首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Eclogite Zone, of the Tauern Window is an exhumed subduction channel comprising eclogites with different grades of retrogression in a matrix of high-pressure metasediments. The rocks were exposed to 600 °C and 20–25 kbars, and then retrogressed during their exhumation, first under blueschist facies and later under amphibolite facies metamorphism. To gain insights into the deformation within the subduction channel during subduction and exhumation, both fresh and retrogressed eclogites, as well as the surrounding metasediments were investigated with respect to their deformation microstructures and crystallographic preferred orientations (CPOs). Pristine and retrogressed eclogites show grain boundary migration and subgrain rotation recrystallization microstructures in omphacite. A misorientation axes analysis reveals the activity of complementary deformation mechanisms including grain boundary sliding and dislocation creep. The omphacite CPOs of the eclogites correspond to dominant SL-fabrics characteristic of plane strain deformation, though there are local variations towards flattening or constriction within the paleosubduction channel. The glaucophane CPOs in retrogressed eclogites match those of omphacite, suggesting that a constant strain geometry persisted during exhumation at blueschist facies conditions. Plastic deformation of the host high-pressure metasediments outlasted that of the eclogites, as indicated by white mica fabrics and quartz CPO. The latter is consistently asymmetric, pointing to the operation of non-coaxial deformation. The microstructures and CPO data indicate a continuous plastic deformation cycle with eclogite and blueschist facies metamorphism related to subduction and exhumation of the different rock units.  相似文献   

2.
In the metabasites of Val Chiusella, metamorphic assemblages are present, corresponding to the glaucophane schist facies, i.e. garnet glaucophanites to omphacite-garnet glaucophanites, as well as to the eclogite facies, i.e., glaucophane eclogites, eclogites, and omphacite felses. Both groups of assemblages are divided by the critical reaction 1 zoisite +1 glaucophane 1.2 omphacite+0.8 garnet+0.7 paragonite +1.4 quartz+0.8 H2O. From textural evidence it is clear that in the investigated area this reaction proceeded to the right according to a prograde metamorphism. Correspondingly, K garn-cpx D(Fe/Mg) values of coexisting garnet-omphacite pairs in the glaucophane schist facies assemblages are higher than in the eclogite facies assemblages and reflect a temperature increase from about 450 ° C to about 550 ° C at minimum water vapour pressures of 12 to 16 kb.  相似文献   

3.
Pseudosections calculated with thermocalc predict that lawsonite‐bearing assemblages, including lawsonite eclogite, will be common for subducted oceanic crust that experiences cool, fluid‐saturated conditions. For glaucophane–lawsonite eclogite facies conditions (500–600 °C and 18–28 kbar), MORB compositions are predicted in the NCKMnFMASHO system to contain glaucophane, garnet, omphacite, lawsonite, phengite and quartz, with chlorite at lower temperature and talc at higher temperature. In these assemblages, the pyrope content in garnet is mostly controlled by variations in temperature, and grossular content is strongly controlled by pressure. The silica content in phengite increases linearly with pressure. As the P–T conditions for these given isopleths are only subtly affected by common variations in bulk‐rock compositions, the P–T pseudosections potentially present a robust geothermobarometric method for natural glaucophane‐bearing eclogites. Thermobarometric results recovered both by isopleth and conventional approaches indicate that most natural glaucophane–lawsonite eclogites (Type‐L) and glaucophane–epidote eclogites (Type‐E) record similar peak P–T conditions within the lawsonite stability field. Decompression from conditions appropriate for lawsonite stability should result in epidote‐bearing assemblages through dehydration reactions controlled by lawsonite + omphacite = glaucophane + epidote + H2O. Lawsonite and omphacite breakdown will be accompanied by the release of a large amount of bound fluid, such that eclogite assemblages are variably recrystallized to glaucophane‐rich blueschist. Calculated pseudosections indicate that eclogite assemblages form most readily in Ca‐rich rocks and blueschist assemblages most readily in Ca‐poor rocks. This distinction in bulk‐rock composition can account for the co‐existence of low‐T eclogite and blueschist in high‐pressure terranes.  相似文献   

