首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recently upgraded system of the ground-based Global Oscillation Network Group (GONG) network of helioseismic observatories has started to provide higher-resolution solar oscillation measurements suitable for local helioseismic studies. Selecting simultaneously observed regions on the Sun by both GONG and the space-borne Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we perform a comparative analysis of time-distance measurements focussing on the noise properties.  相似文献   

2.
For models of the Sun and Sun-like stars, a high-quality equation of state is crucial. In addition, helioseismic and asteroseismic observations also put constraints on the physical formalisms. Thus, they effectively turn the Sun and the stars into laboratories for dense plasmas. Currently, the main astrophysical beneficiary of a good equation of state is the determination of the chemical composition. Here, seismic data have supplemented spectroscopic information. Recently, there has been theoretical progress in the equation of state, thanks to renewed rigorous and phenomenological approaches.  相似文献   

3.
The minimum in the solar-activity cycle observed between Cycles 23 and 24 is generally regarded as being unusually deep and long. This minimum is being followed by a cycle with one of the smallest amplitudes in recent history. We perform an in-depth analysis of this minimum with helioseismology. We use Global Oscillation Network Group (GONG) data to demonstrate that the frequencies of helioseismic oscillations are a sensitive probe of the Sun’s magnetic field: The frequencies of the helioseismic oscillations were found to be systematically lower in the minimum following Cycle 23 than in the minimum preceding it. This difference is statistically significant and may indicate that the Sun’s global magnetic field was weaker in the minimum following Cycle 23. The size of the shift in oscillation frequencies between the two minima is dependent on the frequency of the oscillation and takes the same functional form as the frequency dependence observed when the frequencies at cycle maximum are compared with the cycle-minimum frequencies. This implies that the same near-surface magnetic perturbation is responsible. Finally, we determine that the difference in the mean magnetic field between the minimum preceding Cycle 23 and that following it is approximately 1 G.  相似文献   

4.
The interior of the Sun is not directly accessible to observations. Nonetheless, it is possible to infer the physical conditions inside the Sun with the help of structure equations governing its equilibrium and with the powerful observational tools provided by the neutrino fluxes and oscillation frequencies. The helioseismic data show that the internal constitution of the Sun can be adequately represented by a standard solar model. It turns out that a cooler solar core is not a viable solution for the measured deficit of neutrino fluxes, and the resolution of the solar neutrino puzzle should be sought in the realm of particle physics.  相似文献   

5.
The problem of the interaction between magnetic fields and differential rotation in the radiative zone of the Sun is investigated. It is demonstrated that effects of magnetic buoyancy can be neglected in the analysis of this interaction. It is shown that hydromagnetic torsional waves propagating from the solar core cannot be responsible for the 22-year solar cycle. A possible geometry of the magnetic field that conforms with stationary differential rotation is considered. A verifying method for hypotheses on the structure of the magnetic field and torsional oscillations in the radiative zone of the Sun is proposed based on helioseismic data.  相似文献   

6.
M. Woodard 《Solar physics》2014,289(4):1085-1100
The accuracy of helioseismic measurement is limited by the stochastic nature of solar oscillations. In this article I use a Gaussian statistical model of the global seismic wave field of the Sun to investigate the noise limitations of direct-modeling analysis of convection-zone-scale flows. The theoretical analysis of noise is based on hypothetical data that cover the entire photosphere, including the portions invisible from the Earth. Noise estimates are derived for measurements of the flow-dependent couplings of global-oscillation modes and for combinations of coupling measurements that isolate vector-spherical-harmonic components of the flow velocity. For current helioseismic observations, which sample only a fraction of the photosphere, the inferred detection limits are best regarded as optimistic limits. The flow-velocity fields considered in this work are assumed to be decomposable into vector-spherical-harmonic functions of degree less than five. The problem of measuring the general velocity field is shown to be similar enough to the well-studied problem of measuring differential rotation to permit rough estimates of flow-detection thresholds to be gleaned from past helioseismic analysis. I estimate that, with existing and anticipated helioseismic datasets, large-scale flow-velocity amplitudes of a few tens of ${\rm m\,s^{-1}}$ should be detectable near the base of the convection zone.  相似文献   

