首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present results of experiments on mixtures of olivine tholeiiteand mantle harzburgite, at 5 kb and 1050–1150?C, underconditions of controlled hydrogen fugacity. The basalt end-memberwas Kilauea 1921 olivine tholeiite+3 wt.% H2O, and the harzburgiteend-member was a mixture of olivine and orthopyroxene mineralseparates made from a mantle-derived lherzolite xenolith. Theexperiments on mixtures of basalt and harzburgite difl not reachequilibrium in runs ranging from 12 to 200 h duration. Relativelylarge concentration gradients persisted in both liquid and solidphases in mixed samples, whereas ‘control’ samplescontaining only basalt were reasonably homogeneous and wereprobably close to equilibrium. Compositions of solid phases produced, measured by electronmicroprobe, show a regular increase in Mg/(Mg+Fe) with increasingproportion of harzburgite at constant temperature, but olivineand clinopyroxene in mixed samples were not in Fe-Mg exchangeequilibrium. Modes measured for each sample show that the fractionof liquid relative to the amount of basalt in the sample wasconstant at constant temperature, and independent of bulk composition:reaction between 1921 basalt and harzburgite does not changethe mass of liquid in the system. Average experimental liquidcompositions for each sample were obtained by mass balance.Using Kds defined by the ‘control’ sample for eachtemperature, and mass balance constraints, phase assemblages(solid- and liquid-phase compositions and proportions) werecalculated for all mixtures. Whether samples included harzburgite or not, all average experimentalliquid compositions, and all predicted liquid compositions,for samples run at 1050?C, are high-alumina basalts by the definitionof Kuno (1960). By the criteria of Irvine & Baragar (1971),all but two average experimental liquid compositions in basalt-harzburgitemixtures, and all predicted liquid compositions in basalt-harzburgitemixtures, are calc-alkaline basalts and basaltic andesites,whereas liquids in samples containing only basalt are tholeiiticbasalts. Combined crystallization and reaction with harzburgitein the upper mantle will produce calc-alkaline derivative liquidsfrom an olivine tholeiite liquid under conditions of temperature,pressure, water and oxygen fugacity, and initial bulk compositionwhich would produce a tholeiitic liquid line of descent by crystallizationin a closed system. *Present address: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543Present address: Grant Institute of Geology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK  相似文献   

2.
TAMURA  Y. 《Journal of Petrology》1995,36(2):417-434
The Mio-Pliocene Shirahama Group, Izu Peninsula, Central Japan,a well-exposed submarine volcanic arc complex of lava flows,pyroclastic rocks and associated shallow intrusives, is characterizedby a tholeiitic series (basalt to dacite) and a calc-alkalineseries (andesite to dacite). Chemical variations in the tholeiiticseries and calc-alkaline series are consistent with crystalfractionation from basalt and magnesian andesite (boninite),respectively. Crystal–liquid phase relations of thesemagmas have been investigated by study of sample suites fromthese two series. Compositions of liquids in equilibrium withphenocrysts were determined by microprobe grid analyses, inwhich 49 points were averaged in 03 mm 03 mm groundmassareas. The liquid compositions, coupled with the phenocrystmineralogy of the same samples, define the liquid lines of descentof these volcanic arc magmas. Major findings include the following:(1) Crystallization of the tholeiitic series magma is consistentwith early stage crystallization in the simple system Fo–Di–Silica–H2O,with olivine having a reaction relation to augite and the tholeiiticliquid. (2) The later stage products of the tholeiitic seriesmagma are, however, crystal-poor (<10%) dacites with no maficminerals, suggesting that tholeiitic liquids, hypersthene andaugite were no longer on the cotectic (3) A characteristic ofthe calc-alkaline series magmas is the development of rhyoliticliquids. Hypersthene, augite, plagioclase and Fe–Ti oxideoccur in most calc-alkaline rocks studied, and hornblende andquartz can be found in about half of these. However, their differentiationpaths show that the cotectic relation between quartz and liquidended at a later stage, resulting in the resorption of quartzphenocrysts and ultimately in the formation of quartz-free magmas.(4) The late-stage liquids of both the tholeiitic and calc-alkalineseries have deviated from their cotectics, which cannot be explainedby fractional crystallization alone. The addition of H2O froman outside system is probably required to explain the differentiationpaths. (5) The formation of chilled margins, the in situ crystallizationof a magma chamber in the solidification zone, and/or the migrationof groundwater into the magma chamber are thought to be likelyprocesses affecting magmas during their migration and intrusioninto the crust. An extreme effect of H2O addition would be tolower the liquidus temperatures of all precipitating silicatephases far below their restorable range before eruption, resultingin the production of aphyric magmas. Even when a temperaturedecrease in the magma chamber causes a liquid to intersect theliquidus of a pre-existing phase, the addition of H2O shiftsthe cotectic toward SiO2, resulting in quartz being the lastphase to crystallize. The resorption of quartz is interpretedto be the result of a liquidus boundary shift caused by theaddition of H2O. The genesis of aphyric rhyolites is thereforeinferred to result from fractional crystallization followingaddition of H20. KEY WORDS: Shirahama Group; Japan; island arc; rhyolite; magma series  相似文献   

