首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Within the Caledonian complexes of northwestern Spitsbergen, high PT formations provide U---Pb zircon ages of 965±1 Ma of a metagranite and 955±1 Ma of a corona gabbro, indicating the influence of Grenvillian activity in the area. Various isotopic systems suggest that these rocks were partially derived by reworking of ancient crust (as old as Archaean). Eclogites and felsic agmatite indicate latest Proterozoic magmatic or metamorphic events (625−5+2 and 661±2 Ma, respectively) by U---Pb zircon dating. The eclogitic metamorphism age is not fully constrained and ranges between 540 and 620 Ma; this occurred prior to the superimposed Caledonian metamorphism, indicated by a part of the K---Ar and Rb---Sr mineral cooling ages. The new data and other evidence of Precambrian tectonothermal activity on Svalbard suggest that the Early Palaeozoic and Late Proterozoic successions exposed elsewhere on Svalbard may also be underlain by Grenvillian or older basement rocks. Relationships to other Grenvillian and older terrains in the Arctic are reviewed.  相似文献   

2.
Sapphirine has been found in two types of magnesian, metabasic lenses from tectonite zones within the Central Gneiss Belt of the south-west Grenville Province, Canada. The first type (association I) comes from a lenticular mafic lens within highly tectonized anorthosite, the second type (association II) comes from meta-eclogitic pods with foliated amphibolite rims. In each case the sapphirine-bearing assemblages record a wealth of reaction textures. The primary mineralogy in association II is represented by high alumina clinopyroxene, garnet and kyanite ± plagioclase and records pressures of around 14-16 kbar; in association I the primary mineralogy is represented by plagioclase, two pyroxenes and possibly olivine but here the equilibrium pressure is unknown.
The host gneisses equilibrated at approximately 8 to 10 kbar and 700-750°C by continuous cation exchange reactions during and after the culmination of the Grenvillian orogeny at 1.16-1.0 Ga. It is unlikely that the higher pressures recorded in the meta-eclogitic pods represent an earlier high-pressure metamorphism as the pods are restricted to shear zones. A tectonic mode of emplacement into a crust undergoing granulite facies metamorphism is more likely. Sapphirine formed by discontinuous decompression reactions; in association II this involved a reaction between garnet and kyanite and resulted in the formation of magnesian granulite facies assemblages. At the same time primary clinopyroxene became much less aluminous by evolving plagioclase. Pressures and temperatures from coexisting phases, that are believed to have equilibrated at the same time as sapphirine formation, are estimated as 11 to 12 kbar and 750°C. These probably represent the peak conditions for granulite facies metamorphism in the south-west Grenville Province.  相似文献   

3.
U-Pb isotope analysis of zircon, titanite, monazite and rutile extracted from 15 different Grenville Province rocks in eastern Labrador reveals: 1) major crust formation through magmatism between 1,710 and 1,630 Ma ago; no evidence of older crustal material was found. 2) Pegmatite and gabbro intrusions between 1,500 and 1,400 Ma ago, probably related to incomplete rifting of the earlier formed crust. 3) Granite and syenite plutonism, presumably anorogenic, circa 1,300 Ma ago. 4) High grade metamorphism and anatexis during the Grenvillian Orogeny, causing Pb-loss in primary zircon and new growth of zircon, titanite and monazite at circa 1,030 Ma ago in the south (Lake Melville and Mealy Mountains terranes) and circa 970 Ma ago in the north (Groswater Bay Terrane and Trans-Labrador Batholith); geochronological distinction of these large-scale crustal segments substantiates their juxtaposition along deeply rooted, intracontinental ductile thrust zones during Grenvillian Orogeny. 5) Late Grenvillian growth of rutile in gabbros circa 925 Ma ago.  相似文献   

