate MMHg and chlorophyll a in the epilimnion suggest that phytoplankton is an active component for the MMHg transfer in the lake. In the anoxic hypolimnion the HgTUNF averages 13 ± 6 pmol L−1 and the HgTD 8 ± 4 pmol L−1. The averages of MMHgP and MMHgD in hypolimnetic waters were two and three times the corresponding values of the epilimnion, 170 ± 90 pmol g−1 and 0.9 ± 0.5 pmol L−1, respectively. In the long dry and wet seasons, at the flooded forest and upstream dam sampling stations, the vertical profiles of MMHgD concentrations accounted for two distinct maxima: one just below the oxycline and the other near the benthic interface. Direct wet atmospheric deposition accounted for 14 moles yr−1 HgTUNF, with 0.7 moles yr−1 as MMHgUNF, while circa 76 moles yr−1 of HgTUNF, with 4.7 moles yr−1 as MMHgUNF, coming from tributaries. Circa 78 moles (∼17% as MMHg) are annually exported through the dam, while 23 moles yr−1 of Hg0 evolve in the atmosphere. A mass balance calculation suggests that the endogenic production of MMHgUNF attained 8.1 moles yr−1, corresponding to a methylation rate of 0.06% d−1. As a result, the Petit-Saut reservoir is a large man-made reactor that has extensively altered mercury speciation in favor of methylated species.  相似文献   

14.
Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11°S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3), nitrite (NO2) and ammonium (NH4+) was used to constrain a 1-D reaction-transport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80-260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (?2.9 mmol N m−2 d−1) and accounted for ?65% of NO3 + NO2 uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+) since DNRA reduces NO3 and, potentially NO2, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300-1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (?2 mmol N m−2 d−1) and removed 55-73% of NO3 and NO2 taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62% to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3, NO2) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment.  相似文献   

15.
This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species (Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH4+ as an N source, and H2PO4 as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H2O-CO2-CaCO3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H2CO3 generated by dissolution of atmospheric CO2 (H2CO3 + CaCO3 → Ca2+ + 2HCO3) and H+ released during NH4+ uptake (H+ + CaCO3 → Ca2+ + HCO3). Reaction with H2CO3 and H+ supplied ∼45% and 55% of the total Ca2+ and ∼60% and 40% of the total HCO3, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH4+ was ∼2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H2CO3. In lactate bearing reactors, most H+ generated by NH4+ uptake reacted with HCO3 produced by lactate oxidation to yield CO2 and H2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H2CO3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.  相似文献   

16.
The behavior of ammonium, NH4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν1-NH4+ Raman band in these solutions was found to be similar to that of salammoniac.The Raman band of silica monomers at ∼780 cm−1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H2O ± NH4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H4SiO40 band showed that the silica solubility in experiments with H2O + NH4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium.The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ∼2 at 600 °C, 0.26 GPa, 6.6 m initial NH4Cl, based on the ratio of the integrated ν1-NH3 and ν1-NH4+ intensities and the HCl0 dissociation constant. The NH3/NH4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high-P low-T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance.The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH4. Nucleation and growth of mica at the expense of K-feldspar and NH4+/K+ exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH4+ into K-feldspar was distinctly faster than K-feldspar consumption.  相似文献   

17.
We present here new measurements of sulfur dioxide and hydrogen sulfide emissions from Vulcano, Etna, and Stromboli (Italy), made by direct sampling at vents and by filter pack and ultraviolet spectroscopy in downwind plumes. Measurements at the F0 and FA fumaroles on Vulcano yielded SO2/H2S molar ratios of ≈0.38 and ≈1.4, respectively, from which we estimate an H2S flux of 6 to 9 t · d−1 for the summit crater. For Mt. Etna and Stromboli, we found SO2/H2S molar ratios of ≈20 and ≈15, respectively, which combined with SO2 flux measurements, suggest H2S emission rates of 50 to 113 t · d−1 and 4 to 8 t · d−1, respectively. We observe that “source” and plume SO2/H2S ratios at Vulcano are similar, suggesting that hydrogen sulfide is essentially inert on timescales of seconds to minutes. This finding has important implications for estimates of volcanic total sulfur budget at volcanoes since most existing measurements do not account for H2S emission.  相似文献   

18.
The oxygenation kinetics of nanomolar concentrations of Fe(II) in aqueous solution have been studied in the absence and presence of millimolar concentrations of phosphate over the pH range 6.0-7.8. At each phosphate concentration investigated, the overall oxidation rate constant varied linearly with pH, and increased with increasing phosphate concentration. A model based on equilibrium speciation of Fe(II) was found to satisfactorily explain the results obtained. From this model, the rate constants for oxygenation of the Fe(II)-phosphate species FeH2PO4+, FeHPO4 and FePO4 have been determined for the first time. FePO4 was found to be the most kinetically reactive species at circumneutral pH with an estimated oxygenation rate constant of (2.2 ± 0.2) × 10 M−1 s−1. FeH2PO4+ and FeHPO4 were found to be less reactive with oxygen, with rate constants of (3.2 ± 2) × 10−2 M−1 s−1 and (1.2 ± 0.8) × 10−1 M−1 s−1, respectively.  相似文献   