3.
Experimental Petrology of Melilite Nephelinites   总被引:3,自引:1,他引:3  
Experimental study of natural melilite nephelinite lavas ofintermediate K/Na ratio at low pressure (fo2 reveals the presenceof a peritectic ‘point’ of distributary type (1090?C)for liquids saturated with leucite, nepheline, and spinel. Withdecreasing temperature on the olivine + melilite cotectic, botholivine and melilite react with such liquids to produce high-calciumpyroxene at the peritectic. Both the olivine + high-calciumpyroxene and melilite + high-calcium pyroxene cotectics arestable at temperatures below the peritectic. Olivines coexistingwith such liquids are much more magnesian than those in comparabletholeiitic liquids. The olivine-liquid Fe-Mg distribution coefficient is a monotonically increasing function of silica activity over the composition range spannedby melilite nephelinite, ugandite, alkali basalt, and tholeiitebasalt liquids. The analogous Fe-Mg distribution coefficientfor melilite and liquid is effectively constant , while that for high-calcium pyroxene and liquidis highly dependent on the chemistry of high-calcium pyroxene(cf., Sack & Carmichael, 1984). Pseudoternary liquidus projectionsof multiply saturated liquids coexisting with nepheline, leucite,and spinel (?olivine?high-calcium pyroxene?melilite) have beenprepared to facilitate graphical analysis of the evolution oflava compositions during hypabyssal cooling. Major element chemicalanalyses and petrographic features of lavas from Mt. Nyiragongo,East Africa and Oahu, Hawaii (e.g., Denaeyer et al., 1965; Wilkinson& Stolz, 1983) confirm the validity of these diagrams andthe systematics established from the experimental data. *Reprint requests to R.O. Sack  相似文献   

4.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

5.
The Ronda orogenic peridotite (southern Spain) contains a varietyof pyroxene-rich rocks ranging from high-pressure garnet granulitesand pyroxenites to low-pressure plagioclase–spinel websterites.The ‘asthenospherized’ part of the Ronda peridotitecontains abundant layered websterites (‘group C’pyroxenites), without significant deformation, that occur asswarms of layers showing gradual modal transitions towards theirhost peridotites. Previous studies have suggested that theselayered pyroxenites formed by the replacement of refractoryspinel peridotites. Here, we present a major- and trace-element,and numerical modelling study of a layered outcrop of groupC pyroxenite near the locality of Tolox aimed at constrainingthe origin of these pyroxenites after host peridotites by pervasivepyroxene-producing, refertilization melt–rock reactions.Mg-number [= Mg/(Mg + Fe) cationic ratio] numerical modellingshows that decreasing Mg-number with increasing pyroxene proportion,characteristic of Ronda group C pyroxenites, can be accountedfor by a melt-consuming reaction resulting in the formationof mildly evolved, relatively low Mg-number melts (0·65)provided that the melt fraction during reaction and the time-integratedmelt/rock ratio are high enough (>0·1 and > 1,respectively) to balance Mg–Fe buffering by peridotiteminerals. This implies strong melt focusing caused by melt channellingin high-porosity domains resulting from compaction processesin a partial melted lithospheric domain below a solidus isothermrepresented by the Ronda peridotite recrystallization front.The chondrite-normalized rare earth element (REE) patterns ofgroup C whole-rocks and clinopyroxenes are convex-upward. Numericalmodeling of REE variations in clinopyroxene produced by a pyroxene-forming,melt-consuming reaction results in curved trajectories in the(Ce/Nd)N vs (Sm/Yb)N diagram (where N indicates chondrite normalized).Based on (Ce/Nd)N values, two transient, enriched domains betweenthe light REE (LREE)-depleted composition of the initial peridotiteand that of the infiltrated melt may be distinguished in thereaction column: (1) a lower domain characterized by convex-upwardREE patterns similar to those observed in Ronda group C pyroxenite–peridotite;(2) an upper domain characterized by melts with strongly LREE-enrichedcompositions. The latter are probably volatile-rich, small-volumemelt fractions residual after the refertilization reactionsthat generated group C pyroxenites, which migrated throughoutthe massif—including the unmelted lithospheric spinel-tectonitedomain. The Ronda mantle domains affected by pyroxenite- anddunite- or harzburgite-forming reactions (the ‘layeredgranular’ subdomain and ‘plagioclase-tectonite’domain) are on average more fertile than the residual, ‘coarsegranular’ subdomain at the recrystallization front. Thisindicates that refertilization traces the moving boundariesof receding cooling of a thinned and partially melted subcontinentallithosphere. This refertilization process may be widespreadduring transient thinning and melting of depleted subcontinentallithospheric mantle above upwelling asthenospheric mantle. KEY WORDS: subcontinental mantle; refertilization; pyroxenite; peridotite; websterite; melt–rock reaction; plagioclase; trace elements  相似文献   