4.
The Lac St-Jean anorthosite massif underlies an area of over 20,000 km2 and has been emplaced into migmatitic gneisses of the central granulite terrain of the Grenville Province of the Canadian shield. Field data and petrography in an area straddling the anorthosite-gneiss contact, close to Chicoutimi (Quebec) permits an outline of its tecto-magmatic evolution. Depositional magmatic textures in the massif reveals that it crystallized from a magma in a relatively calm tectonic environment. The absence of fusion in pelitic gneisses at the contact proves that the crystallization did not take place at the level presently exposed. The parallelism of subvertical foliation in the enveloping gneisses and the anorthosite indicates that both were deformed together. It is suggested that the deformation results from a diapiric ascent of the anorthosite massif after its consolidation at depth. The depth of consolidation of the anorthosite is estimated at 25–30 km from subsolidus reaction between plagioclase and olivine. The diapiric ascent is further substantiated by the fact that three sets of mafic dykes of different ages, intrusive into the anorthosite, have a mineralogy which indicates successively decreasing P, T conditions of emplacement from granulite fades to amphibolite facies. An evolution of the basement gneisses and the anorthosite is proposed as a working hypothesis; it relies on the fact that metabasite dyke swarms in the basement gneisses represent a period of major crustal extension and could be used as a stratigraphic subdivision of the Grenville Province.  相似文献   

5.
Joseph M. Pyle 《Lithos》2006,88(1-4):201-232
Analysis of monazite-bearing lithologies from the Precambrian Honey Brook Upland (HBU) and overlying metasedimentary Paleozoic Chester Valley Sequence (CVS) (SE PA, USA) reveals overprinting of primary major and accessory phase parageneses by texturally and compositionally disparate secondary accessory phase parageneses. Two-pyroxene temperatures of 915–945 °C for reconstituted pyroxene reflect emplacement temperatures of felsic plutonic rocks (opdalite, charnockite) prior to Mesoproterozoic metamorphism. Monazite in metavolcanic felsic gneiss yields three age domains at 1009 ± 4 Ma (2 s.e.), 965 ± 6, and 876 ± 10 Ma. The first two domains record metamorphism of the HBU after anorthosite intrusion; peak monazite–xenotime temperatures for the monazite core domain are 700 °C, and high Th/U values in the second (overgrowth) age domain likely reflect a second high-T monazite growth episode. Formation of cummingtonite coronas on orthopyroxene in opdalite constrains maximum 1010 Ma metamorphic temperatures in the “granulite-facies” terrane to 730–740 °C. Evidence of increased Cl fluid activity in the 965 Ma metamorphism includes higher Cl content of matrix apatite relative to garnet-included apatite (metavolcanics), and Cl-bearing K-hornblende succeeding cummingtonite in coronal overgrowths (opdalite). Extreme monazite Th/U values (75–250) in the rim domain suggest growth during low-T hydrothermal alteration. In the opdalite, secondary singe-grain monazite and monazite + xenotime metasomites in apatite yield ages of 714 ± 24 and 586 ± 88 Ma, temperatures of 325–425 °C, and are interpreted to reflect thermal disturbances associated with late Proterozoic plutonic and volcanic activity in the Upland. This thermal disturbance may be recorded by Rb–Sr age of 567 Ma for biotite from a HBU gneiss. Monazite age domains in metaquartzite (378 ± 28, 272 ± 44 Ma) suggest that low-grade metamorphism (260–320 °C, Mnz–Xno thermometry) of the CVS is not a result of Taconian orogenesis.  相似文献   

6.
Geochemical and isotopic investigation of three small mafic intrusions (Løyning: 1250 × 150 m, Hogstad: 2000 × 200 m, Koldal: 1250 × 500 m) in the marginal zones of the Egersund-Ogna (Løyning, Koldal) and Åna-Sira massif-type anorthosites (Hogstad) (Rogaland Anorthositic Province, south Norway: 930 Ma) provides new insights into the late evolution of anorthositic diapirs. These layered mafic intrusions are essentially of norite, gabbronorite as well as leuconorite and display conspicuous evidence of subsolidus recrystallization. In Løyning and Hogstad, the modal layering is parallel to the subvertical foliation in the enclosing anorthosite. The northern part of the Koldal intrusion cuts across the foliation of the anorthosite, whereas in its southern part the subvertical layering is parallel to the anorthosite's foliation. The regularity of the layered structures suggests that the layering was initially acquired horizontally and later tilted during the final movements of the diapirs.

