首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A review of flux-profile relationships   总被引:33,自引:5,他引:33  
Flux-profile relationships in the constant flux layer are reviewed. The preferred relationships are found to be those of Dyer and Hicks (1970), namely, H = W =(1–16(z/L))–1/2, M =(1–16(z/L))–1/4 for the unstable region, and H = W = M = 1+5(z/L) for the stable region.The carefully determined results of Businger et al. (1971) remain a difficulty which calls for considerable clarification.  相似文献   

2.
From measured one-dimensional spectra of velocity and temperature variance, the universal functions of the Monin-Obukhov similarity theory are calculated for the range –2 z/L + 2. The calculations show good agreement with observations with the exception of a range –1 z/L 0 in which the function m , i.e., the nondimensional mean shear, is overestimated. This overestimation is shown to be caused by neglecting the spectral divergence of a vertical transport of turbulent kinetic energy. The integral of the spectral divergence over the entire wave number space is suggested to be negligibly small in comparison with production and dissipation of turbulent kinetic energy.Notation a,b,c contants (see Equations (–4)) - Ci constants i=u, v, w, (see Equation (5) - kme,kmT peak wave numbers of 3-d moel spectra of turbulent kinetic energy and of temperature variance, respectively - kmi peak wave numbers of 1-d spectra of velocity components i=u, v, w and of temperature fluctuations i= - ksb, kc characteristics wave numbers of energy-feeding by mechanical effects being modified by mean buoyancy, and of convective energy feeding, respectively - L Monin-Obukhov length - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gabeivayaaraaaaa!3C5B!\[{\rm{\bar T}}\] difference of mean temperature and mean potential temperature - T* Monin-Obukhov temperature scale - velocity of mean flow in positive x-direction - u* friction velocity - u, v, w components of velocity fluctuations - z height above ground - von Kármanán constant - temperature fluctuation - m nondimensional mean shear - H nondimensional mean temperature gradient - nondimensional rate of lolecular dissipation of turbulent kinetic energy - D nondimensional divergence of vertical transports of turbulent linetic energy  相似文献   

3.
The second of two experimental studies of the TKE budget conducted on sites of different roughness is described, and results are compared. The first took place within a shallow layer above a small field of mostly bare, cultivated soil; the second was carried out above a roughness sublayer of significant depth on an extensive plain of tall dry grass. Budget terms observed in the second study were scaled with a modified u which compensated for effects of an unusually large stress gradient and ensured that the m functions would be collinear. By showing that the modification becomes negligible in smaller gradients, it is demonstrated that in normal conditions, budgets observed above significant roughness sublayers should be normalized by scaling in terms of the unreduced Reynolds stress at the sublayer's upper surface. This procedure is shown to be consistent with the expectation that TKE budgets in layers near the surface all scale in fundamentally the same way.Other findings include: (1) the fact that most m functions previously reported are not quite collinear is attributed to a type of overspeeding known to affect three-cup anemometers; (2) revised m functions, collinear and largely free of the effects of overspeeding, are determined from a well-established characteristic of the linear m relation for the stable case; (3) data that define collinear m functions can also be represented with single hyperbolic curves; (4) dissipation is found to be 10 to 15% too small to balance total TKE production in unstable and neutral conditions and to decrease with increasing z/L in thestable regime; and (5) new relations for based on the observed behaviour of the dissipation deficit provide an improved closure for the set of equations that express the budget terms as functions of m and z/L.  相似文献   