7.
Junwei Zhao  Dean-Yi Chou 《Solar physics》2013,287(1-2):149-159
The continuous high spatial resolution Doppler observation of the Sun by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager allows us to compute a helioseismic kω power-spectrum diagram using only oscillations inside a sunspot. Individual modal ridges can be clearly seen with reduced power in the kω diagram that is constructed from a 40-hour observation of a stable and round sunspot. Comparing this with the kω diagram obtained from a quiet-Sun region, one sees that inside the sunspot the f-mode ridge is more reduced in power than the p-mode ridges, especially at high wavenumbers. The p-mode ridges all shift toward lower wavenumber (or higher frequency) for a given frequency (or wavenumber), implying an increase of phase velocity beneath the sunspot. This is probably because the acoustic waves travel across the inclined magnetic field of the sunspot penumbra. Line-profile asymmetries exhibited in the p-mode ridges are more significant in the sunspot than in the quiet Sun. Convection inside the sunspot is also highly suppressed, and its characteristic spatial scale is substantially larger than the typical convection scale of the quiet Sun. These observational facts demand a better understanding of magnetoconvection and interactions of helioseismic waves with magnetic field.  相似文献   

8.
We investigate the rotation profile of solar-like stars with magnetic fields. A diffu-sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 σ level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 M⊙, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.  相似文献   

9.
Ring-diagram analysis is a helioseismic tool useful for studying the near-surface layers of the Sun. It has been employed to study near-surface shear, meridional circulation, flows around sunspots, and thermal structure beneath active regions. We review recent results obtained using ring-diagram analysis, state some of the more important outstanding difficulties in the technique, and point out several extensions to the technique that are just now beginning to bear fruit.  相似文献   

10.
We examine the possibility of probing dynamo action in mass-losing stars, components of Algol-type binaries. Our analysis is based on the calculation of non-conservative evolution of these systems. We model the systems U Sge and β Per where the more massive companion fills its Roche lobe at the main sequence (case AB) and where it has a small helium core (early case B) respectively. We show that to maintain evolution of these systems at the late stages which are presumably driven by stellar 'magnetic braking', an efficient mechanism for producing large-scale surface magnetic fields in the donor star is needed. We discuss the relevance of dynamo operation in the donor star to the accelerated mass transfer during the late stages of evolution of Algol-type binaries. We suggest that the observed X-ray activity in Algol-type systems may be a good indicator of their evolutionary status and internal structure of the mass-losing stellar components.  相似文献   

11.
Local helioseismology is providing new views of subphotospheric flows from supergranulation to global-scale meridional circulation and for studying structures and dynamics in the quiet Sun and active regions. In this short review we focus on recent developments, and in particular on a number of current issues, including the sensitivity of different measures of travel time and testing the forward modelling used in local helioseismology. We discuss observational and theoretical concerns regarding the adequacy of current analyses of waves in sunspots and active regions, and we report on recent progress in the use of numerical simulations to test local helioseismic methods.  相似文献   

12.
Phase perturbations due to inclined surface magnetic field of active region strength are calculated numerically in quiet Sun and simple sunspot models in order to estimate and compare the direct and indirect (thermal) effects of the fields on helioseismic waves. It is found that the largest direct effects occur in highly inclined field characteristic of penumbrae, and scale roughly linearly with magnetic field strength. The combined effects of sunspot magnetic and thermal anomalies typically yield negative travel-time perturbations in penumbrae. Travel-time shifts in umbrae depend on details of how the thermal and density structure differs from the quiet Sun. The combined shifts are generally not well approximated by the sum of the thermal and magnetic effects applied separately, except at low field strengths of around 1 kG or less, or if the thermal shift is small. A useful rule-of-thumb appears to be that travel-time perturbations in umbrae are predominantly thermal, whereas in penumbrae they are mostly magnetic.  相似文献   

13.
The observed solar p-mode frequencies provide a powerful diagnostic of the internal structure of the Sun and permit us to test in considerable detail the physics used in the theory of stellar structure. Among the most commonly used techniques for inverting such helioseismic data are two implementations of the optimally localized averages (OLA) method, namely the subtractive optimally localized averages (SOLA) and multiplicative optimally localized averages (MOLA). Both are controlled by a number of parameters, the proper choice of which is very important for a reliable inference of the solar internal structure. Here we make a detailed analysis of the influence of each parameter on the solution and indicate how to arrive at an optimal set of parameters for a given data set.  相似文献   

