首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
Two multi-year oxygen isotope (δ18O) records were obtained from archaeological Ostrea angasi shells, confirming the potential of this species to provide valuable environmental records for the late Holocene period in southeastern Australia. High-resolution δ18Oshell samples from the O. angasi clearly display a seasonal variability, offering insight into past climate conditions in a region where such information is presently limited.

The oxygen isotope record in O. angasi reflects a combined temperature–salinity signal. Observations of δ18Oshell data from modern specimens are used as a point of reference to assist in decoupling these two influences, with the two archaeological samples compared with the δ18Oshell profile of four modern O. angasi. Assuming similar paleo- δ18Owater values at the collection sites, data from these archaeological shells present a record of temperatures during the period of their growth that are consistently lower than modern day, with mean annual temperatures ~2°C cooler.  相似文献   


2.
A series of confirmed and suspected dammed palaeo‐lake sedimentary successions is scattered within the middle Yarlung Tsangpo valley in Tibet. However, the chronology, the genesis of the dam and its location, the water level of the dammed lake, the process of dam failure and the spatiotemporal relationships between the sedimentary successions remain controversial. Here, we focus on one sedimentary succession of the suspected dammed palaeo‐lake at Xigazê. We measured the grain‐size distribution, magnetic susceptibility, organic and inorganic carbon content, and δ13Corg and δ15Ntotal ratios of the sediments. In addition, we measured the δ18Oshell and δ13Cshell values of modern and fossil Radix sp. shells, and the δ18Owater and δ13CDIC values of the ambient water with different hydrological regimes. The results indicate that the δ18Oshell values of modern Radix sp. and the δ18Owater of the ambient water body significantly depend on its hydrological status. In addition, a strong positive relationship was observed between δ18Oshell values of modern Radix sp. shells and the δ18Owater of the ambient water on the Tibetan Plateau. According to this correlation, the δ18Owater values of the palaeo‐water body are reconstructed using the δ18Oshell values of Radix sp. fossil shells in the Xigazê section. Further, based on the δ18Oshell values of fossil Radix sp., the reconstructed δ18Owater of the palaeo‐water body and the specific habitats of Radix sp., we infer that the sedimentary succession in the Xigazê broad valley was mainly formed within the backwater terminal zone of a dammed palaeo‐lake and that the elevation of the water level of the lake was approximately 3811 m a.s.l. AMS 14C dating indicates that the deposits of the dammed palaeo‐lake were formed at about 33–22 cal. ka BP. Finally, the presence of Radix sp. fossil shells within the Xigazê section suggests that Radix sp. survived the late Last Glacial Period on the Tibetan Plateau.  相似文献   

3.
Well-preserved aragonitic land snail shells (Vallonia) from late Pleistocene Eolian sediment in the Folsom archaeological site in New Mexico exhibit an overall decrease of δ18OPDB from maximum values of +2.7‰ (more positive than modern) to younger samples with lower average values of about −3.6‰ (within the modern range). The age of the samples (approximately 10,500 14C yr B.P.) suggests that the decrease in δ18O may manifest climatic changes associated with the Younger Dryas. Some combination of increased relative humidity and cooler temperatures with decreased δ18O of precipitation during the times of snail activity can explain the decrease in shell δ18O. A well-known Paleoindian bison kill occurred at the Folsom site during this inferred environmental transition.Average δ13C values of the aragonite shells of the fossil Vallonia range from −7.3 to −6.0‰ among different archaeological levels and are not as negative as modern values. This suggests that the proportion of C4 vegetation at the Folsom site approximately 10,500 14C yr B.P. was greater than at present; a result which is consistent with other evidence for higher proportions of C4 plants in the region at that time.  相似文献   

4.
A simple flux balance model with a diffusive, evaporative boundary layer indicates that the time constant (characteristic time) for approach to oxygen isotope steady state in the body fluid of land snails is ∼19 min or less. These comparatively short times support an assumption that the snail’s aragonitic shell is commonly precipitated from a body fluid that is at, or near, isotopic steady state. The model indicates that the steady-state δ18O value of snail shell carbonate depends upon the temperature, relative humidity, δ18O of the input liquid water, and δ18O of ambient water vapor. Model shell δ18O values were calculated for the warm, wet months corresponding to times of snail activity at some European sites. Linear regression of these predicted values against published, measured values yielded the expression: δ18Ocalc = 0.93(±0.13) δ18Omeas −0.9(±0.2), with r2 = 0.65. As indicated by the value of r2, there is scatter in the relationship, but the slope and intercept are close to one and zero, respectively, which lends credence to the model. Therefore, temporal or spatial changes recorded in the δ18O values of land snail shells appear to be selectively seasonal—commonly the warm, wet months—and include the effects of relative humidity.For carbon, the time constant for approach to isotopic steady state in the bicarbonate dissolved in the body fluid of land snails is predicted to be ∼16 min or less. New and published δ13C measurements of aragonite shell and associated organic matter exhibit an overall correlation, but with considerable scatter. As noted by previous workers, 13C-rich dietary “limestone” may account for some of the scatter. Additional scatter, according to the model presented herein, could arise from changes in the proportion of total oxidized carbon that is expelled by the snail as bicarbonate dissolved in body fluid (i.e., effects of relative changes in metabolic rates). These results affirm the need for caution in the interpretation of δ13C values of land snail aragonite shells solely in terms of dietary proportions of C3 and C4 plants.  相似文献   

