首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Hewish  S. Bravo 《Solar physics》1986,106(1):185-200
Observations on a grid of 900 radio sources have been used to map and to track large-scale structures in the solar wind at distances of 0.6–1.5 AU from the Sun. Most of the disturbances were shells of enhanced density followed by high-speed streams lasting for several days, although more stable corotating interaction regions were also observed. Ninety-six disturbances were mapped during August 1978–September 1979 and those of the erupting stream-type were usually accompanied by shocks and geomagnetic activity if they encountered the Earth. Back-projection to the Sun indicated sources that were always associated with coronal holes. Possible associations with solar flares and disappearing filaments occurred but on many occasions no flare or filament activity was evident anywhere on the disc within a suitable time interval. It is concluded that erupting streams are transients generated by coronal hole activity. Evidence is presented which further suggests that coronal mass ejections of the curved-front variety may be identified with these erupting streams.  相似文献   

2.
Makarov  V.I.  Tlatov  A.G.  Sivaraman  K.R. 《Solar physics》2003,214(1):41-54
We have defined the duration of polar magnetic activity as the time interval between two successive polar reversals. The epochs of the polarity reversals of the magnetic field at the poles of the Sun have been determined (1) by the time of the final disappearance of the polar crown filaments and (2) by the time between the two neighbouring reversals of the magnetic dipole configuration (l=1) from the H synoptic charts covering the period 1870–2001. It is shown that the reversals for the magnetic dipole configuration (l=1) occur on an average 3.3±0.5 years after the sunspot minimum according to the H synoptic charts (Table I) and the Stanford magnetograms (Table III). If we set the time of the final disappearance of the polar crown filaments (determined from the latitude migration of filaments) as the criterion for deciding the epoch of the polarity reversal of the polar fields, then the reversal occurs on an average 5.8±0.6 years from sunspot minimum (last column of Table I). We consider this as the most reliable diagnostic for fixing the epoch of reversals, as the final disappearance of the polar crown filaments can be observed without ambiguity. We show that shorter the duration of the polar activity cycle (i.e., the shorter the duration between two neighbouring reversals), the more intense is the next sunspot cycle. We also notice that the duration of polar activity is always more in even solar cycles than in odd cycles whereas the maximum Wolf numbers W \max is always higher for odd solar cycles than for even cycles. Furthermore, we assume there is a secular change in the duration of the polar cycle. It has decreased by 1.2 times during the last 120 years.  相似文献   

3.
For the purpose of obtaining images of the unknown portion of Mercury, we continued the previously started series of observations of this planet by the short exposure method. Several thousand electronic images of Mercury have been acquired on 1–2 May 2002 under good meteorological conditions at the high-altitude Skinakas Astrophysical Observatory of Iraklion University (Crete, Greece, 35°13 E, 24°54 N) during the evening elongation. The phase angle of Mercury was 95°–99° and the observed range of longitudes was 210°–285° W. Observations were carried out using Ritchy–Chrétien telescope (D = 1.29 m, F = 9.857 m) with the KS 19 filter cutting wavelengths shorter than about 700 nm. The planet's disk was seen, on average, at an angle of 7.75 arcsec. The image scale was equal to 47.8 m/arcsec. We used a CCD with a pixel size of 7.4 × 7.4 m in the regime of short exposures. By processing a great number of electronic images, we succeeded in obtaining a sufficiently distinct synthesized image of the unknown portion of Mercury's surface. The most prominent formation in this region is a giant basin (or cratered mare) centered at about 8° N, 280° W, which was given a working name Skinakas basin (after the name of the observatory where observations were made). By its size, the interior part of this basin exceeds the largest lunar Mare Imbrium. As opposed to Mare Imbrium, the Skinakas basin is presumably of impact origin. Its relief resembles that of Caloris Planitia but the size is much larger. A series of smaller formations are also seen on synthesized images. The resolution obtained on the surface of Mercury is about 100 km, which is close to the telescope diffraction limit. Also considered are the published theoretical estimations of the possible advantages offered by the short exposure method. Some results obtained by other research groups are discussed.  相似文献   