4.
The40Ar-39Ar degassing spectra of white micas and amphiboles from three tectonic units of the central Tauern Window (Pennine basement and cover in the Eastern Alps) have been measured. White micas are classified as (1) pre-Alpine low-Si relic micas with an age value of 292 Ma, variously disturbed by the Alpine metamorphism; (2) Alpine phengitic micas of variable composition with an age between 32 and 36 Ma; (3) Alpine low-Si micas with a maximum age of 27 Ma. We attribute the higher Alpine ages to a blueschist facies event, whereas the lower age reflects the late cooling of the nappe pile. Blueschist facies phengites from the basement (Lower Schieferhülle) and the tectonic cover (Upper Schieferhülle) crystallized at a temperature below the closure temperature (T c) for argon diffusion in white mica and record ages of 32 to 36 Ma. At the same time a thin, eclogite facies unit (Eclogite Zone) was thrust between the Lower and the Upper Schieferhülle and cooled from eclogite facies conditions at about 600°C at 20 kbar to blueschist facies conditions at 450°C or even 300°C at >10 kbar. Eclogite facies phengites closed for argon diffusion and record cooling ages, coinciding with the crystallization ages in the hanging and the footwall unit. Amphibole age spectra (actinolite, glaucophane, barroisite) are not interpretable in terms of geologically meaningful ages because of excess argon.  相似文献   

5.
Eclogites from the south Tianshan, NW China are grouped into two types: glaucophane and hornblende eclogites, composed, respectively, of garnet + omphacite + glaucophane + paragonite + epidote + quartz and garnet + omphacite + hornblende (sensu lato) + paragonite + epidote + quartz, plus accessory rutile and ilmenite. These eclogites are diverse both in mineral composition and texture not only between the two types but also among the different selected samples within the glaucophane eclogite. Using thermocalc 3.1 and recent models of activity–composition relation for minerals, a PT projection and a series of P–T pseudosections for specific samples of eclogite have been calculated in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O (NCFMASH) with quartz and water taken to be in excess. On the basis of these phase diagrams, the phase relations and P–T conditions are well delineated. The three selected samples of glaucophane eclogite AK05, AK11 and AK17 are estimated to have peak P–T conditions, respectively, of 540–550 °C at c. 16 kbar, c. 560 °C at 15–17 kbar and c. 580 °C at 15–19 kbar, and two samples of hornblende eclogite AK10 and AK30 of 610–630 °C and 17–18 kbar. Together with H2O‐content contours in the related P–T pseudosections and textural relations, both types of eclogite are inferred to show clockwise P–T paths, with the hornblende eclogite being transformed from the glaucophane eclogite assemblage dominantly through increasing temperature.  相似文献   

6.
Mineral stable isotopic and trace element studies in 2 GPa banded eclogites of the Tauern Window, eastern Alps, record mm- to cm-scale heterogeneities that reflect compositional variations in the accompanying metamorphic fluids. A close correlation between dolomite mode and dolomite δ18O is consistent with equilibrium partitioning among coexisting minerals and fluids. Small variations in dolomite δ13C values correspond with δ18O variations, but an overall decrease in dolomite δ13C by c. 1%o across a 12-cm sample is a relict feature that pre-dates eclogite equilibration. Garnet, omphacite, and clinozoisite rims show little systematic mineral-mineral partitioning behaviour for Ti, V, Cr, Y, Sr, or Zr; major elements, however, are well equilibrated among these same minerals. Despite the apparent lack of mineral-mineral trace element equilibration, most of the trace elements vary systematically with water activity calculated in each layer. Trace element behaviour during the eclogite metamorphism thus appears to have been controlled largely by mineral-fluid interactions along grain boundaries. Shallow structural levels in other subduction complexes (c. 10-45 km) typically exhibit fracture-controlled permeability and extensive metasomatism, but there is no field or geochemical evidence for extensive fluid advection during high-pressure metamorphism in the Tauern eclogites. Because most dewatering and devolatilization during tectonic burial occurs prior to eclogite conditions, the volumetric fluid/rock ratio in eclogites should generally be low. Low fluid/rock ratios, coupled with the possible non-wetting nature of the fluids, permits the production and preservation of fine-scale chemical heterogeneities in deeply subducted eclogites and associated fluids. However, the eventual breakdown at greater depth of volatile-bearing dolomite, phengite, clinozoisite, zoisite, or amphibole could lead to renewed fracture-controlled fluid release from the subducted rocks to regions appropriate for arc magma generation.  相似文献   