6.
The Eastern Layered Intrusion of the Rum Layered Suite comprisespaired peridotite and allivalite (troctolite and gabbro) layersforming 16 macro-rhythmic units. Whereas the majority of thesemacro-units are believed to have formed by a process of crystal–liquiddifferentiation involving successive accumulation of crystalsfrom multiple picritic replenishments of the chamber, the Unit9 peridotite is interpreted as a layer-parallel picrite intrusion.Closely correlated with this discontinuous peridotite body isa distinctive feature generally known as the Wavy Horizon, whichdivides the overlying allivalite into a lower troctolite andan upper gabbro along a well-defined undulating contact. Wepropose that the Wavy Horizon is a metasomatic feature formedconsequent to the removal of clinopyroxene from an originalgabbroic mush. Foundering of the mush into the picritic sillresulted in the replacement of the original interstitial liquidby one saturated only in olivine (± plagioclase). Progressivethrough-flow of this liquid resulted in the stripping out ofclinopyroxene from the lower parts of the allivalite. We interpretthe Wavy Horizon as a reaction front, representing the pointat which the invading liquid became saturated in clinopyroxene.The distinctive pyroxene-enriched zone immediately above theWavy Horizon could have formed when mixing of the interstitialliquids on either side of the reaction front formed a supercooledliquid oversaturated in pyroxene, as a result of the curvatureof the olivine–plagioclase–clinopyroxene cotectic.The presence of many such approximately layer-parallel features,defined by differences in pyroxene content, in the Eastern LayeredIntrusion of Rum suggests that such an infiltration–reactionprocess was not unique to Unit 9. KEY WORDS: cumulate; infiltration metasomatism; Rum; Eastern Layered Intrusion  相似文献   

7.
Basaltic magmas emplaced into the root zone of the Slieve Gullion volcano have crystallised to rocks varying in texture from dolerite to gabbro. A mineralogical variation from olivine bearing to quartz bearing varieties has been recorded and with the presence of coexisting Ca-rich and Ca-poor pyroxenes, a tholeiitic assemblage is indicated.Geochemical data confirm this prognosis and a continuous spread of compositions from basalt to tholeiitic andesite are interpreted in terms of fractional crystallisation. Modelling of the fractional crystallisation processes indicate an approach to cotectic conditions with fractionation at low pressures involving olivine, plagioclase, clinopyroxene and Ti-magnetite. Primitive magma compositions, indicated by low values of D.I. and 100 Mg/Mg + Fe2+ (atomic)>61, show low concentrations of the large ion lithophile elements such as Rb, Ba, Zr, Y, and K. The relatively high CaO content (>11 %) of these rocks invite comparison with high-calcium low-alkali tholeiitic liquids recognised in extrusive and intrusive magmas elsewhere in the North Atlantic Tertiary volcanic province and with magmas currently erupted at active spreading ridges.In north west Britain the field and stratigraphic distribution of these high-calcium low-alkali magmas suggests that they occupy a distinct chronological niche towards the top of the Palaeocene-Eocene volcanic succession succeeding eruption of mildly alkali and transitional basalts. As such, the refractory (high CaO, MgO, etc.) and large ion lithophile depleted geochemistry can be explained either by differential partial melting in the upper mantle source region or melting of a depleted and refractory mantle source which has already contributed to basalt genesis.  相似文献   