4.
Turbulence mechanisms at an agricultural site   总被引:8,自引:0,他引:8  
An extensive set of turbulence data from the 3- and 12-m heights taken over an agricultural site (Marsta, Sweden) are analyzed and compared with data from ideal sites.In unstable air, Monin-Obukhov similarity is found to be valid for the non-dimensional gradients of wind, m , temperature, h , and humidity, e , for (only a few data), for T /|T *|,/ E /|E *| and for the non-dimensionalized inertial subrange spectra of temperature and humidity. Where comparison is possible, the unstable data also agree with those found in the Kansas study, with one remarkable exception, the inertial subrange constant of the temperature spectrum, 1, being only 0.39, compared to the value 0.80 found at the Kansas site.On the stable side, most similarity predictions break down, with most of the data differing systematically from the corresponding Kansas results, the only exception being . The inertial subrange constants for temperature, 1, and for humidity, 1 are found to have the same values, 0.39 and 0.30, respectively, as they do on the unstable side. Remarkable similarity is found for the shape of the stable u- and - and e-spectra. In addition, this shape is found to be identical with that found in Kansas. The peak wavelength of the stable u-, and -spectra is found to be about four times larger than it is for the corresponding Kansas spectra. This is interpreted to be a result of the increased macro-roughness at the Marsta site as compared with that at the Kansas site. A possible explanation for the low 1-value is discussed, suggesting that 1 is not a universal constant, but instead dependent on the turbulent structure.  相似文献   

5.
6.
Turbulence measurements performed in a stable boundary layer over the sloping ice surface of the Vatnajökull in Iceland are described. The boundary layer, in which katabatic forces are stronger than the large-scale forces, has a structure that closely resembles that of a stable boundary layer overlying a flat land surface, although there are some important differences. In order to compare the two situations the set-up of the instruments on an ice cap in Iceland was reproduced on a flat grass surface at Cabauw, the Netherlands. Wind speed and temperature gradients were calculated and combined with flux measurements made with a sonic anemometer in order to obtain the local stability functions m and h as a function of the local stability parameter z/L. Unlike the situation at Cabauw, where m was linear as a function of z/L, in the katabatically forced boundary layer, the dependence of m on stability was found to be non-linear and related to the height of the wind maximum. Thermal stratification and the depth of the stable boundary layer however seem to be rather similar under these two different forcing conditions.Furthermore, measurements on the ice were used to construct the energy balance. These showed good agreement between observed melt and components contributing to the energy balance: net radiation (supplying 55% of the energy), sensible heat flux (30%) and latent heat flux (15%).Local sources and sinks in the turbulent kinetic energy budget are summed and indicate a reasonable balance in near-neutral conditions but not in more stable situations. The standard deviation of the velocity fluctuations u, v, and w, can be scaled satisfactorily with the local friction velocity u* and the standard deviation of the temperature fluctuation with the local temperature scale *.  相似文献   

7.
Surface-Layer Fluxes in Stable Conditions   总被引:2,自引:2,他引:0  
Micrometeorological tower data from the Microfronts experiment are analyzed. Scale-dependencies of the flux and flux sampling error are combined to automatically determine Reynolds turbulence cut-off time scales for computing fluxes from time series. The computed downward heat flux at the 3 m height averaged over nine nights with 7.3 hours each night is 20% greater than the downward heat flux computed at the 10 m height. In contrast, there is only a 1.2% difference between 3 m and 10 m heat fluxes averaged over daytime periods, and there is less than a 2% difference between 3 m and 10 m momentum fluxes whether averaged over nighttime or daytime periods.Stability functions, M(z/L) and H(z/L) are extended to z/L up to 10, where z is the observational height and L is the Obukhov length. For 0.01 < z/L < 1 the estimated functions generally agree with Businger-Dyer formulations, though the H estimates include more scatter compared to the M estimates. For 1 < z/L < 10, the flux intermittency increases, the flux Richardson number exceeds 0.2, and the number of flux samples decreases. Nonetheless the estimates of the stability function M based on 3-m fluxes are closer to the formula proposed by Beljaars and Holtslag in 1991 while the M functions based on 10-m fluxes appears to be closer to the formula proposed by Businger et al. in 1971. The stability function H levels off at z/L = 0.5.  相似文献   