5.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

6.
Dune palaeosurface sequences on the Eastern Canary Islands were investigated for stable isotope records in gastropod shells of the genus Theba. Due to the ecology of the taxon and the special oceanic insularity of the study site, we assume that δ18Oshell signals in our case mainly reflect shifts in δ18O signals of sea surface water. We found that a rapid decrease in δ18Oshell signals is associated with significant changes in gastropod associations. We suggest that these faunal changes were caused by strong (hot) winds at the end of glacial phases, that were described previously by Moreno et al. In addition, we assume that rapid declines in δ18Oshell signals due to marine transgressions were followed by geomorphologically stable phases, dominated by dust enrichment. Such palaeosurfaces correlate with maxima of gastropod biodiversity and with more negative δ13Cshell signals indicating a higher proportion of C3 plants. Based on our results, we also assume that these silty palaeosurfaces were associated with increased soil moisture conditions due to a higher water storage capacity of the finer substrate, independent of climatic moisture conditions.  相似文献   

7.
This paper investigates the stable isotopic composition from late Pleistocene–Holocene (~ 13 to ~ 10.5 cal ka BP) shells of the land snail Helix figulina, from Franchthi Cave (Greece). It explores the palaeoclimatic and palaeoenvironmental implications of the isotope palaeoecology of archaeological shells at the time of human occupation of the cave. Modern shells from around the cave were also analysed and their isotopic signatures compared with those of the archaeological shells. The carbon isotope composition of modern shells depicts the consumption of C3 vegetation. Shell oxygen isotopic values are consistent with other Mediterranean snail shells from coastal areas. Combining empirical linear regression and an evaporative model, the δ18Os suggest that modern snails in the study area are active during periods of higher relative humidity and lower rainfall δ18O, probably at night. Late glacial and early Holocene δ18Os show lower values compared to modern ones. Early Holocene δ18Os values likely track enhanced moisture and isotopic changes in the precipitation source. By contrast, lower late glacial δ18O could reflect lower temperatures and δ18Op, compared to the present day. Shell carbon isotope values indicate the presence of C3 vegetation as main source of carbon to late glacial and early Holocene snails.  相似文献   

8.
13C/12C and 18O/16O ratios of aragonite shells of modern land snails from the southern Great Plains of North America were measured for samples from twelve localities in a narrow east-west corridor that extended from the Flint Hills in North Central Oklahoma to the foothills of the Sangre de Cristo Mountains in Northern New Mexico, USA. Across the study area, shell δ18O values (PDB scale) ranged from −4.1‰ to 1.2‰, while δ13C values ranged from −13.2‰ to 0.0‰. δ18O values of the shell aragonite were predicted with a published, steady state, evaporative flux balance model. The predicted values differed (with one exception) by less than 1‰ from locality averages of measured δ18O values. This similarity suggests that relative humidity at the time of snail activity is an important control on the δ18O values of the aragonite and emphasizes the seasonal nature of the climatic information preserved in the shells. Correlated δ13C values of coexisting Vallonia and Gastrocopta suggest similar feeding habits and imply that these genera can provide information on variations in southern Great Plains plant ecology. Although there is considerable scatter, multispecies, transect average δ13C values of the modern aragonite shells are related to variations in the type of photosynthesis (i.e., C3, C4) in the local plant communities. The results of this study emphasize the desirability of obtaining isotope ratios representing averages of many shells in a locale to reduce possible biases associated with local variations among individuals, species, etc., and thus better represent the “neighborhood” scale temporal and/or spatial environmental variations of interest in studies of modern and ancient systems.  相似文献   

