首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

2.
The UV properties of 1152 Markarian galaxies have been investigated based on GALEX data. These objects have been investigated also in other available wavelengths using multi-wavelength data from X-ray to radio. Using our classification for activity types for 779 Markarian galaxies based on SDSS spectroscopy, we have investigated these objects on the GALEX, 2MASS and WISE color-magnitude and color-color diagrams by the location of objects of different activity types and have revealed a number of loci. UV contours overplotted on the optical images revealed additional structures, particularly spiral arms of a number of Markarian galaxies. UV (FUV and NUV) and optical absolute magnitudes and luminosities have been calculated showing graduate transition from AGN to Composites, HIIs and Absorption line galaxies from (average \(M\)) \(-17.56^{m}\) to \(-15.20^{m}\) in FUV, from \(-18.07^{m}\) to \(-15.71^{m}\) in NUV and from AGN to Composites, Absorption line galaxies and HII from \(-21.14^{m}\) to \(-19.42^{m}\) in optical wavelengths and from (average \(L\)) \(7\times10^{9}\) to \(4 \times 10^{8}\) in FUV, from \(1\times 10^{10}\) to \(5\times10^{8}\) in NUV and from AGN to Composites, Absorption line galaxies and HII from \(7\times10^{10}\) to \(1\times10^{10}\) in optical wavelengths.  相似文献   

3.
We study a holographic dark energy model in the framework of Brans-Dicke (BD) theory with taking into account the interaction between dark matter and holographic dark energy. We use the recent observational data sets, namely SN Ia compressed Joint Light-Analysis (cJLA) compilation, Baryon Acoustic Oscillations (BAO) from BOSS DR12 and the Cosmic Microwave Background (CMB) of Planck 2015. After calculating the evolution of the equation of state as well as the deceleration parameters, we find that with a logarithmic form for the BD scalar field the phantom crossing can be achieved in the late time of cosmic evolution. Unlike the conventional theory of holographic dark energy in standard cosmology (\(\omega_{D}=0\)), our model results in a late time accelerated expansion. It is also shown that the cosmic coincidence problem may be resolved in the proposed model. We execute the statefinder and Om diagnostic tools and demonstrate that interaction term does not play a significant role. Based on the observational data sets used in this paper it seems that the best value with \(1\sigma \) and \(2\sigma \) confidence interval are \(\varOmega_{m}=0.268^{+0.008~+0.010}_{-0.007~-0.009}\), \(\alpha =3.361^{+0.332~+0.483} _{-0.401~-0.522}\), \(\beta =5.560^{+0.541~+0.780}_{-0.510~-0.729}\), \(c=0.777^{+0.023~+0.029}_{-0.017~-0.023}\) and \(b^{2} =0.045\), according to which we find that the proposed model in the presence of interaction is compatible with the recent observational data.  相似文献   

4.
In this study, pulsational and physical characteristics of two \(\delta\) Scuti stars, V775?Tau and V483?Tau, are analysed by using four-year high-precision photometric data of the STEREO satellite. Thus, it is aimed to gain new insights into behaviours of these pulsators and evolution of \(\delta\) Scuti, \(\gamma\) Dor and Am type stars. The data are taken between 2007–2011 and examined with the help of the Lomb–Scargle method. The detection precision in the four-year combined data is around \(10^{-5}\) cd?1 in frequency and \(10^{-5}\) mag in amplitude. It is revealed that V775?Tau exhibits weak pulsation characteristic which is interpreted as the existence of the interaction between the helium loss in the partial ionization zone and pulsation intensities. It is also considered that the absence of strong pulsations is also related to the evolution status of the star. Further, its periodogram shows low-frequency peaks. If these oscillations are g-modes, V775?Tau can be thought to be one of the rare stars that show all \(\gamma\) Dor, \(\delta\) Scuti and Am type variations. V483?Tau is comparatively more luminous, hotter and has higher rotational velocity. Therefore, although it shares the same region with V775?Tau in the H–R diagram, it is not considered to be an Am star. Yet, it exactly overlaps with the \(\gamma\) Dor stars. These clues as well as g-modes detected in its periodogram indicate that V483?Tau is a hybrid star. Finally, both V775?Tau and V483?Tau display period changes whose rates are between \(10^{-3}\) and \(10^{-4}\) yr?1. Considering the \(\delta\) Scuti nature, it may be speculated that these changes are non-evolutionary.  相似文献   