8.
Wind and temperature profiles in the stable boundary layer were analyzed in the context of MoninObukhov similarity. The measurements were made on a 60-m tower in Kansas during October 1999 (CASES-99). Fluxprofile relationships, obtained from these measurements in their integral forms, were established for wind speed and temperature. Use of the integral forms eliminates the uncertainty and accuracy issues resulting from gradient computations. The corresponding stability functions, which were nearly the same for momentum and virtual sensible heat, were found to exhibit different features under weakly stable conditions compared to those under strongly stable conditions. The gradient stability functions were found to be linear, namely m = 1+ 5.8 and h = 1 + 5.4 up to a limit of the MoninObukhov stability parameter = 0.8; this is consistent with earlier findings. However, for stronger stabilities beyond a transition range, both functions were observed gradually to approach a constant, with a value of approximately 7. To link these two distinct regimes, a general but pliable functional form with only two parameters is proposed for the stability functions, covering the entire stability range from neutral to very stable conditions.  相似文献   

9.
Recently Wilson and Flesch (Boundary-Layer Meteorology, 84, 411-426, 1997) suggested that the average increment d z to the orientation = arctan(w/u) of the Lagrangian velocity-fluctuation vector can be used to distinguish the better Lagrangian stochastic models within the well-mixed class. Here it is demonstrated that the specification of d z constitutes neither a sufficient or universally applicable criterion to distinguish the better Lagrangian stochastic models within the well-mixed class. The hypothesis made by Wilson and Flesch that Lagrangian stochastic models with /PE irrotational are zero-spin models, having d z=0, is proven  相似文献   

10.
This paper describes the similarity between atmospheric fluctuations of carbon dioxide, water vapor and temperature using data which cover a wide range of instability (0.02 < < 10). The is the Monin-Obukhov stability parameter including the humidity effect.The spectral analysis shows that the coherency between fluctuations of carbon dioxide and water vapor or temperature is very close to unity, and the phase difference is basically out of phase for whole frequency ranges analyzed. The stability dependence of the normalized standard deviation of carbon dioxide is very similar to those of water vapor and temperature. The normalized standard deviation is about 2.5 under near neutral conditions, and it decreases with increasing instability following the -1/3; power law as (-)-1/3. The skewness factors of carbon dioxide, water vapor and temperature show a systematic departure with increasing instabilities for 0.02 < s- < 1, and level off at high instabilities for 1 < -\s < 10. The stability dependence of the flatness factors is not so clear as that noted in the standrard deviation and skewness factors. Dissipation rates of carbon dioxide, water vapor and temperature variance are well related to the spectral peak wavelength. This seems to be real since the local production and local dissipation rates are the main terms, almost balancing one another in the variance budget equations for scalar entities.  相似文献   

11.
The extension of Lagrangian similarity theory of diffusion to stratified flow is examined, to improve its prediction of the vertical spread of a passive substance. In the basic equation, where is the average height of a cluster of particles,u * is the friction velocity andL is Monin-Obukhov length. It is shown theoretically, under the assumption of an equivalence between the diffusivities of heat and matter, that the unspecified function is the reciprocal of a more familiar meteorological parameter n , the dimensionless temperature gradient. The universal constantb is found to be approximately equal to von Karman's constant for various stability conditions. The predicted effect of stability on vertical spread shows excellent agreement with that of the published data from the O'Neill experiments.  相似文献   