4.
The properties of the differential rotation of the Sun are investigated by using H filaments as tracers. Annual average angular velocities of 716 quiescent filaments are determined from H photoheliograms of the Abastumani Astrophysical Observatory film collection for the years 1957–1993. The existence of north-south (N–S) asymmetry in H filaments rotation is confirmed statistically. The connection of asymmetry with the solar activity cycles is established. It is found that the northern hemisphere rotates faster during the even cycles (20 and 22) while the rotation of southern hemisphere dominates in odd ones (cycles 19 and 21). The mechanism of the solar activity should be responsible for the N–S asymmetry of the solar differential rotation. A theoretical explanation for the N–S asymmetry in the Suns rotation is offered. It is suggested that the asymmetry in the rotation of the two hemispheres of the Sun is balanced by the dynamo mechanism, which acts in parallel to the mechanism offered here. It is concluded that the N–S asymmetry of the solar rotation should cause a difference in activity level between the northern and southern hemispheres.  相似文献   

5.
A study of all the observed and well-defined sector boundaries from January 1957 to February 1975, published by Svalgaard (1974, 1975a, b), indicated that sector boundary key-dates, transformed into Bartels' days, have a significant preference to occur on certain days of the solar rotation. The eclectic distribution of these sector boundaries give some Bartels' days that are empty of cases, while on other days there is a significant excess over the average. Using this effect, we can predict, in high levels of significance, the possible occurrence of a (+,–) or (–,+) boundary within particular days of the solar rotation.  相似文献   

6.
The rotation rates obtained by tracing 124 polar crown filaments are presented in comparison with previous results. Higher filament rotation rate in polar regions was detected and discussed in terms of the various phenomena such as: the projection effect due to the height of measured tracers, the connection of polar filaments with the magnetic field patterns which show an increase of the rotation rate at high latitudes, rigid rotation of polar filaments which form pivot points, and eventual change of the differential rotation law during the cycle. However, when the height correction for an average height of 1% of the solar radius is applied, the filament rotation rate in polar regions decreases. Then the rotation law becomes: () = 14.45 – 0.11 sin2 – 3.69 sin4 (° day–1, sidereal).  相似文献   

7.
A technique for high-sensitivity measurements of spectral line profile fluctuations is suggested. Observations with spectral lines most commonly used to study the oscillations have been carried out. It is found that 5-min and 3-min fluctuations of Fei 5123, 5250, 5434 and NaDi 5896 line profiles are able to produce signals equivalent to line-of-sight velocities of 1–5 m s–1 at a spatial resolution of 5 and 10–35 m s–1 at 1.5 × 4 resolution. Such observations permit a better understanding of the particular physical factors responsible for the oscillations of line-of-sight velocity signals and the magnetic field which are the subject of study of helioseismology.  相似文献   

8.
Studies of disparitions brusques in solar cycles 19 and 20 (to 1969) indicate that such events occur frequently. Approximately 30% of all large filaments in these cycles disintegrated in the course of their transit across the solar disk. Major flares occurred with above average frequency on the last day on which 141 large disappearing filaments were observed (1958–60; 1966–69). Relationships between a disintegrating filament on July 10–11, 1959, a prior major flare, a newly formed spot, and concomitant growth of H plage are presented. Observation of prior descending prominence material apparently directed towards the location of the flare of 1959 July 15d19h23m is reported. The development of the filament-associated flare of February 13, 1967 is described.Visiting Astronomer, McMath-Hulbert Observatory.  相似文献   

9.
On arch-filament systems in spotgroups   总被引:1,自引:0,他引:1  
A. Bruzek 《Solar physics》1967,2(4):451-461
Systems of arch-shaped filaments (AFS) occurring in the interspot region of young bipolar groups are studied. Their main characteristics are: Average length: 30000km, average width 20000km, width of individual filaments 1000–3000 km, height of arches 4–15000 km. A typical lifetime of the filaments 30 min; appreciable changes of the system occur within several hours; the lifetime of a system is about three days. - The arch-filament systems bridge the neutral line and connect the regions of the innermost spots of opposite polarity. Material moves along the filaments (v 25–50 km/sec) following the direction of the magnetic field, and sometimes arches are observed rising at a rate of 20 km/sec. They are very dark on the inner disk and appear either in emission or in absorption close to the solar limb. - The occurrence of bright points (moustaches) is found to be closely associated with AFS in young spotgroups. - The possible nature of AFS and their relation to other types of filamentary structures is discussed.  相似文献   