7.
Eclogite fades rocks in this area are diverse in rock type. The field occurrence and rock-chemistry reflect theirin-situ origin. Based on their regional geology and field occurrence, two groups of eclogites are divided in terms of their peak temperature of metamorphism. Medium-temperature eclogites (MT), as Group B, occur in the Dabie Group. They were formed from epidote-amphibolite facies. The metamorphism of eclogite facies has two stages: the coesite eclogite facies stage (the peak condition:T = 600 -700°C,P = 2.7-3.0 GPa) and the glaucophane eclogite facies stage (the pressure decreases, may be lower than 2.5 GPa while the temperature has little change). Low temperature eclogites (LT), as Group C, occur in the Qijiaoshan Formation. They were formed from blue schist facies (the peak condition:T = 490–560°C,P< 1.5 GPa). The appearance of hydrous minerals in the eclogites indicates the important role of water in metamorphism. Medium-temperature eclogites are different from low-temperature ones in metamorphism. At last, the evolution of the high-pressure metamorphic belt is discussed as well. This research project was financially supported by the National Natural Science Foundation of China (No. 49372100).  相似文献   

8.
Petrographical and mineral chemical data are given for the eclogites which occur in the garnet-kyanite micaschists of the Penninic Dora-Maira Massif between Brossasco, Isasca and Martiniana (Italian Western Alps) and for a sodic whiteschist associated with the pyrope-coesite whiteschists of Martiniana. The Brossasco-Isasca (BI) eclogites are fine grained, foliated and often mica-rich rocks with a strong preferred orientation of omphacite crystals and white micas. Porphyroblasts of hornblende are common in some varieties, whilst zoisite and kyanite occur occasionally in pale green varieties associated with leucocratic layers with quartz, jadeite and garnet. These features differentiate the BI eclogites from the eclogites that occur in other continental units of the Western Alps, which all belong to type C. Garnet, sodic pyroxene and glaucophane are the major minerals in the sodic whiteschist. Sodic pyroxene in the eclogites is an omphacite often close to Jd50Di50, with very little acmite and virtually no AlIV, and impure jadeite in the leucocratic layers and in the sodic whiteschist. Garnet is almandine with 20–30 mol. % for each of the pyrope and grossular components in the eclogites and a pyrope-rich variety in the sodic whiteschist. White mica is a variably substituted phengite, and paragonite apparently only occurs as a replacement product of kyanite. Amphibole is hornblende in the eclogites, but the most magnesian glaucophane yet described in the sodic whiteschist. Quartz pseudomorphs of coesite were found occasionally in a few pyroxenes and garnets. The P-T conditions during the VHP event are constrained in the eclogites by reactions which define a field ranging from 27–28 kbar to 35 kbar and from 680 to 750° C. These temperatures are consistent with the results of garnet-pyroxene and garnet-phengite geothermometry which suggest that the eclogites may have equilibrated at around 700° C. In the sodic whiteschist pressures ranging from 29 to 35 kbar can be deduced from the stability of the jadeite-pyrope garnet-glaucophane compatibility. As in the eclogites water activity must have been low. Such conditions are close to the P-T values estimated for the early Alpine recrystallization of the pyrope-coesite rock and, like petrographical and mineralogical features, set aside the BI eclogites from the other eclogites of the Western Alps, instead indicating a close similarity to some of the eclogite bodies occurring in the Adula nappe of the Central Alps. An important corollary is that glaucophane stability, at least in Na- and Mg-rich compositions and under very high pressures, may extend up to 700° C, in agreement with the HT stability limit suggested by experimental studies.  相似文献   