12.
A Random Displacement Model (RDM) and a Langevin Equation Model (LEM) are used to simulate point releases in a complex flow around a building. The flow field is generated by a three-dimensional finite element model that uses the standardk- model to parameterize the turbulence. The RDM- and LEM-calculated concentration fields are compared, with particular emphasis on the structure in regions with high turbulence and/or recirculation. RDM and LEM results are similar qualitatively, but RDM tends to predict lower concentration levels. In part this is due to the higher early-time diffusion. However, the expected convergence at later times is prevented by the interaction of the diffusion with the strongly inhomogeneous mean flow.Notation a i coefficient in the Langevin equation - b ij coefficient in the Langevin equation - C 0 the universal constant associated with the Lagrangian structure function - H building height (22.5 m) - K eddy viscosity - K k eddy viscosity used in the definition of the off-diagonal Reynolds stresses - k turbulent kinetic energy - LEM Langevin Equation Model - p 1 local unit vector in thexy-plane, orthogonal tos - p 2 local unit vector, orthogonal to boths andp 1 - RDM Random Displacement Model - s local unit vector in the streamline direction - T local decorrelation time (Lagrangian time scale) - U magnitude of the local Eulerian mean wind velocity - u s total velocity in the streamline direction - u 1 velocity component in thexy-plane, orthogonal to the streamline direction - u 2 velocity component orthogonal to bothu s andu 1 - i mean Eulerian wind velocity - W i stochastic vector-valued Wiener process - x unit vector inx-direction - y unit vector iny-direction - z unit vector inz-direction - angle between thexy-plane and the mean wind streamline - angle between the projection in thexy-plane of the streamline and thex-axis - ij the Kronecker delta function - rate of turbulence dissipation - i/ga the part ofa i that contains mean wind and turbulence gradients - ij inverse of a Reynolds stress tensor component - ij shorthand for a quantity that defines a part of i/ga - i shorthand for a quantity that defines a part of i/ga - ij Reynolds stress tensor component  相似文献   

13.
A liquid jet of 90 m diameter and variable length has been utilized to determine absorption rates and, hence, mass accommodation coefficients , of atmospheric trace gases. The compounds investigated are HCl (0.01), HNO3 (0.01), N2O5 (0.005), peroxyacetyl nitrate (>0.001), and HONO (0.005). It is concluded that the absorption of these trace gases by liquid atmospheric water is not significantly retarded by interfacial mass transport. The strengths and limitations of the liquid jet technique for measuring mass accommodation coefficients are explored.  相似文献   