The least differentiated compositions of plagioclase and orthopyroxene in the three intrusions (An59–En68 in Løyning, An49–En64 in Hogstad and An44–En61 in Koldal) and the REE contents in apatite (Hogstad) indicate that their parent magmas were progressively more differentiated in the sequence Løyning–Hogstad–Koldal. Isotopic data (Løyning: 87Sr/86Sr: 0.70376–0.70457, εNdt: + 6.8 to + 2.7; Hogstad: 87Sr/86Sr: 0.70537–0.70588, εNdt: + 2.1 to − 0.5; Koldal: 87Sr/86Sr: 0.70659–0.70911, εNdt: + 3.5 to − 1.6) also indicate that in this sequence, parent magmas were characterized by a progressively more enriched Sr and Nd isotopic signature. In Løyning, the parent magma was slightly more magnesian and anorthitic than a primitive jotunite; in Hogstad, it is a primitive jotunite; and, in Koldal, an evolved jotunite. Given that plagioclase and orthopyroxene of the three intrusions display more differentiated compositions than the orthopyroxene and plagioclase megacryts of the enclosing anorthosites, it is suggested that the parent magmas of the small intrusions are residual melts after anorthosite formation which were entrained in the anorthositic diapir during its rise from lower crustal chambers.

Calculated densities of primitive jotunites (2.73–2.74 at FMQ, 0.15% H2O, 200 ppm CO2, 435 ppm F, 1150 °C, 3 kb) and evolved jotunites (2.75–2.76 at FMQ, 0.30% H2O, 400 ppm CO2, 870 ppm F, 1135 °C, 3 kb) demonstrate that they are much denser than the plagioclase of the surrounding anorthositic crystal mush (2.61–2.65). Efficient migration and draining of dense residual melts through the anorthositic crystal mush could have taken place along sloping floors (zones of lesser permeability in the mush), which occur along the margins of the rising anorthositic diapirs. This process takes into account the restricted occurrence of the mafic intrusions in the margins of the massif anorthosites. In a later stage, when the anorthosite was nearly consolidated, the residual melts were more differentiated (evolved jotunites) and could have been extracted into extensional fractures in the cooling and contracting anorthositic body in a similar way as aplitic dikes are emplaced in granitic plutons. As in the Rogaland Anorthositic Province, these dikes are much more abundant than the small mafic intrusions, collection and transport along dikes was probably more efficient than draining through the crystal mush.  相似文献   


7.
Anorthosite—adamellite complexes are the chief manifestations of Elsonian magmatic activity of Paleohelikian age (about ?1500 to ?1400 Ma) in Labrador, Canada. Magmatism of similar age and anorogenic character, though with fewer occurrences of massif anorthosite, is present in a belt across the mid-continent and southwestern United States. Anorthosite—quartz mangerite complexes in the Grenville Province lie along the trend of this belt and, although few ages older than the profound Grenvillian regional metamorphism about ?1100 Ma have been determined on them, circumstantial evidence suggests that these also are dominantly of Paleohelikian age.The Labrador complexes are intruded into high-grade metamorphic terrane, older by at least 200 to 300 Ma than the Elsonian magmatism. Typical association of anorthosite massifs with high-grade metamorphic terranes, in Labrador and elsewhere, is probably due to their intrusion into older, stabilized, cratonic crust. The anorthosite—adamellite (and anorthosite—quartz mangerite) complexes are products of bimodal magmatism, and an anorogenic cratonic setting is considered to be of fundamental importance to development of the suites. Olivine tholeiite magmas fractionate to produce high-A1 tholeiitic magmas at or near the base of the cratonic crust, and these magmas are the parents from which anorthosite massifs develop by plagioclase fractionation at higher levels within the crust. Adamellite (quartz mangerite) magmas develop mainly by partial fusion of deep crustal rocks, caused by heat of crystallization from the fractionating olivine tholeiite magmas in the staging region, at or near the base of the crust, and are intruded upward into the crustal complexes; rapakivi textures and chemistries are characteristic products of these magmas. Ferrodiorites, widely associated with anorthosite massifs, probably form as late-stage fractionation products of basic magmas in the subcrustal staging region and are intruded into the massifs in their final stages of development (before intrusion of adamellite or quartz mangerite magmas).The Neohelikian record, dominated by terrestrial sedimentation, basaltic extrusive and intrusive activity, and alkalic magmatism, began soon after ?1400 Ma in the mid-continent United States, central Labrador and southern Greenland. The lithological assemblages have been interpreted by several authors as similar to those of intracontinental rift zones. The following sequence of events: intrusion of Paleohelikian anorthosite—adamellite complexes (granitic intrusion and/or rhyolitic extrusion only, in some places), strong uplift and erosion, crustal attenuation causing basin formation, Neohelikian terrestrial sedimentation, rifting or incipient rifting, renewed basaltic magmatism, and alkalic magmatism, is believed to record a continuing evolving process of mantle—crust interactions over a broad belt across North America.  相似文献   