8.
苏本勋  肖燕  陈晨  白洋  刘霞  梁子  彭青山 《地球科学》2018,43(4):1011-1024
蛇绿岩中铬铁矿床成因一直存在较大争议,其主要原因可归结为:寄主蛇绿岩存在成因争议、产出状态不清、矿石及围岩矿物组合单一以及主要矿物成分简单但矿物包裹体复杂多样.针对这些研究瓶颈,率先对西藏普兰和罗布莎、土耳其K?z?lda?和Kop蛇绿岩中的地幔橄榄岩和铬铁岩进行了全岩和单矿物Fe-Mg同位素的探索性研究工作.结果表明:(1)蛇绿岩中的地幔橄榄岩具有较均一的Fe-Mg同位素组成,与世界上其他地区的地幔橄榄岩相似;(2)铬铁岩中铬铁矿和橄榄石之间存在明显的Fe-Mg同位素分馏,铬铁矿多具有比共存橄榄石轻的Fe同位素组成,与地幔橄榄岩中的尖晶石和橄榄石相反,Mg同位素变化较大;(3)铬铁矿和橄榄石的Fe-Mg同位素主要受控于结晶分异和Fe-Mg交换,且这两个过程造成的同位素变化趋势明显不同.因此,Fe-Mg同位素在揭示铬铁矿母岩浆来源、性质及成矿过程方面具有较大的应用潜力.   相似文献   

9.
The Blue River ultramafic body is an ‘Alpine’-typeperidotite tectonically emplaced within spilitic volcanic rocksin northern British Columbia. The intrusive margins were shearedand serpentinized to a lizardite-chrysotile plus brucite assemblageduring emplacement, prior to thermal metamorphism in the aureoleof a younger batholith. Relatively anhydrous peridotite andhydrous serpentinite were both affected by thermal metamorphism.The body has been subdivided into units defined by the mineralassemblages observed in meta-peridotite and meta-serpentiniteabove and below the isograd for the advent of the mineral talc.Isograds were also established for prograde metamorphic olivine,tremolite, and enstatite. The intrusive was subjected to two metamorphic processes, oxidationand dehydration. The nucleation of metamorphic olivine in weaklymetamorphosed serpentinite was erratic, and turbid porphyroblastcores are enriched in Fe and Mn. The dehydration reaction isthought to have been metastable. Above the talc isograd, serpentine, in both peridotite and serpentinite,reacted with original spinel to form ferritchromit and chlorite.The chlorite becomes progressively more aluminous with increasein grade. The oxidation process inhibited dehydration in meta-peridotiteas a stable chlorite was formed. The process also served toreduce the Fe content of the silicate system, as shown by thecomposition of the olivine generated from excess serpentinein high grade meta-serpentinite.  相似文献   

10.
The Baffin Bay picrites have been the focal point of a controversy concerning the MgO content of primary magmas derived from the upper mantle. A sample population of 48 lava chilled margins collected across the Baffin Bay volcanic succession at the northeastern tip of Padloping Island exhibits a prominent compositional mode between 14 and 16 weight percent MgO (19–22 Mg, cation units = Mg/100 cations). The petrography of these samples, however, requires that the Padloping magmas were mixtures of olivine crystals and liquid at their eruption. Olivine phenocrysts constituted 15 to 30 volume percent of these magmas and retain compositions requiring coexisting liquid compositions with only 10 to 13.5 weight percent MgO (14–18.5 Mg). However, highly magnesian, olivine xenocrysts (up to Fo 93) found in the most magnesian lavas require the former existence of liquids with at least 18 weight percent MgO (24 Mg). If these xenocrysts represent early cumulates, then the primary liquids of the Padloping suite must have been at least this MgO rich with temperatures greater than 1,425° C. Such primary liquids could have evolved by olivine crystallization to a steady state, equilibrated crystal — liquid mixtures in a shallow reservoir system prior to eruption. The compositions of the liquids of these mixtures appear to have been perched at the point of plagioclase saturation at approximately 1,275° C.Despite the complications of mechanical sorting of olivine crystals, the virtual compositional reciprocity of olivine addition and olivine fractionation requires that the bulk compositions of picritic lavas provide compositional analogues of their primary magmas. A comparison of Phanerozoic picrite suites indicates that the Fe contents of terrestrial primary magmas of tholeiitic affinity have a restricted range from 6–9 Fe. Primary magmas associated with intra-plate volcanism appear to be distinctly more Fe-rich than those associated with inter-plate volcanism. The Al/Si ratios of Phanerozoic picrite suites could suggest that the primary magmas of MORB volcanism have equilibrated with relatively Fe-poor source regions at deeper levels in the Earth's mantle than those of other tholeiitic primary magmas.  相似文献   