14.
Summary The standard equations for the theory of atmospheric tides are solved here by an integral representation on the continuous spectrum of free oscillations. The model profile of back-ground temperature is that of the U.S. Standard Atmosphere in the lower and middle atmosphere, and in the lower thermosphere, above which an isothermal top extends to arbitrarily great heights. The top is warm enough to bring both the Lamb and the Pekeris modes into the continuous spectrum.Computations are made for semidiurnal lunar tidal pressure at sea level at the equator, and the contributions are partitioned according to vertical as well as horizontal structure. Almost all the response is taken up by the Lamb and Pekeris modes of the slowest westward-propagating gravity wave. At sea level, the Lamb-mode response is direct and is relatively insensitive to details of the temperature profile. The Pekeris mode at sea level has an indirect response-in competition with the Lamb mode-and, as has been known since the time of its discovery, it is quite sensitive to the temperature profile, in particular to stratopause temperature. In the standard atmosphere the Lamb mode contributes about +0.078 mb to tidal surface pressure at the equator and the Pekeris mode about –0.048 mb.The aim of this investigation is to illustrate some consequences of representing the tide in terms of the structures of free oscillations. To simplify that task as much as possible, all modifying influences were omitted, such as background wind and ocean or earth tide. Perhaps the main defect of this paper's implementation of the free-oscillation spectrum is that, in contrast to the conventional expansion in the structures of forced oscillations, it does not include dissipation, either implicity or explicity, and thus does not satisfy causality. Dissipation could be added implicity by means of an impedance condition, for example, which would cause up-going energy flux to exceed downgoing flux at the base of the isothermal top layer. To achieve complete causality, however, the dissipation must be modeled explicity. Nevertheless, since the Lamb and Pekeris modes are strongly trapped in the lower and middle atmosphere, where dissipation is rather weak (except possibly in the surface boundary layer), more realistic modeling is not likely to change the broad features of the present results.Symbols a earth's mean radius; expansion coefficient in (5.3) - b recursion variable in (7.4); proximity to resonance in (9.2) - c sound speed in (2.2); specific heatc p in (2.2) - f Coriolis parameter 2sin in (2.2) - g standard surface gravity - h equivalent depth - i ; discretization index in (7.3) - j index for horizontal structure - k index for horizontal structure; upward unit vectork in (2.2) - m wave number in longitude - n spherical-harmonic degree; number of grid layers in a model layer - p tidal pressure perturbation; background pressurep 0 - q heating function (energy per mass per time) - r tidal state vector in (2.1) - s tidal entropy perturbation; background entropys 0 - t time - u tidal horizontal velocityu - w tidal vertical component of velocity - x excitation vector defined in (2.3); vertical coordinate lnp */p 0 [except in (3.8), where it is lnp /p 0] - y vertical-structure function in (7.1) - z geopotential height - A constant defined in (6.2) - C spherical-harmonic expansion coefficient in (3.6) - D vertical cross section defined in (5.6) and (5.9) - E eigenstate vector - F vertical-structure function for eigenstate pressure in (3.2) [re-defined with WKB scaling in (7.2)] - G vertical-structure function for eigenstate vertical velocity in (3.2) [re-defined with WKB scaling in (7.2)] - H pressure-scale height - I mode intensity defined in (8.1) - K quadratic form defined in (4.4) - L quadratic form defined in (4.4); horizontal-structure magnification factor defined in (5.11) - M vertical-structure magnification factor defined in (4.6) - P eigenstate pressure in (3.2); tidal pressure in (6.2) - R tidal state vector in (5.1) - S eigenstate entropy in (3.2); spherical surface area, in differential dS - T background molecular-scale (NOAA, 1976) absolute temperatureT 0 - U eigenstate horizontal velocityU in (3.2); coefficient in (7.3) - V horizontal-structure functionV for eigenstate horizontal velocity in (3.2); recursion variable in (7.3) - W eigenstate vertical velocity in (3.2) - X excitation vector in (5.1) - Y surface spherical harmonic in (3.7) - Z Hough function defined in (3.6) - +dH/dz - (1––)/2 - Kronecker delta; Dirac delta; correction operator in (7.6) - equilibrium tide elevation - (square-root of Hough-function eigenvalue) - ratio of specific gas constant to specific heat for air=2/7 - longitude - - - background density 0 - eigenstate frequency in (3.1) - proxy for heating functionq =c P/t - latitude - tide frequency - operator for the limitz - horizontal-structure function for eigenstate pressure in (3.2) - Hough function defined in (6.2) - earth's rotation speed - horizontal gradient operator - ()0 background variable - ()* surface value of background variable - () value at base of isothermal top layer - Õ state vector with zerow-component - , energy product defined in (2.4) - | | energy norm - ()* complex conjugate With 10 Figures  相似文献   

15.
A Field Study of the Mean Pressure About a Windbreak   总被引:3,自引:0,他引:3  
To provide additional field data for assessingwindbreak flow models, mean ground-level pressurehas been measured upstream and downstream from along porous fence (height H = 1.25 m, resistancecoefficient k r = 2.4). Measurements were madeduring periods of near-neutral stability and near-normallyincident flow, with the fence standing on bare soil(roughness length, z 0 0.8 cm;H/z 0 160), or within a plant canopy. The mean pressure field,measured far from the ends of the fence, was foundto be quite insensitive to mean wind direction( , zero for perpendicular flow), for| | less than about 25°.In the absence of a canopy, during each measurementperiod the minimum pressure occurred at the closestsampling location to leeward of the windbreak, thepressure-gradient in most cases beingmaximally-adverse in the immediate lee, and decayingwith increasing downwind distance (x). On one day ofmeasurements, however, the pressure gradient over2 x/H 6 (H = windbreak height) resembled theleeward plateau identified by Wang and Taklein their numerical studies. Perhaps thisoccasional feature was only due to instrumenterror. Nevertheless a plateau of sorts wasindicated in similar measurements by Judd andPrendergast (with H = 1.92 m, z 0 1.2 cm;H/z 0 160, k r 3). Therefore,existence of a leeward pressure plateau behind athin fence cannot be definitely ruled out.When the windbreak was placed in a canopy, minimumsurface pressure was displaced downwind. Thisagrees with the wind-tunnel study of Judd, Raupach and Finnigan,and is consistent with a simple simulation reported here.  相似文献   

