首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Extratropical impacts on the tropical El Niño–Southern Oscillation (ENSO) are studied in a coupled climate model. Idealized experiments show that the remote impact of the extratropics on the equatorial thermocline through oceanic tunnel can substantially modulate the ENSO in both magnitude and frequency. First of all, an extratropical warming can be conveyed to the equator by the mean subduction current, resulting in a warming of the equatorial thermocline. Second, the extratropical warming can weaken the Hadley cells, which in turn slow down the mean shallow meridional overturning circulations in the upper Pacific, reducing the equatorward cold water supply and the equatorial upwelling. These oceanic dynamic processes would weaken the stratification of the equatorial thermocline and retard a buildup (purge) of excess heat content along the equator, and finally result in a weaker and longer ENSO cycle. This study highlights a nonlocal mechanism in which ENSO behavior is related to the extratropical climate conditions.  相似文献   

2.
Spatial and temporal structures of interannual-to-decadal variability in the tropical Pacific Ocean are investigated using results from a global atmosphere–ocean coupled general circulation model. The model produces quite realistic mean state characteristics, despite a sea surface temperature cold bias and a thermocline that is shallower than observations in the western Pacific. The periodicity and spatial patterns of the modelled El Niño Southern Oscillations (ENSO) compare well with those observed over the last 100 years, although the quasi-biennial timescale is dominant. Lag-regression analysis between the mean zonal wind stress and the 20°C isotherm depth suggests that the recently proposed recharge-oscillator paradigm is operating in the model. Decadal thermocline variability is characterized by enhanced variance over the western tropical South Pacific (~7°S). The associated subsurface temperature variability is primarily due to adiabatic displacements of the thermocline as a whole, arising from Ekman pumping anomalies located in the central Pacific, south of the equator. Related wind anomalies appear to be caused by SST anomalies in the eastern equatorial Pacific. This quasi-decadal variability has a timescale between 8 years and 20 years. The relationship between this decadal tropical mode and the low-frequency modulation of ENSO variance is also discussed. Results question the commonly accepted hypothesis that the low-frequency modulation of ENSO is due to decadal changes of the mean state characteristics.  相似文献   

3.
利用中等复杂程度的2.5层海洋模式和大气环流模式ECHAM4组成的海气耦合模式,模拟分析了热带太平洋和印度洋的气候变化以及年际变化特征。该模式较好地模拟了ENSO现象的空间分布及其不规则的周期变化特征,以及热带印度洋的主要变化特征。通过数值试验,初步研究了太平洋耦合过程对印度洋年际变化的影响。结果显示,当存在太平洋耦合过程时,模拟的印度洋偶极子(IOD)正(负)事件的发生频率比无太平洋耦合情形时有所减少(增加)。该变化是太平洋耦合变量通过海气耦合过程对印度洋海表面平均风场进行调整,进而引起热带印度洋温跃层深度东西梯度改变的结果。  相似文献   

4.
温琴  何国瑞  杨海军 《大气科学》2022,46(5):1209-1224
本文利用耦合气候模式研究了“有/无”青藏高原和落基山脉对厄尔尼诺—南方涛动(ENSO)的影响,并从温度变率方程的角度详细分析了ENSO变化的成因,结果表明:移除青藏高原或落基山脉均会造成ENSO变率增强;ENSO变率在无青藏高原试验中增强的幅度比在无落基山脉试验中更大。ENSO变率在地形敏感性试验中的变化与热带太平洋平均气候态的改变密切相关。移除青藏高原后热带太平洋信风减弱,大气对流中心东移,混合层变浅,温跃层变平,呈现出El Ni?o型海温分布,这些平均态的变化使海表风应力敏感性,Ekman抽吸敏感性以及温跃层敏感性幅度增强,最终导致ENSO振幅增大60%。然而,在移除落基山脉的情景下,热带太平洋信风变化更加复杂,大气对流中心稍有东移,混合层加深,温跃层变平,呈现出类La Ni?a型海温分布。这些变化增强了风应力敏感性和温跃层敏感性,最终导致ENSO振幅仅增大15%左右。本文研究表明,在地质时间尺度上青藏高原和落基山脉的抬升均抑制了ENSO变率。  相似文献   