5.
We estimate the electron density, \(n_{\mathrm{e}}\), and its spatial variation in quiescent prominences from the observed emission ratio of the resonance lines Na?i?5890 Å (D2) and Sr?ii?4078 Å. For a bright prominence (\(\tau_{\alpha}\approx25\)) we obtain a mean \(n_{\mathrm{e}}\approx2\times10^{10}~\mbox{cm}^{-3}\); for a faint one (\(\tau _{\alpha }\approx4\)) \(n_{\mathrm{e}}\approx4\times10^{10}~\mbox{cm}^{-3}\) on two consecutive days with moderate internal fluctuation and no systematic variation with height above the solar limb. The thermal and non-thermal contributions to the line broadening, \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\), required to deduce \(n_{\mathrm{e}}\) from the emission ratio Na?i/Sr?ii cannot be unambiguously determined from observed widths of lines from atoms of different mass. The reduced widths, \(\Delta\lambda_{\mathrm{D}}/\lambda_{0}\), of Sr?ii?4078 Å show an excess over those from Na?D2 and \(\mbox{H}\delta\,4101\) Å, assuming the same \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\). We attribute this excess broadening to higher non-thermal broadening induced by interaction of ions with the prominence magnetic field. This is suggested by the finding of higher macro-shifts of Sr?ii?4078 Å as compared to those from Na?D2.  相似文献   

6.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

7.
This study’s objective was to exploit infrared VVV (VISTA Variables in the Via Lactea) photometry for high latitude RRab stars to establish an accurate Galactic Centre distance. RRab candidates were discovered and reaffirmed (\(n=4194\)) by matching \(K_{s}\) photometry with templates via \(\chi ^{2}\) minimization, and contaminants were reduced by ensuring targets adhered to a strict period-amplitude (\(\Delta K_{s}\)) trend and passed the Elorietta et al. classifier. The distance to the Galactic Centre was determined from a high latitude Bulge subsample (\(|b|>4^{\circ}\), \(R_{\mathit{GC}}=8.30 \pm 0.36\) kpc, random uncertainty is relatively negligible), and importantly, the comparatively low color-excess and uncrowded location mitigated uncertainties tied to the extinction law, the magnitude-limited nature of the analysis, and photometric contamination. Circumventing those problems resulted in a key uncertainty being the \(M_{K_{s}}\) relation, which was derived using LMC RRab stars (\(M_{K_{s}}=-(2.66\pm 0.06) \log {P}-(1.03\pm 0.06)\), \((J-K_{s})_{0}=(0.31\pm 0.04) \log {P} + (0.35\pm 0.02)\), assuming \(\mu _{0,\mathit{LMC}}=18.43\)). The Galactic Centre distance was not corrected for the cone-effect. Lastly, a new distance indicator emerged as brighter overdensities in the period-magnitude-amplitude diagrams analyzed, which arise from blended RRab and red clump stars. Blending may thrust faint extragalactic variables into the range of detectability.  相似文献   

8.
The forecast of solar cycle (SC) characteristics is crucial particularly for several space-based missions. In the present study, we propose a new model for predicting the length of the SC. The model uses the information of the width of an autocorrelation function that is derived from the daily sunspot data for each SC. We tested the model on Versions 1 and 2 of the daily international sunspot number data for SCs 10?–?24. We found that the autocorrelation width \(A_{\mathrm{w}} ^{n}\) of SC \(n\) during the second half of its ascending phase correlates well with the modified length that is defined as \(T_{\mathrm{cy}}^{n+2} - T_{\mathrm{a}}^{n}\). Here \(T_{\mathrm{cy}}^{n+2}\) and \(T_{ \mathrm{a}}^{n}\) are the length and ascent time of SCs \(n+2\) and \(n\), respectively. The estimated correlation coefficient between the model parameters is 0.93 (0.91) for Version 1 (Version 2) sunspot series. The standard errors in the observed and predicted lengths of the SCs for Version 1 and Version 2 data are 0.38 and 0.44 years, respectively. The advantage of the proposed model is that the predictions of the length of the upcoming two SCs (i.e., \(n+1\), \(n+2\)) are readily available at the time of the peak of SC \(n\). The present model gives a forecast of 11.01, 10.52, and 11.91 years (11.01, 12.20, and 11.68 years) for the length of SCs 24, 25, and 26, respectively, for Version 1 (Version 2).  相似文献   