8.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia.  相似文献   

9.
To unravel the petrogenesis of a massif‐type anorthosite in terms of the crust‐mantle geodynamics, we dated zircons separated from six samples from the Sancheong‐Hadong (SH) complex, Korea, using a sensitive high‐resolution ion microprobe. The weighted mean 207Pb/206Pb age of two anorthosites is 1862 ± 2 Ma, whereas the ages of the hornblende gabbro and granitic gneiss are 1873 ± 4 Ma and 1875 ± 5 Ma respectively. Zircon rims from mafic granulite and migmatitic gneiss yielded ages of 1860 ± 5 Ma and 1858 ± 4 Ma, respectively, implying that the granulite facies metamorphism and anatexis are associated with anorthosite emplacement. Our results, together with available Re–Os data, are compatible with the ~1.9–1.86 Ga collisional orogeny prevalent in the North China Craton and the Korean Peninsula, and suggest that orogenesis was accompanied by mantle delamination beneath the craton. It is thus likely that the SH anorthositic rocks are a product of late‐orogenic magmatism during the post‐collisional extension‐dominated phase of orogeny.  相似文献   

10.
J. V. Owen  J. D. Greenough 《Lithos》1997,39(3-4):195-208
Migmatitic rocks near Grenville, Quebec, preserve features indicative of reactions at the onset of granulite facies metamorphism. In this area, metapelites and metacarbonates of the classic Grenville Series are spatially associated with granitic gneiss and metabasite, and flank a Paleozoic, Fe-rich syenite stock. Near this intrusion, the metapelite is diatexitic and nearly devoid of biotite, indicating the involvement of biotite during melting in the contact aureole of this intrusion. Outside of the contact aureole, metapelites and associated rocks contain biotite and are metatexitic. These features suggest two episodes of migmatization, the earlier predating the syenite, the later, synchronous with this intrusion.

Hornblende-rich metabasites near the syenite contain a two-part neosome consisting of coarse-grained leucosome veins and patches that are enclosed by fine-grained, pyroxene-rich envelopes. Migmatization is attributed to dehydration melting in the presence of CO2-rich fluids possibly derived from nearby carbonate rocks prior to and/or during emplacement of the syenite. The occurrence of isolated mafic clots in the mesosome and rarity of melanosome seams on leucosomes suggest that some melts were mobile on an outcrop scale. These observations suggest that the leucosomes formed by the segregation of melts, which, coupled with CO2 flux, dehydrated the wallrock along narrow margins, forming the pyroxene-rich neosomes. Back-reaction with residual fluids led to the local scapolitization of plagioclase and the concomitant formation of coronal garnet on pyroxene in neosomes. Thermobarometry of corona structures within the contact aureole generates diffusional Mg-Fe blocking temperatures ( 550 °C at 5.5 kbar). Extrapolated up-temperature, P-sensitive equilibria for the coronas yield similar pressures (8–9 kbar) as texturally-equilibrated assemblages for which high temperatures ( 750 ± 50 °C; XCO2 = 0.90−0.95) were determined for rocks sampled inside and outside of the contact aureole. This suggests that the Grenville migmatites had not been substantially decompressed by the time that the syenite was emplaced.  相似文献   