5.
The impact of the warm SST bias in the Southeast Pacific (SEP) on the quality of seasonal and interannual variability and ENSO prediction in a coupled GCM is investigated. The reduction of this bias is achieved by means of empirical heat flux correction that is constant in time. It leads to a wide range of changes in the tropical Pacific climate including enhanced southeast trades, well-defined dry zone in the SEP, better simulation of the South Pacific Convergence Zone and stronger cross-equatorial asymmetry of the mean state in the eastern Pacific. As a result of the mean climate correction, significant improvements in the simulation of the seasonal cycle of the oceanic and atmospheric states are also observed both at the equator and basin-wide. Due to more realistic simulation of the seasonal evolution of the cold tongue, tropical convection and surface winds in the corrected version of the model, phase-lock of ENSO to the annual cycle looses its strong semi-annual component and becomes quite similar to the observed, although the amplitude of ENSO is reduced. Zonal wind stress response to the SST anomalies in the central-eastern Pacific also becomes more realistic. ENSO retrospective forecast experiments conducted with the directly coupled and the flux-corrected versions of the model demonstrate that deficiencies in the seasonal evolution of the cold tongue/Inter-Tropical Convergence Zone complex (that were largely due to the SEP bias in this model) and the related errors in the ENSO phase-lock to the annual cycle can seriously degrade ENSO prediction. By reducing these errors, ENSO predictive skill in the coupled model was substantially enhanced.  相似文献   

6.
杨修群  谢倩 《气象学报》1996,54(1):42-52
利用发展的包含海洋表面边界展和大气辐合反馈过程的热带太平洋海气耦合距平模式,对ENSO循环进行了模拟。通过30a积分,用合模式所展示的热带太平洋海气耦合系统的ENSO循环的水平结构演变特征和观测事实甚为一致,成功地模拟出了ENSO循环的冷暖态的发生发展、衰亡及相互转换等各个位相的动力和热力场的水平结构及其对季节循环的依赖性特征。本文数值模拟结果表明,ENSO循环的主要动力学过程可由热带海气相互作用系统自身所确定。ENSO循环的正确模拟是揭示其形成机制的前提。  相似文献   

7.
B. Wang  Z. Fang 《Climate Dynamics》2000,16(9):677-691
 We describe a coupled tropical ocean-atmosphere model that represents a new class of models that fill the gap between anomaly coupled models and fully coupled general circulation models. Both the atmosphere and ocean are described by two and half layer primitive equation models, which emphasize the physical processes in the oceanic mixed layer and atmospheric boundary layer. Ocean and atmosphere are coupled through both momentum and heat flux exchanges without explicit flux correction. The coupled model, driven by solar radiation, reproduces a realistic annual cycle and El Nino-Southern Oscillation (ENSO). In the presence of annual mean shortwave radiation forcing, the model exhibits an intrinsic mode of ENSO. The oscillation period depends on the mean forcing that determines the coupled mean state. A perpetual April (October) mean forcing prolongs (shortens) the oscillation period through weakening (enhancing) the mean upwelling and mean vertical temperature gradients. The annual cycle of the solar forcing is shown to have fundamental impacts on the behavior of ENSO cycles through establishing a coupled annual cycle that interacts with the ENSO mode. Due to the annual cycle solar forcing, the single spectral peak of the intrinsic ENSO mode becomes a double peak with a quasi-biennial and a low-frequency (4–5 years) component; the evolution of ENSO becomes phase-locked to the annual cycle; and the amplitude and frequency of ENSO become variable on an interdecadal time scale due to interactions of the mean state and the two ENSO components. The western Pacific monsoon (the annual shortwave radiation forcing in the western Pacific) is primarily responsible for the generation of the two ENSO components. The annual march of the eastern Pacific ITCZ tends to lock ENSO phases to the annual cycle. The model's deficiencies, limitations, and future work are also discussed. Received: 15 June 1999 / Accepted: 11 December 1999  相似文献   