9.
We investigate the relation between coronal hole (CH) areas and solar wind speeds during 1995?–?2011 using the potential field (PF) model analysis of magnetograph observations and interplanetary scintillation (IPS) observations by the Institute for Space-Earth Environmental Research (formerly Solar-Terrestrial Environment Laboratory) of Nagoya University. We obtained a significant positive correlation between the CH areas (\(A\)) derived from the PF model calculations and solar wind speeds (\(V\)) derived from the IPS observations. The correlation coefficients between them are usually high, but they drop significantly in solar maxima. The slopes of the \(A\)?–?\(V\) relation are roughly constant except for the period around solar maximum, when flatter or steeper slopes are observed. The excursion of the correlation coefficients and slopes at solar maxima is ascribed partly to the effect of rapid structural changes in the coronal magnetic field and solar wind, and partly to the predominance of small CHs. It is also demonstrated that \(V\) is inversely related to the flux expansion factor (\(f\)) and that \(f\) is closely related to \(A^{-1/2}\); hence, \(V \propto A^{1/2}\). A better correlation coefficient is obtained from the \(A^{1/2}\)?–?\(V\) relation, and this fact is useful for improving space weather predictions. We compare the CH areas derived from the PF model calculations with He i 1083 nm observations and show that the PF model calculations provide reliable estimates of the CH area, particularly for large \(A\).  相似文献   

10.
Recently we (Kahler and Ling, Solar Phys.292, 59, 2017: KL) have shown that time–intensity profiles [\(I(t)\)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [\(\alpha\) and \(\beta\)]. We now look for a simple correlation between an event peak energy intensity [\(I_{\mathrm{p}}\)] and the time integral of \(I(t)\) over the event duration: the fluence [\(F\)]. We first ask how the ratio of \(F/I_{\mathrm{p}}\) varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both \(F\) and \(I_{\mathrm{p}}\) were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4?–?13 MeV band to \(E > 100~\mbox{MeV}\). Within each group of SEP events, we find a very robust correlation (\(\mathrm{CC} > 0.90\)) in log–log plots of \(F\)versus\(I_{\mathrm{p}}\) over four decades of \(I_{\mathrm{p}}\). The ratio increases from western to eastern longitudes. From the value of \(I_{\mathrm{p}}\) for a given event, \(F\) can be estimated to within a standard deviation of a factor of \({\leq}\,2\). Log–log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of \({<}\,1\) and decreasing with increasing energy for their four energy ranges from \(E > 10~\mbox{MeV}\) to \({>}\,100~\mbox{MeV}\). This difference is not explained.  相似文献   

11.
By systematically searching the region of far infrared loops, we found a number of huge cavity-like dust structures at \(60\,\mu \hbox {m}\) and \(100\,\mu \hbox {m}\) IRIS maps. By checking these with AKARI maps (\(90\,\mu \hbox {m}\) and \(140\,\mu \hbox {m}\)), two new cavity-like structures (sizes \(\sim \) \( 2.7\,\hbox {pc} \times 0.8\,\hbox {pc}\) and \(\sim \) \( 1.8\,\hbox {pc} \times 1\,\hbox {pc}\)) located at R.A. (\(\hbox {J}2000)=14^{h}41^{m}23^{s}\) and Dec. \((\hbox {J}2000)=-64^{\circ }04^{\prime }17^{{\prime }{\prime }}\) and R.A. \((\hbox {J}2000)=05^{h}05^{m}35^{s}\) and Dec. \((\hbox {J}2000)=-\,69^{\circ }35^{\prime } 25^{{\prime }{\prime }}\) were selected for the study. The difference in the average dust color temperatures calculated using IRIS and AKARI maps of the cavity candidates were found to be \(3.2\pm 0.9\,\hbox {K}\) and \(4.1\pm 1.2\,\hbox {K}\), respectively. Interestingly, the longer wavelength AKARI map gives larger values of dust color temperature than that of the shorter wavelength IRIS maps. Possible explanation of the results will be presented.  相似文献   