9.
Eclogite occurs within the southern domain of the East Athabasca mylonite triangle in northern Saskatchewan. Situated at the boundary between the Archean Rae and Hearne Provinces of the western Canadian Shield, the East Athabasca mylonite triangle is a fundamental exposure of the ~3,000-km-long Snowbird tectonic zone. The eclogite occurs in association with a variety of lower crustal high-pressure granulites that record a complex metamorphic history from 2.6 to 1.9 Ga. Temperatures of the eclogite facies metamorphism are constrained by garnet-clinopyroxene exchange thermometry at 920–1,000 °C. Minimum pressure conditions are recorded by the jadeite+quartz=albite geobarometer at 1.8–2.0 GPa. A near-isothermal decompression path to granulite facies conditions is inferred from retrograde reaction textures involving the formation of granulite facies assemblages such as orthopyroxene-plagioclase and pargasite-plagioclase. U-Pb IDTIMS zircon geochronology of the eclogite yields a weighted mean 207Pb/206Pb date of 1,904.0±0.3 Ma, which we interpret as the time of peak eclogite facies metamorphism. SHRIMP in situ analyses of metamorphic zircons included within omphacitic clinopyroxene support this interpretation with a weighted mean 207Pb/206Pb date of 1,905±19 Ma. Inclusion suites of high-pressure phases and the petrographic setting of zircon are a direct link between zircon growth and eclogite facies metamorphism. Zircon from one eclogite sample has older cores that are 2.54 Ga, which is a minimum age for the emplacement or earliest metamorphism of the gabbroic protolith. U-Pb rutile data indicate slow cooling at ~1°C/Ma below ~500 °C from 1.88 to 1.85 Ga. The formation and exhumation of the eclogites at ca.1.9 Ga has important implications for the tectonic significance of the Snowbird tectonic zone during the Paleoproterozoic. The eclogites described here are consistent with transport of continental crust to mantle depths during the Paleoproterozoic, followed by rapid buoyancy-driven exhumation to normal lower crustal depths.Editorial responsibility: T.L. Grove  相似文献   

10.
An eclogite and five of its coexisting minerals (omphacite, garnet, carinthine, kyanite and zoisite) from the probable type locality of eclogites (Kupplerbrunn, Saualpe, Austria) described by Haüy (1822) have been analysed. Optical and X-ray data for these minerals are also given. Comparison of the Kupplerbrunn rock with those of other eclogites from the Saualpe region indicates they all have roughly similar compositions. When plotted on an A-C-F diagram the majority of these analyses fall in the region of kyanite-bearing eclogites suggested by Tilley (1936) although the Kupplerbrunn rock is the only sample containing kyanite; the others containing zoisite. The garnet and omphacite compositions of the Kupplerbrunn rock differ markedly from those of other Saualpe eclogites, possibly due to different metamorphic conditions of their formation. Carinthine analyses are all very similar for eclogites from Saualpe. On the basis of geological, analytical and limited experimental evidence, it is postulated that the Kupplerbrunn eclogite was derived from an original gabbroic rock low in water content such that amphibole and zoisite formed from plagioclase, pyroxene and water; omphacite, garnet and kyanite formed from plagioclase and pyroxene, once all the water was used up in the form of amphibole and zoisite. These reactions are believed to have taken place at 5–8 kb pressure at around 600° C; a value close to that suggested by Lodemann (1966) from field data.  相似文献   

11.
Pressure–temperature grids in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O and its subsystems have been calculatedin the range 15–45 kbar and 550–900°C, usingan internally consistent thermodynamic dataset and new thermodynamicmodels for amphibole, white mica, and clinopyroxene, with thesoftware THERMOCALC. Minerals considered for the grids includegarnet, omphacite, diopside, jadeite, hornblende, actinolite,glaucophane, zoisite, lawsonite, kyanite, coesite, quartz, talc,muscovite, paragonite, biotite, chlorite, and plagioclase. Compatibilitydiagrams are used to illustrate the phase relationships in thegrids. Coesite-bearing eclogites and a whiteschist from Chinaare used to demonstrate the ability of pseudosections to modelphase relationships in natural ultrahigh-pressure metamorphicrocks. Under water-saturated conditions, chlorite-bearing assemblagesin Mg- and Al-rich eclogites are stable at lower temperaturesthan in Fe-rich eclogites. The relative temperature stabilityof the three amphiboles is hornblende > actinolite > glaucophane(amphibole names used sensu lato). Talc-bearing assemblagesare stable only at low temperature and high pressure in Mg-and Al-rich eclogites. For most eclogite compositions, talccoexists with lawsonite, but not zoisite, in the stability fieldof coesite. Water content contouring of pressure–temperaturepseudosections, along with appropriate geotherms, provides newconstraints concerning dehydration of such rocks in subductingslabs. Chlorite and lawsonite are two important H2O-carriersin subducting slabs. Depending on bulk composition and pressure–temperaturepath, amphibole may or may not be a major H2O-carrier to depth.In most cases, dehydration to make ultrahigh-pressure eclogitestakes place gradually, with H2O content controlled by divariantor higher variance assemblages. Therefore, fluid fluxes in subductionzones are likely to be continuous, with the rate of dehydrationchanging with changing pressure and temperature. Further, eclogitesof different bulk compositions dehydrate differently. Dehydrationof Fe-rich eclogite is nearly complete at relatively shallowdepth, whereas Mg- and Al-rich eclogites dehydrate continuouslydown to greater depth. KEY WORDS: dehydration; eclogites; phase relations; THERMOCALC; UHP metamorphism; whiteschists  相似文献   