11.
Isotopic analyses of ancient mantle-derived magmatic rocks are used to trace the geochemical evolution of the Earth’s mantle, but it is often difficult to determine their primary, initial isotope ratios due to the detrimental effects of metamorphism and secondary alteration. We present in situ analyses by LA-MC-ICPMS for the Pb isotopic compositions of igneous plagioclase (An75–89) megacrysts and the Hf isotopic compositions of BSE-imaged domains of zircon grains from two mantle-derived anorthosite complexes from south West Greenland, Fiskenæsset and Nunataarsuk, which represent two of the best-preserved Archean anorthosites in the world. In situ LA-ICPMS U–Pb geochronology of the zircon grains suggests that the minimum crystallization age of the Fiskenæsset complex is 2,936 ± 13 Ma (2σ, MSWD = 1.5) and the Nunataarsuk complex is 2,914 ± 6.9 Ma (2σ, MSWD = 2.0). Initial Hf isotopic compositions of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 εHf units. In terms of Pb isotopic compositions of plagioclase, both anorthosite complexes share a depleted mantle end member yet their Pb isotopic compositions diverge in opposite directions from this point: Fiskenæsset toward a high-μ, more radiogenic Pb, crustal composition and Nunataarsuk toward low-μ, less radiogenic Pb, crustal composition. By using Hf isotopes in zircon in conjunction with Pb isotopes in plagioclase, we are able to constrain both the timing of mantle extraction of the crustal end member and its composition. At Fiskenæsset, the depleted mantle melt interacted with an Eoarchean (~3,700 Ma) mafic crust with a maximum 176Lu/177Hf ~0.028. At Nunataarsuk, the depleted mantle melt interacted with a Hadean (~4,200 Ma) mafic crust with a maximum 176Lu/177Hf ~0.0315. Evidence from both anorthosite complexes provides support for the long-term survival of ancient mafic crusts that, although unidentified at the surface to date, could still be present within the Fiskenæsset and Nunataarsuk regions.  相似文献   

12.
元古宙岩体型斜长岩的特征及研究现状   总被引:1,自引:0,他引:1  
斜长岩是指斜长石含量>90%的岩浆岩,可分为6类。其中,岩体型斜长岩仅赋存于前寒武纪变质地体中,形成时代主要为元古宙(2.1~ 0.9 Ga),代表地球演化史上很重要的构造-热事件。岩体呈穹隆状或层状产出,具典型堆晶结构,有含钾长石和斜长石出溶片晶的巨晶斜长石和富铝辉石。巨晶的出溶指示了岩浆由高压至低压的变压结晶过程,体现了斜长岩体深成、浅侵位的特点。关于斜长岩的源区,之前普遍认为源于幔源玄武质岩浆,而近10年来更趋向于源区为下地壳,母岩浆的成分为纹长苏长岩和铁闪长岩等新认识;其成因模式以底侵模式和地壳舌状物熔融模式最具代表性。岩体型斜长岩时空上常与奥长环斑花岗岩共生,构成AMCG(Anorthosite Mangerite Charnockite Granite)岩石组合,被认为属非造山岩浆作用的产物,可能代表大陆裂谷环境。然而,新近一些年龄结果显示,它们形成于造山作用的后期阶段,暗示岩体产出于碰撞后环境。斜长岩体中常赋存有Fe Ti V氧化物矿床,有的富含P及Cu,Ni硫化物等,属典型的岩浆矿床。对此,目前主要有结晶分异过程、早期堆晶过程及不混熔分离3种成因机制解释。由此对今后研究中值得关注的问题提出了一些看法。  相似文献   

13.
New U-Pb age determinations confirm earlier interpretations that the strongly deformed and metamorphosed mafic and intermediate igneous rocks of the Pie de Palo Complex represent a Mesoproterozoic fragment of suprasubduction zone oceanic crust.