11.
Some garnet peridotite nodules from The Thumb, a minette neck on the Colorado Plateau in the southwestern United States, contain zoned minerals. Zoning does not exceed 1.5 wt.% for any oxide, but some relative changes are large: in one garnet TiO2 and Cr2O3 ranges are 0.05–0.65 and 3.5–5.0 wt.%, respectively. In two porphyroclastic nodules, garnet rims are depleted in Mg and enriched in Fe, Ti, and Na compared to cores, and one garnet is irregularly zoned in Ti and Cr. Olivine crystals in these rocks are unzoned, and pyroxene zoning is slight, yet matrix olivine and pyroxene contain more Fe and Ti and less Mg and Cr than inclusions of these phases in garnet. In three coarse nodules, garnet rims are Ti-rich compared to cores, and Ca, Fe, Mg, and Cr zoning patterns are complex. Several nodules appear to have partially equilibrated near 1200° C and 35 kb, and under these conditions cation mobility in pyroxene was greater than in garnet. The zoning partly reflects Fe and Ti metasomatism in the mantle. Calculations indicate that Fe-Mg gradients in garnet could have persisted for only a short time in the mantle, perhaps thousands of years or less, so the metasomatism occurred shortly before eruption. The minette host, a likely source of the Fe and Ti, is rich in light rare earth elements: since the nodules are much poorer in these elements, little or no infiltrated minette was trapped in them. Diffusion is a possible mechanism for nodule metasomatism. Some fertile peridotite nodules from kimberlites may have been affected by similar events. Compositional differences between inclusions in garnet and matrix phases are intriguingly similar to some of the differences between most peridotite inclusions in diamonds and common lherzolite phases.  相似文献   

12.
Melt-rock reaction in the upper mantle is recorded in a variety of ultramafic rocks and is an important process in modifying melt composition on its way from the source region towards the surface. This experimental study evaluates the compositional variability of tholeiitic basalts upon reaction with depleted peridotite at uppermost-mantle conditions. Infiltration-reaction processes are simulated by employing a three-layered set-up: primitive basaltic powder (‘melt layer’) is overlain by a ‘peridotite layer’ and a layer of vitreous carbon spheres (‘melt trap’). Melt from the melt layer is forced to move through the peridotite layer into the melt trap. Experiments were conducted at 0.65 and 0.8 GPa in the temperature range 1,170–1,290°C. In this P-T range, representing conditions encountered in the transition zone (thermal boundary layer) between the asthenosphere and the lithosphere underneath oceanic spreading centres, the melt is subjected to fractionation, and the peridotite is partially melting (T s ~ 1,260°C). The effect of reaction between melt and peridotite on the melt composition was investigated across each experimental charge. Quenched melts in the peridotite layers display larger compositional variations than melt layer glasses. A difference between glasses in the melt and peridotite layer becomes more important at decreasing temperature through a combination of enrichment in incompatible elements in the melt layer and less efficient diffusive equilibration in the melt phase. At 1,290°C, preferential dissolution of pyroxenes enriches the melt in silica and dilutes it in incompatible elements. Moreover, liquids become increasingly enriched in Cr2O3 at higher temperatures due to the dissolution of spinel. Silica contents of liquids decrease at 1,260°C, whereas incompatible elements start to concentrate in the melt due to increasing levels of crystallization. At the lowest temperatures investigated, increasing alkali contents cause silica to increase as a consequence of reactive fractionation. Pervasive percolation of tholeiitic basalt through an upper-mantle thermal boundary layer can thus impose a high-Si ‘low-pressure’ signature on MORB. This could explain opx + plag enrichment in shallow plagioclase peridotites and prolonged formation of olivine gabbros.  相似文献   