9.
This paper compares stable isotope (δ18O and δ13C) records of early–middle Holocene land snail shells from the archaeological deposits of Grotta di Latronico 3 (LTR3; southern Italy) with modern shell isotopic data. No substantial interspecific variability was observed in shell δ18O (δ18Os) of modern specimens (Pomatias elegans, Cornu aspersum, Eobania vermiculata, Helix ligata and Marmorana fuscolabiata). In contrast, interspecific shell δ13C (δ13Cs) variability was significant, probably due to different feeding behaviour among species. The δ18Os values of living land snails suggest that species hibernate for a long period during colder months, so that the signal of 18O‐depleted winter rainfall in their δ18Os is lost. This suggests that δ18Os and δ13Cs values of Pomatias elegans from this archaeological succession provide valuable clues for seasonal (spring–autumn) climatic conditions during the early–middle Holocene. The δ18Os values of fossil specimens are significantly lower than in modern shells and in agreement with other palaeoclimatic records, suggesting a substantial increase of precipitation and/or persistent changes in air mass source trajectories over this region between ca. 8.8 cal ka BP and 6.2–6.7 ka ago. The δ13Cs trend suggests a transition from a slightly 13C‐enriched to a 13C‐depleted diet between early and middle Holocene compared to present conditions. We postulate that this δ13Cs trend might reflect changes in the C3 vegetation community, potentially combined with other environmental factors such as regional moisture increase and the progressive decrease of atmospheric CO2 concentration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
It is well known that the incorporation of isotopically light metabolic carbon (CM) significantly affects the stable carbon isotope (δ13C) signal recorded in biogenic carbonates. This can obscure the record of δ13C of seawater dissolved inorganic carbon (δ13CDIC) potentially archived in the shell carbonate. To assess the CM contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ13CDIC, tissue, hemolymph and shell δ13C. All shells showed an ontogenic decrease in shell δ13C, with as much as a 4‰ decrease over the lifespan of the clam. There was no apparent ontogenic change in food source indicated by soft tissue δ13C values, therefore a change in the respired δ13C value cannot be the cause of this decrease. Hemolymph δ13C, on the other hand, did exhibit a negative relationship with shell height indicating that respired CO2 does influence the δ13C value of internal fluids and that the amount of respired CO2 is related to the size or age of the bivalve. The percent metabolic C incorporated into the shell (%CM) was significantly higher (up to 37%, with a range from 5% to 37%) than has been found in other bivalve shells, which usually contain less than 10%CM. Interestingly, the hemolymph did contain less than 10%CM, suggesting that complex fractionation might occur between hemolymph and calcifying fluids. Simple shell biometrics explained nearly 60% of the observed variability in %CM, however, this is not robust enough to predict %CM for fossil shells. Thus, the metabolic effect on shell δ13C cannot easily be accounted for to allow reliable δ13CDIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %CM and shell height (+0.19% per mm of shell height).  相似文献   

11.
We investigated the oxygen isotope composition (δ18O) of shell striae from juvenile Comptopallium radula (Mollusca; Pectinidae) specimens collected live in New Caledonia. Bottom-water temperature and salinity were monitored in-situ throughout the study period. External shell striae form with a 2-day periodicity in this scallop, making it possible to estimate the date of precipitation for each calcite sample collected along a growth transect. The oxygen isotope composition of shell calcite (δ18Oshell calcite) measured at almost weekly resolution on calcite accreted between August 2002 and July 2003 accurately tracks bottom-water temperatures. A new empirical paleotemperature equation for this scallop species relates temperature and δ18Oshell calcite:
t(°C)=20.00(±0.61)-3.66(±0.39)×(δ18Oshell calcite VPDB18Owater VSMOW)  相似文献   

12.
δ13C and δ18O analyses have been performed on the aragonite shells of a variety of modern land snails from a number of different geographic and climatic locales. The δ18O values of the waters assumed to be in isotopic equilibrium with the shell carbonate were calculated. These calculated δ18O values are more positive than the δ18O values of the average meteoric waters in the locales in which the snails lived. The 18O enrichment appears to be linearly related to the reciprocal of the local relative humidity, which is consistent with the notion that these ambient waters have undergone isotopic steady-state evaporation. Measurements of the δ18O values of ancient land snail shells from the excavation of Sudden Shelter (42SV6) at Ivie Creek, Utah, suggest that the climate at this site was probably warmer and/or drier around 7100–7800 BP than at present.  相似文献   