A gabbroic pegmatite, interpreted to have formed during arc rifting or subsequent back-arc spreading, yielded a U-Pb age of 1204 +5.3/–4.7 Ma. Highly tectonized ultramafic-mafic cumulates, occurring at the structural base of the Pie de Palo Complex and previously interpreted to represent remnants of a primitive arc phase, prior to rifting and back-arc spreading, could not be dated, but should be older than 1204 Ma if these inferences are correct. Tabular, sill-like bodies of leucogabbro/diorite and calc-alkaline tonalite/granodiorite sills yielded ages of 1174±43 and 1169 +8/–7 Ma respectively. They may represent a younger, more evolved arc phase established after arc rifting or a younger, tectonically unrelated Mesoproterozoic arc. SHRIMP-analysis of metamorphic zircon rims with low Th/U ratios in VVL 110 gave a 206Pb/238U age of 455±10 Ma, similar to lower intercept dates determined by discordia lines. Combined, these data indicate that the bulk of the amphibolite facies metamorphism present in the Pie de Palo Complex was generated during the Famatinian Orogeny.

Analysis of six single detrital zircon grains in a metasedimentary, quartzofeldspathic garnet-mica schist, tectonically interleaved with the igneous rocks of the Pie de Palo Complex, and tentatively correlated with the Difunta Correa metasedimentary sequence of other workers, yielded three age populations: 1150–1160 Ma; 1050–1080 Ma and 665 Ma, indicating that these sedimentary rocks were deposited during the late Neoproterozoic or Early Paleozoic. In addition, they confirm structural evidence that intercalation of rocks of the Pie de Palo Complex with isolated slivers of these sedimentary rocks is due to tectonic imbrications. These ages are also consistent with a Laurentian provenance, and earlier interpretations that these rocks once represented a sedimentary cover to the Pie de Palo Complex. The zircon population of 1050–1080 Ma could be derived from Grenville-age felsic plutons identified elsewhere in the Pie de Palo Complex by other workers. However, no evidence has been found in our samples for a Grenville-age orogenic event, invoked previously to explain accretion of the oceanic Pie de Palo Complex to Laurentia prior to the late Neoproterozoic/Early Cambrian rifting and drift of Cuyania.  相似文献   


14.
The Eastern Ghats Belt (EGB), characterised by pervasive Grenvillian granulite facies metamorphism, is the host to several 950–1000 Ma old massif-type anorthosite complexes. The present work describes one such complex near Udayagiri from the northern margin of the EGB, reported for the first time as “Udayagiri anorthosite complex” (UAC). The ‘massif type’ UAC comprises mainly of anorthosite, leuconorite-olivine leuconorite and norite in the decreasing order of areal extent. Mineralogically, these rocks dominantly consist of cumulates of moderately calcic plagioclase (~An50–60), moderately magnesian intercumulus olivine (XMg: ~0.6) and orthopyroxene (XMg: 0.47 to 0.70). Metamorphic garnet (Alm: ~50 mol%) is also common in these rocks. Anorthosite and leuconorite of the UAC exhibit a moderate ‘+ve’ Eu anomaly. Norite occurs locally as schlierens and is relatively rich in Fe, P, Rb, Sr, Th, Nb, Ta, Y and REE which could be a residual melt product. These rocks exhibit both relict magmatic mineralogy and textures with a metamorphic impress manifested by the development of multilayered corona involving olivine, orthopyroxene, garnet, phlogopite, ilmenite and plagioclase during cooling of the pluton. The corona development is a result of combination of significant magmatic and metamorphic reactions which have the potential to provide important clues for deciphering the magmatic and metamorphic evolution of such plutons in ambient granulite facies conditions.  相似文献   