12.
The Peripheral Schieferhülle of the Tauern Window of the Eastern Alps represents post-Hercynian Penninic cover sequences and preserves a record of metamorphism in the Alpine orogeny, without the inherited remnants of Hercynian events that are retained in basement rocks. The temperature-time-deformation history of rocks at the lower levels of these cover sequences have been investigated by geochronological and petrographic study of units whose P-T evolution and structural setting are already well understood. The Eclogite Zone of the central Tauern formed from protoliths with Penninic cover affinities, and suffered early Alpine eclogite facies metamorphism before tectonic interposition between basement and cover. It then shared a common metamorphic history with these units, experiencing blueschist facies and subsequent greenschist facies conditions in the Alpine orogeny. The greenschist facies phase, associated with penetrative deformation in the cover and the influx of aqueous fluids, reset Sr isotopes in metasediments throughout the eclogite zone and cover schists, recording deformation and peak metamorphism at 28-30 Ma. The Peripheral Schieferhülle of the south-east Tauern Window yields Rb-Sr white mica ages which can be tied to the structural evolution of the metamorphic pile. Early prograde fabrics pre-date 31 Ma, and were reworked by the formation of the large north-east vergent Sonnblick fold structure at 28 Ma. Peak metamorphism post-dated this deformation, but by contrast to the equivalent levels in the central Tauern, peak metamorphic conditions did not lead to widespread homogenization of the Sr isotopes. Localized deformation continued into the cooling path until at least 23 Ma, partially or wholly resetting Sr white mica ages in some samples. These isotopic ages may be integrated with structural data in regional tectonic models, and may constrain changes in the style of crustal deformation and plate interaction. However, such interpretations must accommodate the demonstrable variation in thermal histories over small distances.  相似文献   

13.
In the Eastern Alps Alpine eclogites are generally associated with rocks of continental lithosphere, while eclogites that are associated with oceanic assemblages are restricted to minor exposures. Such eclogites are exposed both in the Penninic unit of the Tauern Window and in the Austroalpine nappe complex. (1) In the central southern part of the Tauern Window (Eclogite Zone) eclogites and associated high pressure metasediments of a distal continental margin are intercalated between Penninic basement units. A mylonitic eclogitic foliation and stretching lineation are contemporaneous to the high pressure metamorphism and are related to the subduction of distal Penninic continental margin sequences. Continuous subduction of cool lithosphere resulted in blueschist facies overprint of the whole Penninic nappe pile. (2) Within the Middle-AustroAlpine Koralm/Saualm region most eclogites are eclogitic mylonites documenting plastic deformation of omphacite and garnet. The meso- and macroscale structures indicate an overall extensional regime possibly related to a large-scale SE-directed ductile low-angle normal shear zone. The eclogites are associated with migmatite-like structures and are intruded by pegmatites. This indicates decreasing pressure, but isothermal or even increasing temperature conditions during exhumation.These relationships argue for the subduction of Penninic continental lithosphere in the foot-wall of the Austroalpine unit at the time of exhumation of the Koralm/Saualm eclogites. Formation of the Austroalpine eclogites is explained by subduction of continental lithosphere, and subsequent, rapid exhumation in an upper plate tectonic position within an extensional regime.  相似文献   