14.
15.
D. W. Kurtz 《Solar physics》2008,251(1-2):21-30
Stellar astronomers look on in envy at the wealth of data, the incredible spatial resolution, and the maturity of the theoretical understanding of the Sun. Yet the Sun is but one star, so stellar astronomy is of great interest to solar astronomers for its range of different conditions under which to test theoretical understanding gained from the study of the Sun. The rapidly oscillating peculiar A stars are of particular interest to solar astronomers. They have strong, global, dipolar magnetic fields with strengths in the range 1?–?25?kG, and they pulsate in high-overtone p modes similar to those in the Sun; thus they offer a unique opportunity to study the interaction of pulsation, convection, and strong magnetic fields, as is now done in the local helioseismology of sunspots. Some of them even pulsate in modes with frequencies above the acoustic cutoff frequency, in analogy with the highest frequency solar modes, but with mode lifetimes up to decades in the roAp stars, very unlike the short mode lifetimes of the Sun. They offer the most extreme cases of atomic diffusion, a small, but important ingredient of the standard solar model with wide application in stellar astrophysics. They are compositionally stratified and are observed and modelled as a function of atmospheric depth and thus can inform plans to expand helioseismic observations to have atmospheric depth resolution. Study of this unique class of pulsating stars follows the advanced state of studies of the Sun and offers more extreme conditions for the understanding of physics shared with the Sun.  相似文献   

16.
17.
An important goal of helioseismology is to provide information about the basic physics and parameters that determine the structure of the solar interior. Here we discuss the procedures applied in such analyses, using as an example attempts to obtain significant constraints on the value of Newton's gravitational constant G from helioseismology. The analysis is based on complete direct and inverse helioseismic analysis of a set of accurate observed acoustic frequencies. We confirm, as found by previous investigations based on different approaches, that the actual level of precision of the helioseismic inferences does not allow us to constrain G with a precision better than that which can be reached with direct experimental measurements. The conclusion emphasizes the importance in helioseismic inferences of considering not only the accuracy with which solar oscillations are measured, but also the effect of uncertainties in other aspects of the model computation and helioseismic analysis.  相似文献   

18.
We present meridional flow measurements of the Sun using a novel helioseismic approach for analyzing SOHO/MDI data in order to push the current limits in radial depth. Analyzing three consecutive months of data during solar minimum, we find that the meridional flow is as expected poleward in the upper convection zone, turns equatorward at a depth of around 40 Mm (∼ 0.95 R), and possibly changes direction again in the lower convection zone. This may indicate two meridional circulation cells in each hemisphere, one beneath the other. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In the recent papers, we introduced a method utilised to measure the flow field. The method is based on the tracking of supergranular structures. We did not precisely know, whether its results represent the flow field in the photosphere or in some subphotospheric layers. In this paper, in combination with helioseismic data, we are able to estimate the depths in the solar convection envelope, where the detected large-scale flow field is well represented by the surface measurements. We got a clear answer to question what kind of structures we track in full-disc Dopplergrams. It seems that in the quiet Sun regions the supergranular structures are tracked, while in the regions with the magnetic field the structures of the magnetic field are dominant. This observation seems obvious, because the nature of Doppler structures is different in the magnetic regions and in the quiet Sun. We show that the large-scale flow detected by our method represents the motion of plasma in layers down to ~10 Mm. The supergranules may therefore be treated as the objects carried by the underlying large-scale velocity field.  相似文献   

20.
Surface granulation of the Sun is primarily a consequence of thermal transport in the outer 1 % of the radius. Its typical scale of about 1?–?2 Mm?is set by the balance between convection, free-streaming radiation, and the strong density stratification in the surface layers. The physics of granulation is well understood, as demonstrated by the close agreement between numerical simulation, theory, and observation. Superimposed on the energetic granular structure comprising high-speed flows, are larger-scale long-lived flow systems (≈?300 m?s?1) called supergranules. Supergranulation has a typical scale of 24?–?36 Mm. It is not clear if supergranulation results from the interaction of granules or is causally linked to deep convection or a consequence of magneto–convection. Other outstanding questions remain: how deep are supergranules? How do they participate in global dynamics of the Sun? Further challenges are posed by our lack of insight into the dynamics of larger scales in the deep convection region. Recent helioseismic constraints have suggested that convective-velocity amplitudes on large scales may be overestimated by an order of magnitude or more, implying that Reynolds stresses associated with large-scale convection, thought to play a significant role in the sustenance of differential rotation and meridional circulation, might be two orders of magnitude weaker than theory and computation predict. While basic understanding on the nature of convection on global scales and the maintenance of global circulations is incomplete, progress is imminent, given substantial improvements in computation, theory, and helioseismic inferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号