13.
阿尔巴尼亚布尔其泽纯橄岩壳非常新鲜,主要由橄榄石、尖晶石和单斜辉石等矿物组成.其中橄榄石存在单斜辉石和铬尖晶石(磁铁矿)共生包裹体现象,包裹体矿物粒度在1~10 μm,有些甚至为纳米级200~500 nm.纯橄岩橄榄石的Fo值为94.7~96.0,铬尖晶石的Cr#为76.5~82.4,远高于蛇绿岩地幔橄榄岩中常见纯橄岩的铬值(Cr#>60).基于前人研究结果,提出这种现象是由于亏损方辉橄榄岩与含钛、铬、铁熔体发生交代作用,从而形成橄榄石的固溶体并存在Ti4+、Al3+、Ca2+、Fe3+,而部分Cr3+进入铬尖晶石结晶.后期由于岩体在抬升过程中降温,橄榄石中混溶的组分析出包裹体形成磁铁矿和铬尖晶石.并且依据铬尖晶石-橄榄石的矿物化学成分,识别出岩体内方辉橄榄岩相对较低的部分熔融程度约为30%~40%,纯橄岩部分熔融程度约为40%,表明不同岩相间其形成背景存在明显差异.因此,认为布尔奇泽蛇绿岩具有多阶段的过程,首先是在洋中脊环境下经历部分熔融作用形成了方辉橄榄岩,后受到俯冲环境(SSZ)的岩石-熔体反应生成更富Mg、Si和Cr等的熔体,致使地幔橄榄岩高度部分熔融,形成此类纯橄岩.   相似文献   

14.
Fe-rich tholeiitic liquids are preserved as chilled pillows and as the chilled base of a 27 meter thick macrorhythmic layer in the Pleasant Bay mafic-silicic layered intrusion. The compositions of olivine (Fo1) and plagioclase (An13−8) in these extremely fine grained rocks suggest that they represent nearly end stage liquids that formed by fractionation of tholeiitic basalt. Their major element compositions (∼17.5 wt% FeOT and 54 wt%SiO2) closely resemble highly evolved glasses in the Loch Ba ring dike and some recent estimates of end-stage liquids related to the Skaergaard layered intrusion, and are consistent with recent experimental studies of tholeiite fractionation. Their trace element compositions are consistent with extensive earlier fractionation of plagioclase, olivine, clinopyroxene, ilmenite, magnetite and apatite. The mineral assemblage of the chilled rocks (olivine, clinopyroxene, quartz, ilmenite and magnetite), apatite saturation temperatures, and very low Fe3+/Fe2+indicate conditions of crystallization at temperatures of about 950 °C and f O 2 about two log units below FMQ. Cumulates that lie about 3 meters above the chilled base of the macrorhythmic layer contain cumulus plagioclase, olivine, clinopyroxene, ilmenite, apatite and zircon. This mineral assemblage and the Fe-Mg ratio in clinopyroxene cores suggest that this cumulate was in equilibrium with a liquid having a composition identical to that of the chilled margin which lies directly beneath it. The high FeOT and low SiO2 concentrations of this cumulate (23.3 and 45.8 wt%, respectively) are comparable to those in late stage cumulates of the Skaergaard and Kiglapait intrusions. This association of a chilled liquid and cumulate in the Pleasant Bay intrusion suggests that late stage liquids in tholeiitic layered intrusions may have been more SiO2-rich than field-based models suggest and lends support to recent experimental studies of tholeiite fractionation at low f O2 which indicate that saturation of an Fe-Ti oxide phase should cause FeOT to decrease in the remaining liquid. Received: 17 January 1997 / Accepted: 10 June 1997  相似文献   

15.
Experiments at 15 kb in the tonalite-peridotite-H2O system provideinformation on some of the phase equilibrium factors that mayinfluence reaction and assimilation processes between quartznormativemagmas and ultramafic rocks in the deep crust and upper mantle.Experiments were done with 5 or 10 wt.% H2O added to powderednatural samples of tonalite, and mixtures of tonalite with 5or 10 wt.% peridotite added (TP5 and TP10, respectively). Theliquidus phase relations of these starting compositions wereinvestigated between 850 and 1100?C at 15 kb, using gold capsulesso that iron loss to the sample containers was not a problemand meaningful glass and mineral analyses could be obtained.Experiments on the tonalite alone show either liquidus garnet,for samples with 5% H2O added, or liquidus hornblende, for sampleswith 10% H2O. In contrast, orthopyroxene is the sole liquidusphase, irrespective of water content, in experiments using startingmixtures of 5 or 10 wt.% peridotite added to tonalite. Glassanalyses of partially crystallized tonalite define a crystallizationpath diverging significantly from the calc-alkaline trend towardshigher Ca/(Mg + Fe) in the CaO–(MgO + FeO)–?SiO2triangle. In contrast, glasses from partially crystallized mixturesof tonalite with 5 or 10 wt.% peridotite added define a liquidtrend close to natural calc-alkaline compositions in terms ofCa/(Mg + Fe). Of more general significance, the proximity ofa field ofliquidus orthopyroxene on the high (Mg + Fe) sideof compositions along the calc-alkaline trend serves to limitthe Mgenrichment of such melts by interaction with ultramaficrocks. Unless heat is added to the system, reaction of tonaliticcomposition melts with ultramafic rocks will produce only slightlyMg-enriched melts: increasing degree of reaction simply resultsin further precipitation of orthopyroxene + garnet ? clinopyroxeneonce melt compositions reach the orthopyroxene field boundary.  相似文献   