14.
Lawsonite eclogite pods ranging in size from 3 cm to 6 m occur in lawsonite blueschist and eclogite facies metasedimentary and metabasaltic rocks in the Sivrihisar Massif, Turkey. Some pods have a core of lawsonite eclogite surrounded by alternating, centimeter-scale layers of lawsonite blueschist, eclogite, and transitional eclogite–blueschist, all with similar basaltic bulk composition. These pods also contain texturally late lawsonite-rich veins and layers. Most eclogites and blueschists within the pods lack reaction textures, but some blueschists near pod margins contain texturally complex garnet as well as glaucophane rims on omphacite, suggesting retrogression of eclogite to blueschist. Phase diagrams (pseudosections) calculated for the lawsonite eclogite core of a meter-scale pod indicate that the eclogite equilibrated at ∼22–24 kbar, ∼520°C. Lawsonite eclogite and blueschist at the tectonized margin of the same pod equilibrated at similar temperatures and slightly lower pressures. The composite eclogite–blueschist pod is foliated, lineated, and folded. An earlier generation of lineated omphacite in the pod core has a different spatial orientation than the lineation at the pod margin, although electron backscattered diffraction data show that core and rim omphacite have similar lattice preferred orientation patterns. Petrologic and structural data are consistent with mechanical formation of pods by folding and dissection of eclogite layers at high-P, and localized retrogression at pod margins during initial stages of exhumation at PT conditions >425°C, 16 kbar.  相似文献   

15.
《China Geology》2021,4(1):111-125
High/ultrahigh-pressure (HP/UHP) metamorphic complexes, such as eclogite and blueschist, are generally regarded as significant signature of paleo-subduction zones and paleo-suture zones. Glaucophane eclogites have been recently identified within the Lancang Group characterized by accretionary mélange in the Changning-Menglian suture zone, at Bangbing in the Shuangjiang area of southeastern Tibetan Plateau. The authors report the result of petrological, mineralogical and metamorphism investigations of these rocks, and discuss their tectonic implications. The eclogites are located within the Suyi blueschist belt and occur as tectonic lenses in coarse-grained garnet muscovite schists. The major mineral assemblage of the eclogites includes garnet, omphacite, glaucophane, phengite, clinozoisite and rutile. Eclogitic garnet contains numerous inclusions, such as omphacite, glaucophane, rutile, and quartz with radial cracks around. Glaucophane and clinozoisite in the matrix have apparent optical and compositional zonation. Four stages of metamorphic evolution can be determined: The prograde blueschist facies (M1), the peak eclogite facies (M2), the decompression blueschist facies (M3) and retrograde greenschist facies (M4). Using the Grt-Omp-Phn geothermobarometer, a peak eclogite facies metamorphic P-T condition of 3000–3270 MPa and 617–658°C was determined, which is typical of low-temperature ultrahigh-pressure metamorphism. The comparison of the geological characteristics of the Bangbing glaucophane eclogites and the Mengku lawsonite-bearing retrograde eclogites indicates that two suites of eclogites may have formed from significantly different depths or localities to create the tectonic mélange in a subduction channel during subduction of the Triassic Changning-Menglian Ocean. The discovery of the Bangbing glaucophane eclogites may represent a new oceanic HP/UHP metamorphic belt in the Changning-Menglian suture zone.©2021 China Geology Editorial Office.  相似文献   

16.
This study focuses on metapelites of the Polinik complex in the Kreuzeck Mts. southeast of the Tauern Window, Eastern Alps, where kyanite — staurolite — garnet gneisses host eclogites and high pressure (HP) amphibolites of the Austroalpine basement. The stable mineral assemblage is garnet — staurolite — biotite — kyanite — quartz. Estimated metamorphic conditions from conventional geothermobarometry are 654±30 °C and 0.9±0.08 GPa, and Average P-T values calculated by THERMOCALC, are 665±15 °C at 0.77±0.09 GPa. Formation of the present mineral association in gneisses is related to the exhumation (D2) stage of hosted eclogites/HP amphibolites within a lateral strike-slip zone.  相似文献   