16.
The relation between the turbulence Reynolds numberR and a Reynolds numberz* based on the friction velocity and height from the ground is established using direct measurements of the r.m.s. longitudinal velocity and turbulent energy dissipation in the atmospheric surface layer. Measurements of the relative magnitude of components of the turbulent kinetic energy budget in the stability range 0 >z/L 0.4 indicate that local balance between production and dissipation is maintained. Approximate expressions, in terms of readily measured micrometeorological quantities, are proposed for the Taylor microscale and the Kolmogorov length scale .  相似文献   

17.
The function ()=(1+|z/L|2/3)1/2,where z is the height, L the Obukhov length, and a constant,is proposed for the nondimensional wind speed and temperaturegradients (flux-profile relationships) in anunstable surface layer. This function agrees quite well withboth wind speed and temperature data,has the theoretically correct behaviour in convective conditions,and leads to simple results when integrated to produce the mean profiles.  相似文献   

18.
Summary The integral aerosol optical depths (k ) at the hour of 08:20 Local Standard Time (LST), are compared with those calculated previously at 11:20 and 14:20 LST, for clear days during summer in Athens over the period 1962–1988. The mean values at 08:20 LST were consistently lower than the values at 11:20 and 14:20 LST. The influence of the vertical wind profile on the values ofk was also investigated. A comparison was made of the wind profiles at 02:00 and 14:00 LST, for days in which the 11:20 and 14:20 LST values ofk were 0.200 andk 0.350, respectively. The corresponding bulk wind shear s was also found for the period 1980–1988. The most significant results occurred with the first category of days. The resultant wind velocities from the surface to the 900 hPa level, in each hour were higher by 2–4 m·s–1 with respect to the corresponding values for the second category. At 02:00 LST the bulk wind shear showed a considerable difference (1.8) between the two categories of days in the surface to 700 hPa layer at 02:00 LST. Finally, the associated weather conditions that appear to initiate a period of low values ofk (k 0.200) at 11:20 and 14:20 LST were examined for the period 1980–1988. Fifteen such cases were identified and it was found that they all occurred after the passage of weak cold fronts.With 6 Figures  相似文献   