8.
Oceanic vertical mixing is known to influence the state of the equatorial ocean which affects the climate system, including the amplitude of El Niño/Southern Oscillation (ENSO). Recent measurements of ocean currents at high vertical resolution capture numerous small vertical scale structures (SVSs) within and above the equatorial thermocline that contribute significantly to vertical mixing but which are not sufficiently resolved by coarse resolution ocean models. We investigate the impact of the vertical mixing induced by the SVSs on the mean state and interannual variability in the tropical Pacific by using a coupled general circulation model. The vertical mixing induced by the SVSs is represented as an elevated vertical diffusivity from the surface down to the 20 °C isotherm depth, a proxy for the depth of the thermocline. We investigate different forms for the elevated mixing. It is found that the SVS-induced mixing strongly affect the mean state of the ocean leading to a warming of sea surface temperature (SST) and associated deepening and sharpening of the thermocline in the eastern equatorial Pacific. We find that the SST warming induced by the elevated mixing is further strengthened through the Bjerknes feedback and SST-shortwave flux feedback. We also find a reduction in the number of large amplitude ENSO events and in certain cases an increase in the skewness of ENSO.  相似文献   

9.
The Oregon State University coupled upper ocean-atmosphere GCM is evaluated in terms of the simulated winds, ocean currents and thermocline depth variations. Although the zonal wind velocities in the model are underestimated by a factor of about three and the zonal current velocities are underestimated by a factor of about five, the model is seen to qualitatively simulate the major features of the gyral scale currents, and the phases of the seasonal variation of the principal equatorial currents are in reasonable agreement with observations. The simulated tropical currents are dominated by Ekman transport and the eastern boundary currents do not penetrate far enough equatorward, while the western boundary currents do not penetrate far enough poleward. The subtropical trade wind belt and the mid-latitude westerlies are displaced equatorward of observations; hence, the mid-latitude eastward currents, principally the Kuroshio-North Pacific Drift and the Gulf Stream-North Atlantic Current are displaced equatorward. In spite of these shortcomings the surface current simulation of this two-layer upper ocean model is comparable with that of other ocean GCMs of coarse resolution. The coupled model successfully simulates the deepening of the thermocline westward across Pacific as a consequence of the prevailing Walker circulation. The region of most intense simulated surface forcing is located in the western Pacific due to a southwestward displacement of the northeast trade winds relative to observations; hence the equatorial Pacific is dominated by eastward propagation of thermocline depth variations. The excessively strong Ekman divergence and upwelling in the western Pacific cools the local warm pool, while incorrectly simulated westerlies in the eastern Pacific suppress upwelling and inhibit cooling from below. These features reduce the simulated trans-Pacific sea-surface temperature gradient, weakening the Walker circulation and the anomalies associated with the simulated Southern Oscillation. Offprint requests to: KR Sperber  相似文献   

10.
F. Codron 《Climate Dynamics》2001,17(2-3):187-203
 The changes of the variability of the tropical Pacific ocean forced by a shift of six months in the date of the perihelion are studied using a coupled tropical Pacific ocean/global atmosphere GCM. The sensitivity experiments are conducted with two versions of the atmospheric model, varied by two parametrization changes. The first one concerns the interpolation scheme between the atmosphere and ocean models grids near the coasts, the second one the advection of water vapor in the presence of downstream negative temperature gradients, as encountered in the vicinity of mountains. In the tropical Pacific region, the parametrization differences only have a significant direct effect near the coasts; but coupled feedbacks lead to a 1 °C warming of the equatorial cold tongue in the modified (version 2) model, and a widening of the western Pacific large-scale convergence area. The sensitivity of the seasonal cycle of equatorial SST is very different between the two experiments. In both cases, the response to the solar flux forcing is strongly modified by coupled interactions between the SST, wind stress response and ocean dynamics. In the first version, the main feedback is due to anomalous upwelling and leads to westward propagation of SST anomalies; whereas the version 2 model is dominated by an eastward-propagating thermocline mode. The main reason diagnosed for these different behaviors is the atmospheric response to SST anomalies. In the warmer climate simulated by the second version, the wind stress response in the western Pacific is enhanced, and the off-equatorial curl is reduced, both effects favoring eastward propagation through thermocline depth anomalies. The modifications of the simulated seasonal cycle in version 2 lead to a change in ENSO behavior. In the control climate, the interannual variability in the eastern Pacific is dominated by warm events, whereas cold events tend to be the more extreme ones with a shifted perihelion. Received: 14 December 1999 / Accepted: 24 May 2000  相似文献   