15.
In the Central Iberian Zone (CIZ) of the Iberian Massif large volumes of granitoids were emplaced during the post-collisional stage of the Hercynian orogeny (syn- to post-D3, the last ductile deformation phase). Twelve granitic units and a quartz monzodiorite were selected for a U–Pb zircon and monazite geochronological study. They represent successive stages of the D3 event. The Ucanha-Vilar, Lamego, Sameiro and Refoios do Lima plutons are coeval (313±2 Ma, 319±4 Ma, 316±2 Ma and 314±2 Ma, respectively) and belong to the earliest stage. Later on the Braga massif was emplaced, its different units yielding the same age: 309±3 Ma for the Braga granite, 309±1 Ma for the Gonça granite and 311±5 Ma for a related quartz monzodiorite. The Braga massif is subcontemporaneous with the Agrela and Celeirós plutons (307±3.5 Ma and 306±2 Ma, respectively), in agreement with field data. The Briteiros granite is younger (300±1 Ma), followed by the emplacement of the Peneda–Gerês massif (Gerês, Paufito, Illa and Carris granites). The Gerês granite, emplaced at 296±2 Ma, seems to represent a first magmatic pulse immediately followed by the intrusion of the Paufito granite at 290±2.5 Ma. For the Carris granite a minimum emplacement age of 280±5 Ma was obtained. Based on these results the following chronology is proposed: (1) syn-D3 biotite granitoids, 313–319 Ma; (2) late-D3 biotite-dominant granitoids, 306–311 Ma; (3) late- to post-D3 granitoids, ca. 300 Ma; (4) post-D3 granitoids, 290–296 Ma. These chronological data indicate that successive granitic intrusions were emplaced in the CIZ during a short time span of about 30 Ma that corresponds to the latest stages of the Hercynian orogeny. A rapid and drastic change occurred at about 300 Ma, between a compressive ductile tectonic regime (D3, ca. 300–320 Ma) associated to calc-alkaline, monzonitic and aluminopotassic plutonism and a fragile phase of deformation (D4) which controlled the emplacement of the subalkaline ferro-potassic plutonism at 290–296 Ma.  相似文献   

16.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

17.
Structural, metamorphic and isotopic data obtained from the Nogoli Metamorphic Complex of western Sierra de San Luis indicate that the Early Paleozoic Famatinian Orogeny overprinted an already structured and metamorphosed older basement. The older geological features are relict NW trending fabric associated with high-grade (amphibolite facies) regional metamorphism preserved within thin strips of schists and paragneisses and in the core of mafic to ultramafic lenses. Arc magmatism, medium P (Barrovian type)/high T (amphibolite to granulite facies) regional metamorphism and penetrative NNE to NE trending foliation are related to the building of the Famatinian orogenic belt. The P-T conditions of the Famatinian prograde metamorphism reached a pressure peak of ca. 8 kb, with a thermal peak from -750°C up to -820°C. U-Pb conventional and chemical dating and Ar-Ar plateau ages constrain the peak of the main orogenic phase related to the Famatinian belt to 470–457 Ma (Early to Mid-Ordovician). Greenschist facies retrograde metamorphism closely associated with shear zones and secondary Ar-Ar plateau and Sm-Nd ages suggest that a late to post-orogenic phase of the Famatinian belt was active at least since -445 Ma. This phase continued during the Silurian to Late Devonian times through multiple reactivation of early shear zones. The Famatinian Orogeny reset a previous thermal history and therefore, the timing of the relict fabric could not be constrained conclusively with radiometric dates. Despite this difficulty, a range of 520 to 490 Ma suggests some inheritance from Pampean events registered by the older NW-SE fabric. The Early to Mid-Ordovician regional metamorphism and ductile deformation of the western Sierra de San Luis is interpreted as the orogenic effects of the collision of the allochthonous Cuyania terrane with the autochthonous proto-Pacific margin of Gondwana during the Famatinian Orogeny.  相似文献   