19.
Summary A zonally averaged global energy balance model with feedback mechanisms was constructed to simulate (i) the poleward limits of ITCZ over the continent and over the ocean and (ii) a simple monsoon system as a result of differential heating between the continent and the ocean. Three numerical experiments were performed with lower boundary as (1) global continent, (2) global ocean and (3) continent-ocean, with freezing latitudes near the poles. Over the continent, midlatitude deserts were found and the ITCZ migrates 25° north and south with seasons. Over a global swamp ocean results do not show migration of ITCZ with time but once the ocean currents are introduced the ITCZ migrates 5° north and south with seasons. It was found that the seasonal migration of ITCZ strongly depends on the meridional distribution of the surface temperature. It was also found that continent influences the location of the oceanic ITCZ. In the tropics northward progression of quasi-periodic oscillations called events are found during the pre- and post-monsoon periods with a period of 8 to 15 days. This result is consistent with the observed quasi-periodic oscillations in the tropical region. Northward propagation of the surface temperature perturbation appears to cause changes in the sensible heat flux which in turn causes perturbations in vertical velocity and latent heat flux fields.List of Symbols vertical average - 0 zonal average - vertical mean of the zonal average - 0s zonal average at the surface - 0a zonal average at 500 mb level - latitude We now define the various symbols used in the model rate of atmospheric heating due to convective cloud formation (K/sec) - dp/dt (N/m2/sec) - density - potential temperature (K) - rate of rotation of the earth (rad/sec) - empirical constant - humidity mixing ratio - * saturated humidity mixing ratio - opacity of the atmosphere - 1,2 factors for downward and upward effective black body long wave radiation from the atmosphere - Stefan-Boltzmann constant - emissivity of the surface - D subsurface temperature (K) - a specific volume - 0xs ,0ys eastward and northward components of surface frictional stress - * vertical velocity at the top of the boundary layer (N/m2/sec) - P Thickness of the boundary layer (mb) - nondimensional function of pressure - P pressure - P a pressure of the model atmosphere (N/m2) - P s pressure at the surface (N/m2) - t time (sec) - U eastward wind speed (m/sec) - V northward wind speed (m/sec) - surface water availability - T absolute temperature (K) - heat addition due to water phase changes - g acceleration due to gravity (m2/sec) - a radius of the earth (m) - R gas constant for dry air (J/Kg/K) - C p specific heat of air at constant pressure (J/Kg/K) - k R/C p - L latent heat of condensation (J/Kg) - f coriolis parameter (rad/sec) - H s H 0s (1) +H 0s (2) +H 0s (3) +H 0s (4) +H 0s (5) (J/m2/Sec)=sum of the rates of vertical heat fluxes per unit surface area, directed toward the surface - H a H 0a (1) +H 0a (2) +H 0a (3) +H 0a (4) (J/m2/Sec)=sum of the rates of heat additions to the atmospheric column per unit horizontal area by all processes - H 0s (1) ,H 0a (1) heat flux due to short wave radiation - H 0s (2) ,H 0a (2) heat flux due to long wave radiation - H 0s (3) ,H 0a (3) heat flux due to small scale convection - H 0s (4) heat flux due to evaporation - H 0a (4) heat flux due to condensation - H 0s (5) heat flux due to subsurface conduction and convection - e * saturation vapor pressure - R solar constant (W/m2) - r a albedo of the atmosphere - r s albedo of the surface - b 2 empirical constant (J/m2/sec) - c 2 empirical constant (J/m2/sec) - e 2 nondimensional empirical constant - f 2 empirical constant (J/m2/sec) - factor proportional to the conductive capacity of the surface medium - a s constant used in Sellers model - b s positive constant of proportionality used in the Sellers model (kg m2/J/sec2) - K HT coefficient for eddy diffusivity of heat (m2/sec) - K HE exchange coefficient for water vapor (m2/sec) - h depth of the water column (m) - z height (m) - V 0ws meridional component of surface current (m/sec) - n cloud amount - G 0,n long wave radiation form the atmosphere for cloud amount n (W/m2) - B 0 long wave radiation from the surface (W/m2) - S 0,n short wave radiation from the atmosphere for cloud amount n (W/m2) - A n albedo factor for a cloud amount n - R f1 large scale rainfall (mm/day) - R f2 small scale rainfall (mm/day) With 22 Figures  相似文献   

20.
Cloud water and interstitial aerosol samples collected at Mt. Sonnblick (SBO) were analyzed for sulfate and aerosol carbon to calculate in-cloud scavenging efficiencies. Scavenging efficiencies for sulfate (SO) ranged from 0.52 to 0.99 with an average of 0.80. Aerosol carbon was scavenged less efficiently with an average value (AC) of 0.45 and minimum and maximum values of 0.14 and 0.81, respectively. Both SO and AC showed a marked, but slightly different, dependence on the liquid water content (LWC) of the cloud. At low LWC, SO increased with rising LWC until it reached a relatively constant value of 0.83 above an LWC of 0.3 g/m3. In the case of aerosol carbon, we obtained a more gradual increase of AC up to an LWC of 0.5 g/m3. At higher LWCs, _ remained relatively constant at 0.60. As the differences between SO and A varied across the LWC range observed at SBO, we assume that part of the aerosol carbon was incorporated into the cloud droplets independently from sulfate. This hypothesis is supported by size classified aerosol measurements. The differences in the size distributions of sulfate and total carbon point to a partially external mixture. Thus, the different chemical nature and the differences in the size and mixing state of the aerosol particles are the most likely candidates for the differences in the scavenging behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号