11.
The mean state and the seasonal cycle in the tropical Pacific are studied, using a new coupled tropical ocean-global atmosphere model. The atmospheric component is a general circulation model and the oceanic component is a two and a half layer model of the tropical Pacific. The coupling is based on delocalized physics: the spatial resolution of the physics of the atmospheric component is the same as the spatial resolution of the oceanic model. No flux corrections are applied. A 31 year experiment has been made with the climatological observed sea surface temperature outside the area of coupling. We observe a quick drift of the model which, after three years, reaches a warm mean state. The temperature bias varies geographically between 1?°C and 2?°C, but, in spite of this default, the eastern part of the basin remains colder than the west. This contrast is shown to be dependent on the shoaling of the thermocline east of 160°W. There is a significant seasonal cycle with an amplitude and phase of the seasonal variations which are well reproduced with respect to many other models. It is shown that interactions between the ocean and the atmosphere in the central and eastern Pacific are sufficient to explain the gross features of its evolution. In July, easterlies intensify in the Southern Hemisphere and lead to a strong upwelling and an enhanced evaporation in the eastern part of the basin. This induces a cooling throughout the area. The cooling reaches a first maximum in October in the easternmost part of the basin, then propagates westward along the equator with a decreasing amplitude. In January it is reinforced in the central part of the basin because of a divergence of the current, which is too strong. The mechanisms found here emphasize the role of the upwelling in maintaining the equatorial Pacific climate, and are in agreement with those found in other simplified coupled models.  相似文献   

12.
A coupled model,which is employed to study the dominating factor and key area of El Nino cycle formation,consists of a dynamical ocean model and a statistical atmospheric model.The coupled model with seasonal forcing successfully reproduces the El Nino event cycle which exhibits quasi-regular oscillations with a preferred period of about 4 years.The results show that the heat content(HC) is transported between the eastern and the western tropical Pacific areas.The spatial distribution of HC anomalies for four phases of the whole cycle clearly shows a possible formation mechanism of El Nino.Experiments further suggest that sea surface temperature in the tropical Pacific and HC in the central tropical Pacific are the most important factors and the central tropical Pacific is the most important area for determining formation of El Nino cycle.  相似文献   

13.
A coupled model,which is employed to study the dominating factor and key area of El Ninocycle formation,consists of a dynamical ocean model and a statistical atmospheric model.Thecoupled model with seasonal forcing successfully reproduces the El Nino event cycle which exhibitsquasi-regular oscillations with a preferred period of about 4 years.The results show that the heatcontent(HC)is transported between the eastern and the western tropical Pacific areas.The spatialdistribution of HC anomalies for four phases of the whole cycle clearly shows a possible formationmechanism of El Nino.Experiments further suggest that sea surface temperature in the tropicalPacific and HC in the central tropical Pacific are the most important factors and the central tropicalPacific is the most important area for determining formation of El Nino cycle.  相似文献   