12.
A stationary Type IV (IVs) radio burst was observed on September 24, 2011. Observations from the Nançay RadioHeliograph (NRH) show that the brightness temperature (\(T_{\mathrm{B}}\)) of this burst is extremely high, over \(10^{11}\) K at 150 MHz and over \(10^{8}\) K in general. The degree of circular polarization (\(q\)) is between \(-60\% \sim -100\%\), which means that it is highly left-handed circularly polarized. The flux–frequency spectrum follows a power-law distribution, and the spectral index is considered to be roughly \(-3 \sim -4\) throughout the IVs. Radio sources of this event are located in the wake of the coronal mass ejection and are spatially dispersed. They line up to present a formation in which lower-frequency sources are higher. Based on these observations, it is suggested that the IVs was generated through electron cyclotron maser emission.  相似文献   

13.
Previous analysis of magnetohydrodynamic-scale currents in high-speed solar wind near 1 AU suggests that the most intense current-carrying structures occur at electron scales and are characterized by average current densities on the order of \(1~\mbox{pA}/\mbox{cm}^{2}\). Here, this prediction is verified by examining the effects of the measurement bandwidth and/or measurement resolution on the analysis of synthetic solar wind signals. Assuming Taylor’s hypothesis holds for the energetically dominant fluctuations at kinetic scales, the results show that when \(\nu_{c}\gg \nu_{b}\), where \(\nu_{c}\) is the measurement bandwidth and \(\nu_{b} \approx 1/3~\mbox{Hz}\) is the break frequency, the average scale of the most intense fluctuations in the current density proxy is approximately \(1/\nu_{c}\), and the average peak current density is a weakly increasing function that scales approximately like \(\nu_{c}^{0.1}\).  相似文献   

14.
Timing analysis of PSR J1705–1906 using data from Nanshan 25-m and Parkes 64-m radio telescopes, which span over fourteen years, shows that the pulsar exhibits significant proper motion, and rotation instability. We updated the astrometry parameters and the spin parameters of the pulsar. In order to minimize the effect of timing irregularities on measuring its position, we employ the Cholesky method to analyse the timing noise. We obtain the proper motion of \(-77(3)\) mas?yr?1 in right ascension and \(-38(29)\) mas?yr?1 in declination. The power spectrum of timing noise is analyzed for the first time, which gives the spectral exponent \(\alpha =-5.2\) for the power-law model indicating that the fluctuations in spin frequency and spin-down rate dominate the red noise. We detect two small glitches from this pulsar with fractional jump in spin frequency of \(\Delta \nu /\nu \sim 2.9 \times 10^{-10}\) around MJD 55199 and \(\Delta \nu /\nu \sim 2.7\times 10^{-10}\) around MJD 55953. Investigations of pulse profile at different time segments suggest no significant changes in the pulse profiles around the two glitches.  相似文献   

15.
We use a formulation of the N-body problem in spaces of constant Gaussian curvature, \({\kappa }\in \mathbb {R}\), as widely used by A. Borisov, F. Diacu and their coworkers. We consider the restricted three-body problem in \(\mathbb {S}^2\) with arbitrary \({\kappa }>0\) (resp. \(\mathbb {H}^2\) with arbitrary \({\kappa }<0\)) in a formulation also valid for the case \({\kappa }=0\). For concreteness when \({\kappa }>0\) we restrict the study to the case of the three bodies at the upper hemisphere, to be denoted as \(\mathbb {S}^2_+\). The main goal is to obtain the totality of relative equilibria as depending on the parameters \({\kappa }\) and the mass ratio \(\mu \). Several general results concerning relative equilibria and its stability properties are proved analytically. The study is completed numerically using continuation from the \({\kappa }=0\) case and from other limit cases. In particular both bifurcations and spectral stability are also studied. The \(\mathbb {H}^2\) case is similar, in some sense, to the planar one, but in the \(\mathbb {S}^2_+\) case many differences have been found. Some surprising phenomena, like the coexistence of many triangular-like solutions for some values \(({\kappa },\mu )\) and many stability changes will be discussed.  相似文献   

16.
It is shown that a number of superfast, with periods \(< 2\) d, exoplanets revolve around parent stars with periods, near-commensurate with \(P_{E}\) and/or \(2 P_{E} / \pi\), where the exoplanet resonance timescale \(P_{E}=9603(85)\) s agrees fairly well with the period \(P_{0}= 9600.606(12)\) s of the so-called “cosmic oscillation” (the probability that the two timescales would coincide by chance is near \(3 \times10^{-4}\); the \(P_{0}\) period was discovered first in the Sun, and later on—in other objects of Cosmos). True nature of the exoplanet \(P_{0}\) resonance is unknown.  相似文献   