16.
Mafic rocks at Lake Nipigon provide a record of rift-related continental basaltic magmatism during the Keweenawan event at 1109 Ma. The mafic rocks consist of an early, volumetrically minor suite of picritic intrusions varying in composition from olivine gabbro to peridotite and a later suite of tholeiitic diabase dikes, sheets and sills. The diabase occurs primarily as two 150 to 200 m thick sills with a textural stratigraphy indicating that the sills represent single cooling units. Compositional variation in the sills indicates that they crystallized from several magma pulses.The diabases are similar in chemistry to olivine tholeiite flood basalts of the adjacent Keweenawan rift, particularly with respect to low TiO2, K2O and P2O5. The picrites have higher TiO2, K2O and P2O5 than the diabases and are similar to, but more primitive than, high Fe-Ti basalts which erupted early in the Keweenawan volcanic sequence.All of the rocks crystallized from fractionated liquids. The picrites are cumulate rocks derived at shallow crustal depths from a magma controlled predominantly by olivine fractionation. Picritic chills are in equilibrium with olivine phenocrysts of composition Fo80 and are interpreted to represent the least evolved liquids observed. The parental magma of the picrites was probably Fe rich relative to the parental magma of the diabase. The diabase sills crystallized from an evolved basaltic liquid controlled by cotectic crystallization of plagioclase and lesser olivine and pyroxene.The emplacement of dense olivine phyric picritic magmas early in the sequence, followed by later voluminous compositionally evolved magmas of lower density suggests the development of a crustal density filter effect as the igneous event reached a peak. Delamination of the crust-mantle interface may have resulted in the transition from olivine controlled primitive magma to fractionated magma through the development of crustal underplating.  相似文献   

17.
The system peridotite-H2O–CO2 serves as a simplified modelfor the phase relations of mantle peridotite involving morethan one volatile component. Run products obtained in a studyof phase relations of four mantle peridotites in the presenceof H2O- and (H2O+CO2)- bearing vapors and with controlled hydrogenfugacity (fH2) at high pressures and temperatures have beensubjected to a detailed chemical investigation, principallyby the electron microprobe. Mg/(Mg+Fe) of all phases generally increases with increasingtemperature and with increasing Mg/(Mg+Fe) of the starting material.This ratio appears to decrease with increasing pressure forolivine, and for amphibole coexisting with garnet. DecreasingfH2 from that of IW buffer to that of MH buffer decreases Mg/(Mg+Fe)of the partial melt from approximately 0-85 to approximately0.50, whereas the Fo content of coexisting olivine increasesslightly less than 3 per cent and the Mg/(Mg+Fe) of clinopyroxeneincreases about 4 per cent. However, the variations in Fo contentof olivines are within those observed in olivines from naturalmantle peridotite. The chemistry of other silicate mineralsdoes not significantly reflect variations of fH2. Consequently,the peridotite mineralogy and/or chemistry is not a good indicatorfor the fH2 conditions during crystallization. All crystalline phases, except amphibole, and to some extentgarnet, show increasing Cr content with increasing temperatureand increasing Cr content of the starting material, resultingin a positive correlation with Mg/(Mg+Fe). Partial melts aredepleted in Cr2O3 relative to the crystalline phases. High Mg/Mg+Fe)and Cr2O3 are thus expected in crystal residues after partialmelting. The absolute values depend on degree of melting andthe composition of the parent peridotite. Liquids formed by anatexis of mantle peridotite are andesiticunder conditions of XH2Ov > 0.6 to at least 25 kb total pressureand to more than 200?C above the peridotite solidus. This observationsupports numerous suggestions that andesite genesis in islandarcs may result from partial melting of underlying peridotitemantle. In contrast to basaltic rocks, the absence of amphibole(paragasitic hornblende) does not affect the silica-saturatednature of the liquids. Increasing K2O content of the startingmaterial (up to 1 wt. per cent K2O) results in increasing potassiumcontent of the amphibole (1 wt. per cent K2O) as well as theappearance of phlogopite. The liquid under these conditionsis relatively K20-poor (less than 1 wt. per cent K2O). Partial melts are olivine normative with XH2O 0.5, and initialliquids contain normative ol and ne at XH2O 0.4. The alkalinityof these liquids increases with decreasing XH2O below valuesof 0.5. The (ol+opx)-normative liquids resemble oceanic basaltswhereas (ol+ne)-normative liquids resemble olivine nepheliniteand melilite basalt. Low aHlo and high aCo2 conditions may bethose under which kimberlites and related rocks are formed inthe mantle.  相似文献   