19.
The quaternary volcanic complex of Mount Amiata is located in southern Tuscany (Italy) and represents the most recent manifestation of the Tuscan Magmatic Province. The region is characterised by a large thermal anomaly and by the presence of numerous CO2-rich gas emissions and geothermal features, mainly located at the periphery of the volcanic complex. Two geothermal systems are located, at increasing depths, in the carbonate and metamorphic formations beneath the volcanic complex. The shallow volcanic aquifer is separated from the deep geothermal systems by a low permeability unit (Ligurian Unit). A measured CO2 discharge through soils of 1.8 × 109 mol a−1 shows that large amounts of CO2 move from the deep reservoir to the surface. A large range in δ13CTDIC (−21.07 to +3.65) characterises the waters circulating in the aquifers of the region and the mass and isotopic balance of TDIC allows distinguishing a discharge of 0.3 × 109 mol a−1 of deeply sourced CO2 in spring waters. The total natural CO2 discharge (2.1 × 109 mol a−1) is slightly less than minimum CO2 output estimated by an indirect method (2.8 × 109 mol a−1), but present-day release of 5.8 × 109 mol a−1 CO2 from deep geothermal wells may have reduced natural CO2 discharge. The heat transported by groundwater, computed considering the increase in temperature from the infiltration area to the discharge from springs, is of the same order of magnitude, or higher, than the regional conductive heat flow (>200 mW m−2) and reaches extremely high values (up to 2700 mW m−2) in the north-eastern part of the study area. Heat transfer occurs mainly by conductive heating in the volcanic aquifer and by uprising gas and vapor along fault zones and in those areas where low permeability cover is lacking. The comparison of CO2 flux, heat flow and geological setting shows that near surface geology and hydrogeological setting play a central role in determining CO2 degassing and heat transfer patterns.  相似文献   

20.
Sediment fluxes from high standing oceanic islands (HSIs) such as New Zealand are some of the highest known [Milliman J. D. and Syvitski J. P. M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol.100, 525-544]. Recent geochemical work has suggested that along with their extremely high physical weathering yields, many New Zealand watersheds also have very high chemical weathering yields. In New Zealand, the magnitude of both the physical and chemical weathering yields is related to the lithology of the watershed. Most of the previous work on this topic has been undertaken in Southern Alps watersheds of schist and greywacke and in East Cape watersheds of semi-consolidated marine sediments and greywacke. We recently sampled North Island watersheds in the Taranaki and Manawatu-Wanganui regions which have been subjected to volcanism since the Miocene. We sampled watersheds that contain both volcanic and sedimentary rocks. A series of water and sediment samples was collected and analyzed for major, minor and trace elements. This was done to quantify the weathering intensities in the watersheds and to establish the relationship between physical and chemical weathering yields in volcanic lithologies. Our results reveal distinct chemical signatures for the different regions. Waters draining the Taranaki region volcanics are significantly enriched in K+, and depleted in Ca2+ and Sr2+ compared to waters draining the Manawatu-Wanganui region volcanics, which also traverse expanses of sedimentary siltstones and mudstones. The Ca2+ and Sr2+ depletions may reflect the relative absence of CaCO3 in the Taranaki region watersheds. In addition, sediment samples from the Taranaki region show significant enrichment in Ti, Al, Ca, Fe, Mn, Mg, Ca, and P and depletion in Si and Rb compared to those of the Manawatu-Wanganui region. From total dissolved solids concentrations and mean annual water discharge, we calculate chemical weathering yields of 60-240 tons km−2 a−1. These weathering yields fall within the middle to upper range of those previously documented for the Southern Alps (93-480 tons km−2 a−1) and East Cape (62-400 tons km−2 a−1). Calculated silicate weathering yields of 12-33.6 tons km−2 a−1 and CO2 consumption of 852-2390 × 103 mol km−2 a−1 for the rivers draining the Taranaki volcanic region are higher than those previously reported for watersheds hosted in sedimentary and metamorphosed rock terrains on HSIs. CO2 consumption is found to be within the range previously measured for the basaltic terrains of the Deccan Traps (580-2450 × 103 mol km−2 a−1) and Réunion Island(1300-4400 × 103 mol km−2 a−1). Our calculated chemical weathering yields demonstrate the importance of HSIs, particularly those with volcanic terrains, when considering global geochemical fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号