10.
A database is compiled for the study of solar and heliospheric causes of geomagnetic perturbations with the daily average index A > 20 that were observed in the period 1997–2000. The number of such events (more than 200) progressively increased and fluctuated as the current solar cycle developed. It is established that geomagnetic storms are generated by dynamical processes and structures near the center of the solar disk in a zone of several tens of degrees, and these processes are responsible for the appearance in the Earth's region, within several tens of hours, of quasistationary and transient solar wind streams with a sufficiently strong southward component of the heliospheric magnetic field. These streams lasted more than a few hours. The following structures can serve as morphological indicators for the prediction of the appearance of such streams: (1) active and disappearing filaments derived from synoptic -maps of the Sun, (2) solar flares, (3) coronal holes and evolving active regions, and (4) the heliospheric current sheet. The geometry of coronal mass ejections needs further observational study.  相似文献   

11.
Conclusions In the Newtonian case we have obtained an isotropic self-consistent distribution of gravitationally interacting point masses which satisfies the transport equation without collisions, and the gravitational equation for an arbitrary powerfunction density distribution =r–s, s<3.For =r–2 the analogous self-consistent solution was obtained for the anisotropic distribution function both in Newtonian and GTR cases.The GTR solutions with =r–2 have central redshifts which increase without limit in accordance with the law 1+zr–1/ as we approach the center. In the isotropic case, they appear to be stable when the mean velocities are much less than the velocity of light u<0.2c, >21.The hydrodynamic GTR solution was found for a perfect gas at constant temperature (but variable T=T(g00)1/2) which also has z for r0.We should like to thank K. Thorne, L. Hazin, and M. Podurets for valuable discussions. K. Thorne was particularly helpful in supplying unpublished results on circular orbits obtained by American authors.Astrofizika, Vol. 5, No. 2, pp. 223–234, 1969  相似文献   

12.
Hickson's compact galaxy groups were classified using the statistical criterion which includes the radial velocities of galaxies as well as their relative positions. These groups on the whole and their components are identified as the confident and probable non-chance ones as well as probable and confident chance ones. All confident chance objects have the discordant radial velocities (the differences of radial velocitiesDV [1000; 20000] km s–1). The special class of objects bright discordants is selected. These galaxies have the discordant radial velocities withDV [825; 8440] km s–1 and have a strong tendency to be the brightest components of their groups. The lowest difference of radial velocities for the last class of objects DV = (1.0±0.2) × 103 km s–1 and we accept this value of DV as the lowest value of discordant radial velocities. It is found that the biggest part of Hickson's compact groups consist of non-chance aggregations of galaxies and some of the cases of discordant-redshifts require a special study in order to explain their origin from a dynamic or some other point of view.Present address.  相似文献   

13.
We obtained time-sequence spectroscopic observations in (Fe x) 6374 Å and (Fe xiv) 5303 Å lines successively with the 25-cm coronagraph, and narrow-band and Doppler images in 5303 Å line by the 2-D 10-cm Doppler coronagraph NOGIS at the Norikura Solar Observatory, of a coronal region for about 7 h on 9 19–20, 2001. The raster scans were obtained with a quasi-periodicity of about 14 min and NOGIS obtained the images with an interval of about 1 min. The coronal region observed showed the formation of a coronal loop by a high-speed surge in the 6374 Å line rising from one of the footpoints of the loop. Off the limb spectroscopic observations in the 6374 Å line showed large velocities along the line of sight and vertical to the solar limb at the time of formation of the loop. The 5303 Å line observations showed negligible line-of-sight velocities and low vertical velocities when compared to those in the 6374 Å line. A hump in the intensity plots in 5303 Å with height appears to move up with respect to the solar limb with an average velocity of 4km s–1. The FWHM of the 6374 Å showed a much smaller value of about 0.7 Å near the foot point as compared to a value of 1.2 Å at larger heights at the beginning of observations. Later as the loop developed, the FWHM of 6374 Å line showed a gradual decrease along the loop up to 70 from the limb, reached a minimum value of about 0.5 Å and then increased with height during the formation of the loop; this trend lasted for about 2 h. About 3 h after the beginning of the formation of the loop, the FWHM of 6374 Å emission line showed normal values and normal rate of increase with height with some fluctuations. The FWHM of the 5303 Å line did not show such variations along the loop and showed normal decrease in FWHM with height found earlier (Singh et al., 2003a). These observations suggest that a relatively cooler plasma at a temperature of about 0.7 MK or less (corresponding to minimum value of FWHM of 0.5 Å) was ejected from the transition region with a large velocity of about 48km s–1, heated up in the corona by some process and formed a coronal loop with a height of about 200 above the limb that had lifetime greater than 4 h. It appears that the plasma moved from one of the footpoints and the loop was formed by evaporation of chromospheric plasma. No large-scale brightening and H flare were observed in this region during the observational period of 7 h.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