17.
榴辉岩中传统地质温压计新解:来自PT视剖面图的证据   总被引:1,自引:1,他引:0  
石榴石-单斜辉石(GC)温度计和石榴石-单斜辉石-多硅白云母(GCP)压力计是确定榴辉岩形成温压条件的最常用方法,二者主要依据石榴石、绿辉石和多硅白云母中相组分之间的交换和转换变质反应.依据MORB成分计算的PT视剖面图表明,在不同榴辉岩矿物组合中,控制3个矿物相成分变化的相组分之间的变质反应不同.在低温含绿泥石、滑石和蓝闪石榴辉岩组合中,石榴石和绿辉石的镁含量主要受到含水矿物脱水反应的控制,并都随温度升高而升高,二者之间的铁镁交换反应并不起主要作用.因此,在自然界含有蓝闪石等含水矿物的低温榴辉岩中,由于绿辉石相对富镁而常常导致GC温度计结果偏低.在含有硬柱石的高压-超高压榴辉岩中,石榴石中的钙含量受到硬柱石的控制,随着压力升高或温度降低,硬柱石含量增加,使石榴石中钙降低,此时石榴石-绿辉石-多硅白云母之间的转换反应对石榴石成分的影响会很微弱,由于石榴石相对贫钙而导致GCP压力计结果偏低.在含有蓝晶石的中温高压-超高压榴辉岩中,矿物成分的变化受到石榴石-绿辉石之间的铁镁交换反应和石榴石.绿辉石.多硅白云母-蓝晶石-石英/柯石英之间的一系列转换反应控制,因此,GC和GCP温压计都能给出相对合理的结果.在低压普通角闪石榴辉岩中,石榴石和绿辉石中的镁含量主要反应压力变化,有时并不指示变质作用温度.在含有蓝闪石等含水矿物的低温榴辉岩中,Thermocalc程序中的平均温压(avPT)方法可以给出比较合适的温度,但压力结果与GCP压力计一样也会偏低一些.在蓝闪石和绿帘石等含水矿物消失后的中温蓝晶石榴辉岩中,avPT方法难以给出合理的PT信息.相对来说,视剖面图方法能够给出最多的PT信息,是目前确定变质岩PT条件的最好方法.  相似文献   

18.
The pressure-temperature curve for the equilibrium anorthite+2enstatite=pyrope+diopside+quartz has been determined in the system CaO-MgO-Al2O2-SiO2 to be between 13.4 and 14.0 kbars at 900° C. The slope up to 1,240° C is 8.5 bar/K. The entropy change at 1,200 K is 20 kJ. These data, combined with data from the literature, lead to a geobarometer equation which, when applied to rocks from the Agto area (West Greenland), gives pressure estimates of 6–10 kbars at 800° C. The results are consistent for rocks of differing Fe/Mg ratios and are consistent with independent pressure estimates.  相似文献   

19.
A petrological and mineralogical study, using an electron microprobe, of a blue-amphibole eclogite occurring near Nantes (Massif Armoricain, France) has enabled us to characterize this amphibole as glaucophane resulting from a secondary reaction in the rock. This sodic amphibole was formed at the expense of primary eclogite paragenesis including omphacite, garnet and quartz, according to a sliding reaction which it was possible to study quantitatively: 3.24 omphacite+0.90 SiO2+0.76 garnet+1.08 H2O =1 glaucophane+0.55 grossular (S.S. in the garnet) +0.04 paragonite.This reaction is accompanied by a variation in the distribution of iron and magnesium between the amphibole, the garnet and the omphacite.The appearance of the glaucophane can be explained as the beginning of a retromorphic evolution from the stable physical conditions of the primary eclogite paragenesis (650±100° C; minimum pressure 15 Kb).  相似文献   

20.
High-pressure rocks of the eclogite zone (Tauern Window, Eastern Alps) formed at 20 kb/600°C. Uplift was fast without post-burial heating. Extensive near-field and far-field deformation of the eclogite zone and its surroundings provide evidence for a tectonic uplift mechanism. Published emplacement models (buoyant rise, underplating and extension, wrench faulting) create distinct patterns of crustal deformation, and are therefore testable by structural analysis. We show that emplacement-related deformation and its kinematics are consistent with underplating and extension. Extension is two-phased. The first phase may be driven by changes in rate or direction of plate convergence. The second phase is due to large-scale underplating of continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号