17.
In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, \(z\sim \) 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at \(\approx \)10\(^4\) K. We show that even under the existing abundance limits, the primordial black holes of masses \(\gtrsim \)10\(^{-2}M_\odot \), can heat the collapsing gas to an extent that the \(\mathrm{H}_2\) formation is inhibited. The collapsing gas can maintain its temperature at \(10^4\) K till the gas reaches a critical density \(n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}\), at which the roto-vibrational states of \(\mathrm{H}_2\) approaches local thermodynamic equilibrium and \(\mathrm{H}_2\) cooling becomes inefficient. In the absence of \(\mathrm{H}_2\) cooling, the temperature of the collapsing gas stays at \(\approx \)10\(^4\) K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.  相似文献   

18.
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-\(\beta\) plasma using kinetic theory. The effect of density variation of \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions is observed on frequency and damping rate of the wave. The variation of frequency (\(\omega\)) and normalised damping rate (\(\gamma / \varOmega_{H^{ +}} \)) of the wave are studied with respect to \(k_{ \bot} \rho_{j}\), where \(k_{ \bot} \) is the perpendicular wave number, \(\rho_{j}\) is the ion gyroradius and \(j \) denotes \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions. The variation with \(k_{ \bot} \rho_{j}\) is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of \(\text{H}^{+}\) and \(\text{He}^{+}\) ions but remains insensitive to the change in density of \(\text{O}^{+}\) ions. For oxygen ion gyration, the frequency of wave varies over a short range only for \(\text{O}^{+}\) ion density variation. The wave shows damping at lower altitude due to variation in density of lighter \(\text{H}^{+}\) and \(\text{He}^{+}\) ions whereas at higher altitude only heavy \(\text{O}^{+}\) ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.  相似文献   

19.
In this work we consider the Kepler problem with linear drag, and prove the existence of a continuous vector-valued first integral, obtained taking the limit as \(t\rightarrow +\infty \) of the Runge–Lenz vector. The norm of this first integral can be interpreted as an asymptotic eccentricity \(e_{\infty }\) with \(0\le e_{\infty } \le 1\). The orbits satisfying \(e_{\infty } <1\) approach the singularity by an elliptic spiral and the corresponding solutions \(x(t)=r(t)e^{i\theta (t)}\) have a norm r(t) that goes to zero like a negative exponential and an argument \(\theta (t)\) that goes to infinity like a positive exponential. In particular, the difference between consecutive times of passage through the pericenter, say \(T_{n+1} -T_n\), goes to zero as \(\frac{1}{n}\).  相似文献   

20.
We present the stellar parameters of the individual components of the two old close binary systems HIP 14075 and HIP 14230 using synthetic photometric analysis. These parameters are accurately calculated based on the best match between the synthetic photometric results within three different photometric systems with the observed photometry of the entire system. From the synthetic photometry, we derive the masses and radii of HIP 14075 as \({\mathcal {M}}^A=0.99\pm 0.19 \mathcal {M_\odot }\), \(R_{A}=0.877\pm 0.08 R_\odot \) for the primary and \({\mathcal {M}}^B=0.96\pm 0.15 \mathcal {M_\odot }\), \(R_{B}=0.821\pm 0.07 R_\odot \) for the secondary, and of HIP 14230 as \({\mathcal {M}}^A=1.18\pm 0.22 \mathcal {M_\odot }\), \(R_{A}=1.234\pm 0.05 R_\odot \) for the primary and \({\mathcal {M}}^B=0.84\pm 0.12 \mathcal {M_\odot }\) , \(R_{B}=0.820\pm 0.05 R_\odot \) for the secondary. Both systems depend on Gaia parallaxes. Based on the positions of the components of the two systems on a theoretical Hertzsprung–Russell diagram, we find that the age of HIP 14075 is \(11.5\pm 2.0\) Gyr and of HIP 14230 is \(3.5\pm 1.5\) Gyr. Our analysis reveals that both systems are old close binary systems (\(\approx > 4\) Gyr). Finally, the positions of the components of both the systems on the stellar evolutionary tracks and isochrones are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号