14.
The recent measurements made by satellites of the aurorae in connection with solar phenomena have increased interest in auroral research. In the present investigation, we establish that, for the 20th solar cycle, the occurrence of visual discrete aurorae A, deduced from a complete set of data, is significantly related to the sunspot numbers R z, the number of flares F (of importance 1) the solar wind streams derived from solar coronal holes H, and the geomagnetic index A p.By employing the theory of residues it has been found that A correlates significantly well with the above indices. Accuracies of the order of 75–94% were found for geomagnetic latitudes in the range of 54 –63 N.The A-R zrelationship was investigated in particular for the period 1897–1951. For this period spectrum analysis of A annual values revealed the existence of 3–4 yr and 8–10 yr periodicities of significances 95% and 99%; respectively.Research Associate.  相似文献   

15.
Bewsher  D.  Parnell  C.E.  Pike  C.D.  Harrison  R.A. 《Solar physics》2003,215(2):217-237
The relative Doppler and non-thermal velocities of quiet-Sun and active-region blinkers identified in Ov with CDS are calculated. Relative velocities for the corresponding chromospheric plasma below are also determined using the Hei line. Ov blinkers and the chromosphere directly below, have a preference to be more red-shifted than the normal transition region and chromospheric plasma. The ranges of these enhanced velocities, however, are no larger than the typical spread of Doppler velocities in these regions. The anticipated ranges of Doppler velocities of blinkers are 10–15 km s–1 in the quiet Sun (10–20 km s–1 in active regions) for Hei and 25–30 km s–1 in the quiet Sun (20–40 km s–1 in active regions) for Ov. Blinkers and the chromosphere below also have preferentially larger non-thermal velocities than the typical background chromosphere and transition region. Again the increase in magnitude of these non-thermal velocities is no greater than the typical ranges of non-thermal velocities. The ranges of non-thermal velocities of blinkers in both the quiet Sun and active regions are estimated to be 15–25 km s–1 in Hei and 30–45 km s–1 in Ov. There are more blinkers with larger Doppler and non-thermal velocities than would be expected in the whole of the chromosphere and transition region. The recently suggested mechanisms for blinkers are revisited and discussed further in light of the new results.  相似文献   

16.
The interplanetary sector structure observed by the IMP-1 satellite during three solar rotations in 1963–4 is compared with the photospheric magnetic field structure observed with the solar magnetograph at Mt. Wilson Observatory. The interplanetary sector structure was most prominent on the sun in latitudes between 10 °N and 20 °N, although the average heliographic latitude of the satellite was 3 1/2 °S. A superposed-epoch analysis of the calcium plage structure obtained from the Fraunhofer Institute daily maps of the sun is used to discuss the relation between the structure of the plages and the interplanetary sector structure. A possible explanation for the observations is discussed in terms of a North-South asymmetry in the flow of the solar wind. It is suggested that these observations favor the equinoctial hypothesis as compared with the axial hypothesis for the explanation of the semi-annual maxima in geomagnetic activity.  相似文献   