18.
Samples of a primitive mid-ocean ridge basalt (MORB) glass were encapsulated in a mixture of ol (Fo90) and opx (En90) and melted at 10, 15, and 20 kbar. After quenching, the basaltic glass was present as a pool within the ol+opx capsule, but its composition had changed so that it was saturated with ol and opx at the conditions of the experiment. By analyzing the quenched liquid, the location of the ol+opx cotectic in the complex, multicomponent system relevant to MORB genesis was determined.As pressure increases from 1 atm to 10 kbar, the dry ol+opx cotectic moves from quartz tholeiitic to olivine tholeiitic compositions. With further increases in pressure, the cotectic continues to move toward the ol-di-plag join (i.e., toward alkalic compositions). Between 15 and 20 kbar, ol+opx+di-saturated liquids change from tholeiitic to alkalic in character, although part of the ol+opx cotectic is still in the tholeiitic (i.e, hy-normative) part of composition space. At pressures of 10–15 kbar, tholeiitic liquids may be able to fractionate to alkalic liquids on the ol+di cotectic.Primitive MORB compositions come close to but do not actually lie on the ol+opx cotectic under any conditions studied. This suggests that not even the most primitive of known MORBs are primary melts of the mantle. The correspondence of most MORBs to the 1 atm ol+di+plag cotectic suggests that low pressure fractionation was involved in their genesis from parent liquids. Picritic liquids that have been proposed as parents to the MORB suite could equilibrate with harzburgite (or Iherzolite) at 15–20 kbar and thus could be primary. Fractionation of ol from these liquids could yield primitive MORB liquids, but other primary liquids or more complex fractionation paths involving others phases in addition to ol cannot be ruled out. The possibility that these picritic liquids could equilibrate with ol+opx at 25–30 kbar cannot be ruled out.  相似文献   

19.
The iron-magnesium distribution coefficient, $$K'_D = (X_{\Sigma {\text{FeO}}} /X_{{\text{MgO}}} )^{{\text{olivine}}} (X_{{\text{MgO}}} /X_{\Sigma {\text{FeO}}} )^{{\text{liquid}}} ,$$ has frequently been used as a means of testing whether experimental and natural silicate liquids could have been in equilibrium with olivine of mantle composition. It is shown here that this K′ D decreases with increasing oxygen fugacity (xxx) for a hydrous partial melt in equilibrium with a natural spinel peridotite assemblage under pressure and temperature conditions corresponding to those of the upper mantle (from 0.52 at the xxx of the iron-wüstite buffer to 0.04 at the xxx of the magnetite-hematite buffer). K′ D also increases with increasing pressure, with decreasing temperature, and probably with increasing Mg/(Mg+∑ Fe) of the parental peridotite, suggesting that $$K_D = (X_{{\text{FeO}}} /X_{{\text{MgO}}} )^{{\text{olivine}}} (X_{{\text{MgO}}} /X_{{\text{FeO}}} )^{{\text{liquid}}}$$ also increases with increasing pressure and decreasing temperature. Thus, unless these four variables (P, T, xxx, silicate composition) are known for a natural magma, K′ D and probably K D are variables, and the Mg/(Mg+∑ Fe) of such a magma cannot be correlated to that of the parent. The K D determined at 1 atm pressure by Roeder and Emslie has frequently been used to test whether the Mg/(Mg+∑ Fe) ratios of experimentally formed liquids at high pressure in equilibrium with olivine of known Fo content represent the equilibrium Mg/(Mg+Fe2+) of this liquid, assuming that ∑Fe=Fe2+ and that K′ D does not vary with P, T, and composition of the system. Published data demonstrate that the oxygen fugacities of the experimental designs employed by different laboratories vary between those of the magnetite-hematite and magnetite-wüstite buffers (6 orders of magnitude), resulting in K′ D between 0.04 and 0.31 at 1050° C and 15 kbar, for example. Thus, published arguments as to whether the quenched liquids represent equilibrium compositions based on iron-magnesium partitioning are inadequate. The effects of P, T, xxx, and the composition of the starting material must also be considered.  相似文献   

20.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号