14.
Interdecadal modulation of Australian rainfall   总被引:1,自引:0,他引:1  
Interdecadal variability is investigated in a 300 year run of the Parallel Climate Model, a global coupled atmosphere-land-ocean-sea ice model. The model simulates El Niño variability of realistic magnitude and is found to produce interdecadal characteristics similar to those observed, both in frequency, spatial patterns and amplitude. Modulation of Australian rainfall on interdecadal time scales is similar to observed and is found to have contributions from both the modulation of ENSO, changes in the position of the Walker circulation and variations in western Pacific SSTs. A slackening of the equatorial Pacific thermocline slope is associated with diminished ENSO variability during interdecadal periods of positive tropical Pacific SSTs. These interdecadal changes to ENSO and shifts in the position of the Walker circulation are physical mechanisms that contribute to the weakened correlations between the SOI and Australian climate during interdecadal periods of positive tropical Pacific SSTs. Warm anomalies in the western Pacific also contribute to a decrease in Australian rainfall in the model on interdecadal time scales.  相似文献   

15.
 The thirty year simulation of the coupled global atmosphere-tropical Pacific Ocean general circulation model of the Laboratoire de Métérologie Dynamique and the Laboratoire d’Océanographie Dynamique et de Climatologie presented in Part I is further investigated in order to understand the mechanisms of interannual variability. The model does simulate interannual events with ENSO characteristics; the dominant periodicity is quasi-biennial, though strong events are separated by four year intervals. The mechanism that is responsible for seasonal oscillations, identified in Part I, is also active in interannual variability with the difference that now the Western Pacific is dynamically involved. A warm interannual phase is associated with an equatorward shift of the ITCZ in the Western and Central Pacific. The coupling between the ITCZ and the ocean circulation is then responsible for the cooling of the equatorial subsurface by the draining mechanism. Cold subsurface temperature anomalies then propagate eastward along the mean equatorial thermocline. Upon reaching the Eastern Pacific where the mean thermocline is shallow, cold subsurface anomalies affect surface temperatures and reverse the phase of the oscillation. The preferred season for efficient eastward propagation of thermocline depth temperature anomalies is boreal autumn, when draining of equatorial waters towards higher latitudes is weaker than in spring by a factor of six. In that way, the annual cycle acts as a dam that synchronizes lower frequency oscillations. Received: 7 April 1997 / Accepted: 15 July 1998  相似文献   

16.
IAP第四代大气环流模式的耦合气候系统模式模拟性能评估   总被引:7,自引:2,他引:5  
本文首先扼要介绍了基于中国科学院大气物理研究所(简称IAP)第四代大气环流模式的新气候系统模式-CAS-ESM-C(中国科学院地球系统模式气候系统模式分量)的发展和结构,之后主要对该模式在模拟大气、海洋、陆面和海冰的气候平均态、季节循环以及主要的年际变率等方面的能力做一个初步的评估.结果表明:模式没有明显的气候漂移,各...  相似文献   

17.
The basic features of climatology and interannual variations of tropical Pacific and Indian Oceans were analyzed using a coupled general circulation model (CGCM), which was constituted with an intermediate 2.5-layer ocean model and atmosphere model ECHAM4. The CGCM well captures the spatial and temporal structure of the Pacific El Ni?o-Southern Oscillation (ENSO) and the variability features in the tropical Indian Ocean. The influence of Pacific air-sea coupled process on the Indian Ocean variability was investigated carefully by conducting numerical experiments. Results show that the occurrence frequency of positive/negative Indian Ocean Dipole (IOD) event will decrease/increase with the presence/absence of the coupled process in the Pacific Ocean. Further analysis demonstrated that the air-sea coupled process in the Pacific Ocean affects the IOD variability mainly by influencing the zonal gradient of thermocline via modulating the background sea surface wind.  相似文献   