18.
The Sveconorwegian orogeny in SW Baltica comprised a series of geographically and tectonically discrete events between 1140 and 920 Ma. Thrusting and high-grade metamorphism at 1140–1080 Ma in central parts of the orogen were followed by arc magmatism and ultra-high-temperature metamorphism at 1060–920 Ma in the westernmost part of the orogen. In the eastern part of the orogen, crustal thickening and high-pressure metamorphism took place at 1050 in one terrane and at 980 Ma in another. These discrete tectonothermal events are incompatible with an evolution resulting from collision with another major, continental landmass, and better explained as accretion and re-amalgamation of fragmented and attenuated crustal blocks of the SW Baltica margin behind an evolving continental-margin arc. In contrast, the coeval, along-strike Grenvillian orogeny is typically ascribed to long-lived collision with Amazonia. Here we argue that coeval, but tectonically different events in the Sveconorwegian and Grenville orogens may be linked through the behavior of the Amazonia plate. Subduction of Amazonian oceanic crust, and consequent slab pull, beneath the Sveconorwegian may have driven long-lived collision in the Grenville. Conversely, the development of a major orogenic plateau in the Grenville may have slowed convergence, thereby affecting the rate of oceanic subduction and thus orogenic evolution in the Sveconorwegian. Convergence ceased in the Grenville at ca. 980 Ma, in contrast to the Sveconorwegian where convergence continued until ca. 920 Ma, and must have been accommodated elsewhere along the Grenville–Amazonia segment of the margin, for example in the Goiás Magmatic Arc which had been established along the eastern Amazonian margin by 930 Ma. Our model shows how contrasting but coeval orogenic behavior can be linked through geodynamic coupling along and across tectonic plates.  相似文献   

19.
Polymetamorphic metabasalts and metasediments of the Villebon area are interpreted as a sequence representing the top slice of oceanic crust covered by a layer of island-arc volcanic products and turbidites in a back-arc environment during pre-Kenoran times. They were folded and metamorphosed during the Kenoran Orogeny. During the Aphebian, renewed sedimentation took place on an Atlantic-type continental edge, whereafter during the Hudsonian Orogeny part of the Superior craton slid on top of the sediment wedge over a low rheidity migmatized layer. Later westward thrusting of Grenvillian deposits, together with their basement, caused tilting and steepening of preexisting Kenoran and Hudsonian structures. The décollement plane, previously mapped as the Grenville Front, is a Hudsonian Feature; the true Grenville Front is probably located more eastward.  相似文献   

20.
The O’okiep Copper District is the oldest formal mining area in South Africa. Between 1852 and 2002, the 2,500 km2 area yielded two million tons of copper from 32 mines ranging in ore tonnages from 140,000 to 37 million tons. This paper summarizes the calendar of events from the formation of the first primitive crust 1,700–2,000?Ma ago to early Cambrian times ~500?Ma ago, with particular emphasis on the Namaquan (Grenville) Orogeny, notably: the O’okiepian Episode (1,180–1,210?Ma ago) of alpine-type folding, regional granite plutonism, and granulite facies metamorphism and the Klondikean Episode (1,020–1,040?Ma ago) of open and tight folding and the intrusion of the Rietberg Granite and the Koperberg Suite. Almost all of the copper in the O’okiep District occurs in the Koperberg Suite, of which there are 1,700 small bodies that constitute 0.7% of the outcrop area. The suite comprises jotunite, anorthosite, biotite diorite, and hypersthenic rocks ranging from leuconorite to hypersthenite, and it is one of only two world examples of economic copper mineralization in rocks of the anorthosite–charnockite kindred; the second example is Caraiba, Brazil. High I Sr and low ε Nd (for a 1,030 Ma intrusion age), and high μ 2 of 10.1, for Koperberg rock-types indicate a crustal progenitor for the suite, and the presence of jotunite suggests a (subducted) crustal source at ca. 40–50 km depth. The magmatic sulphide paragenesis in the Koperberg Suite is chalcopyrite?+?pyrrhotite (Narrap-type ore) that, in a number of ore-bodies, has been inverted under upper amphibolite facies conditions to bornite?+?Ti-free magnetite (Carolusberg-type ore). Meteoric fluids resulted in supergene Cu enrichment in Koperberg bodies to ~500?m below the pre-Nama peneplane, and lower greenschist facies metamorphism 500–570?Ma ago is reflected by inter alia Hoits-type ore bearing second-generation bornite?+?chalcopyrite(±?covellite?±?chalcocite).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号