17.
Previous observations of spatially-resolved vertical velocity variations in ten lines of Fe i spanning the height range 0 h 1000 km are re-analyzed using velocity weighting functions. The amplitudes and scale heights of granular and oscillatory velocities are determined, as well as those of the remaining unresolved velocities. I find that the optimal representation of the amplitude of the outward-decreasing granular velocities is an exponentially decreasing function of height, with a scale height of 150 km and a velocity at zero height of 1.27 km s–1. The optimal representation of the same quantities for oscillatory velocities is an exponential increase with height, with a scale height of 1100 km and a velocity at zero height of 0.35 km s–1. The remaining unresolved velocities decrease with height, with a scale height of 380 km and a velocity at zero height of 2.3 km s–1.  相似文献   

18.
Plasma and field relationships observed across the nightside of Venus evidence a chaotic variety of interactions between the ionosphere and the combined effect of the solar wind and interplanetary magnetic field draped about the planet. Close examination of these data reveal within the chaos a number of repeatable signatures key to understanding fundamental field-plasma interactions. Observed from the Pioneer Venus Orbiter, (PVO), nightside conditions range from extensive, full-up ionospheres with little evidence of dynamic or energetic perturbations, to an almost full depletion, sometimes described as disappearing ionospheres. Between these extremes, the ionospheric structure is often irregular, sometimes exhibiting well-defined density troughs, at other times complex intervals of either abundant or minimal plasma concentration. Consistently, large B-fields (typically exceeding 5–10 nanoteslas) coincide with plasma decreases, whereas stable, abundant plasma distributions are associated with very low-level field. We examine hundreds of nightside orbits, identifying close correlations between regions of elevated magnetic fields featuring polarity reversals, and (a) exclusive low-frequency or distinctive broadband noise, or both, in the electric field data, (b) turbulent, superthermal behavior of the the ions and electrons. We review extensive studies of nightside fields to show that the correlations observed are consistent with theoretical arguments that the presence of strong magnetic fields within normal ionospheric heights indicates the intrusion of magnetosheath fields and plasma within such regions. We find abundant evidence that the ionosphere is frequently disrupted by such events, exhibiting a chaotic, auroral-like complexity appearing over a wide range of altitude and local time. We show that field-plasma disturbances, widely suggested to be similar to conditions in the Earth's auroral regions, are tightly linked to the electric field noise otherwise attributed to lightning. Owing to the coincidence inherent in this relationship, we suggest that natural, predictable plasma instabilities associated with the plasma gradients and current sheets evident within these events produce the E-field noise. The data relationships argue for a more detailed investigation of solar wind induced E-field noise mechanisms as the appropriate scientific procedure for invoking sources for the noise previously attributed to lightning. Consistent with these views, we note that independent analyses have offered alternative explanations of the noise as arising from ionospheric disturbances, that repeated searches for optical evidence of lightning have found no such evidence, and that no accepted theoretical work has yet surfaced to support the inference of lightning at Venus.  相似文献   

19.
Kane  R.P. 《Solar physics》2001,202(2):395-406
For solar cycle 23, the maximum sunspot number was predicted by several workers, and the range was very wide, 80–210. Cycle 23 started in 1996 and seems to have peaked in 2000, with a smoothed sunspot number maximum of 122. From about 20 predictions, 8 were within 122±20. There is an indication that a long-term oscillation of 80–100 years may be operative and might have peaked near cycle 20 (1970), and sunspot maxima in cycles in the near future may be smaller and smaller for the next 50 years or so and rebound thereafter in the next 50 years or so.  相似文献   

20.
We present observations of the 3130 Å Beii resonance doublet in stars of intermediate metal deficiency, –0.6[Fe/H]–1.1 obtained with the Intermediate Dispersion Spectrograph and IPCS detector at the 2.5 m Isaac Newton Telescope on La Palma. The derived beryllium abundances range from 5.6×10–12 (one hafl solar) to 2×10–12 (one sixth solar). These values, interpolated between the sets of previous beryllium measurements at higher and at lower metallicities, serve to confirm the monotonic variation of the Be abundance with Fe during the evolution of the galactic disc. We find that there was no extreme burst of Be production in the halo. To circumvent the effects of depletion, a statistical set of data is needed, for which the upper envelope can be used to trace galactic Be evolution. We note that no observations with sufficient sensitivity to detect Be in the extremely metal deficient stars of the halo have been reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号