18.
B. Wang  S. An 《Climate Dynamics》2002,18(6):475-486
This study explains why a number of El Nino properties (period, amplitude, structure, and propagation) have changed in a coherent manner since the late 1970s and why these changes had almost concurred with the Pacific decadal climate shift. Evidence is presented to show that from the pre-shift (1961-1975) to the post-shift (1981-1995) epoch, significant changes in the tropical Pacific are found in the surface winds and temperature, whereas changes in the thermocline are uncertain. Numerical experiments with the Cane and Zebiak model demonstrate that the decadal changes in the surface winds qualitatively reproduce the observed coherent changes in El Nino properties. The fundamental factor that altered the model's El Nino is the decadal changes of the background equatorial winds and associated upwelling. The annual cycle is also necessary for the mean state to modulate El Nino. From the pre- to post-shift epoch, the changes in the background winds and upwelling modify the structure of the coupled mode (eastward displacement of the equatorial westerly anomalies) by reallocating anomalous atmospheric heating and SST gradient along the equator. This structural change amplifies the ENSO cycle and prolongs the oscillation period by enhancing the coupled instability and delaying transitions from a warm to a cold state or vice versa. The changes in the mean currents and upwelling reduce the effect of the zonal temperature advection while enhance that of the vertical advection; thus, the prevailing westward propagation is replaced by eastward propagation or standing oscillation. Our results suggest a critical role of the atmospheric bridge that rapidly conveys the influences of extratropical decadal variations to the tropics, and the possibility that the Pacific climate shift might have affected El Nino properties in the late 1970s by changing the background tropical winds and the associated equatorial upwelling.  相似文献   

19.
关于ENSO本质的进一步研究   总被引:28,自引:5,他引:23  
基于ENSO是热带太平洋海气相互作用产物的科学观点,一系列的分析研究表明:赤道太平洋次表层海温异常(SOTA)有明显的年际变化(循环),并且与ENSO发生密切相关;ENSO的真正源区在赤道西太平洋暖池,赤道西太平洋暖池正(负)SOTA沿赤道温跃层东传到东太平洋,导致El Nino(La Nina)的爆发;在暖池正(负)SOTA沿赤道温跃层东传的同时,将有负(正)SOTA沿10°N和10°S两个纬度带向西传播,从而构成SOTA的循环;热带太平洋SOTA年际循环的驱动者主要是由异常东亚季风所引起的赤道西太平洋纬向风的异常.进而,可以提出关于ENSO本质的一种新理论,即ENSO实质上主要是由异常东亚季风引起的赤道西太平洋异常纬向风所驱动的热带太平洋次表层海温距平的年际循环.    相似文献   

20.
 The mechanisms responsible for the mean state and the seasonal and interannual variations of the coupled tropical Pacific-global atmosphere system are investigated by analyzing a thirty year simulation, where the LMD global atmospheric model and the LODYC tropical Pacific model are coupled using the delocalized physics method. No flux correction is needed over the tropical region. The coupled model reaches its regime state roughly after one year of integration in spite of the fact that the ocean is initialized from rest. Departures from the mean state are characterized by oscillations with dominant periodicites at annual, biennial and quadriennial time scales. In our model, equatorial sea surface temperature and wind stress fluctuations evolved in phase. In the Central Pacific during boreal autumn, the sea surface temperature is cold, the wind stress is strong, and the Inter Tropical Convergence Zone (ITCZ) is shifted northwards. The northward shift of the ITCZ enhances atmospheric and oceanic subsidence between the equator and the latitude of organized convention. In turn, the stronger oceanic subsidence reinforces equatorward convergence of water masses at the thermocline depth which, being not balanced by equatorial upwelling, deepens the equatorial thermocline. An equivalent view is that the deepening of the thermocline proceeds from the weakening of the meridional draining of near-surface equatorial waters. The inverse picture prevails during spring, when the equatorial sea surface temperatures are warm. Thus temperature anomalies tend to appear at the thermocline level, in phase opposition to the surface conditions. These subsurface temperature fluctuations propagate from the Central Pacific eastwards along the thermocline; when reaching the surface in the Eastern Pacific, they trigger the reversal of sea surface temperature anomalies. The whole oscillation is synchronized by the apparent meridional motion of the sun, through the seasonal oscillation of the ITCZ. This possible mechanism is partly supported by the observed seasonal reversal of vorticity between the equator and the ITCZ, and by observational evidence of eastward propagating subsurface temperature anomalies at the thermocline level. Received: 7 April 1997 / Accepted: 15 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号