13.
The oxygen isotopic composition of Stenomelania gastropod shells was investigated to reconstruct Holocene palaeoclimate change at Lake Kutubu in the southern highlands of Papua New Guinea. Oxygen isotope (δ18O) values recorded in aquatic gastropod shells change according to ambient water δ18O values and temperature. The gastropod shells appear to form in oxygen isotopic equilibrium with the surrounding water and record a shift in average shell oxygen isotopic composition through time, probably as a result of warmer/wetter conditions at ca. 600–900 and 5900–6200 cal a bp. Shorter term fluctuations in oxygen isotope values were also identified and may relate to changes in the intensity or source of rainfall. Further δ18O analyses of gastropod shells or other carbonate proxies found in the Lake Kutubu sediments are warranted. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
We discuss water oxygen isotopes (δ18Ow) and carbon isotopes of dissolved inorganic carbon (δ13CDIC) of brine‐enriched shelf water (BSW) from Storfjorden (southern Svalbard) in comparison to Recent benthic foraminiferal δ18Oc and δ13Cc calcified in the same water. We determined relatively high δ18Ow values of 0.15±0.03‰ VSMOW in BSW below sill depth at temperatures below ?1.8 °C, and high δ18Oc values of 3.90±0.18‰ VPDB. Such high BSW δ18Ow cannot significantly deplete 18Ow contents of Arctic Ocean deep water; furthermore, such high δ18Oc cannot be distinguished from δ18Oc values of 3.82±0.12‰, calcified in warmer Arctic and Nordic seas intermediate and deeper waters. Today, in Storfjorden low benthic δ13Cc and high δ18Oc reflect the low δ13CDIC and relatively high δ18Ow of BSW. High benthic δ18Oc is in contrast to expected low δ18Oc as brine rejection is widely thought to predominantly take place in surface water diluted by meteoric water with very low δ18Ow. Low epibenthic δ13Cc values of 0.50±0.12‰ partly reflect low δ13CDIC caused by enhanced uptake of atmospheric low δ13CCO2 decreased by anthropogenic activities. An adjustment for preindustrial higher values would increase δ13Cc by about 0.6‰. Therefore, in Storfjorden brine formed before the industrial era would be characterized by both high δ13Cc as well as high δ18Oc values of benthic foraminiferal calcite. Our data may cast doubt on scenarios that explain negative excursions in benthic foraminiferal stable isotope records from the Atlantic Ocean during cold stadials in the last glacial period by enhanced brine formation in Nordic seas analogously to modern processes in Storfjorden.  相似文献   

15.
The relationship between stable isotope composition (δ13C and δ18O) in seawater and in larval shell aragonite of the sea scallop, Placopecten magellanicus, was investigated in a controlled experiment to determine whether isotopes in larval shell aragonite can be used as a reliable proxy for environmental conditions. The linear relationship between δ13CDIC and δ13Caragonite (r2 = 0.97, p < 0.0001, RMSE = 0.18) was:
δ13CDIC=1.15(±0.05)∗δ13Caragonite-0.85(±0.04)  相似文献   

16.
为了揭示蜗牛化石壳体碳酸盐(文石)稳定同位素组成的古气候和古生态环境指示意义,对采集于河南荥阳邙山末次冰期黄土剖面上部中的粉华蜗牛(Cathaica pulveratrix)化石壳体碳酸盐进行了碳、氧稳定同位素分析,同时还对全岩有机物质(SOM)碳同位素组成以及全岩磁化率和粒度等气候替代指标进行分析,结果显示:剖面中反映蜗牛食物碳同位素组成的壳体δ13CSSA的变化,与反映古植被碳同位素组成的全岩有机物质碳同位素组成(δ13CSOM)无显著的相关关系,但是壳体13C相对于SOM的富集程度(Δδ13CSSA-SOM)的变化与石笋氧同位素记录的末次冰期东亚夏季风强度演化同步一致;   壳体δ18OSSA的变化不但与黄土磁化率、粒度等气候替代指标变化具有显著相关性,同样也与末次冰期东亚夏季风强度演化同步一致。这些特征,一方面说明受季风环流控制的气候温湿程度变化左右蜗牛夏季活动的几率和食物的类型,干冷气候条件下,相对温湿夏季成为蜗牛活动主要时期,相对富集13C苔藓、菌类和植物可能是蜗牛的主要食物;   另一方面暗示蜗牛化石壳体碳酸盐稳定同位素组成能够指示气候温湿程度和生态环境的变化。  相似文献   

17.
Oxygen and carbon isotope ratios of soil carbonate and carbon isotope ratios of soil organic matter (SOM) separated from three cores, Kalpi, IITK and Firozpur, of the Ganga Plain, India are used to reconstruct past rainfall variations and their effect on ambient vegetation. The δ18O values of soil carbonate (δ18OSC) analyzed from the cores range from ? 8.2 to ? 4.1‰. Using these variations in δ18OSC values we are able, for the first time, to show periodic change in rainfall amount between 100 and 18 ka with three peaks of higher monsoon at about 100, 40 and 25 ka. The estimation of rainfall variations using δ18O value of rainwater-amount effect suggests maximum decrease in rainfall intensity (~ 20%) during the last glacial maximum. The δ13C values of soil carbonate (δ13CSC) and SOM (δ13CSOM) range from ? 6.3 to + 1.6‰ and ? 28.9 to ? 19.4‰, respectively, implying varying proportions of C3 and C4 vegetations over the Ganga Plain during the last 100 ka. The comparison between monsoonal rainfall and atmospheric CO2 with vegetation for the time period 84 to 18 ka indicate that relative abundances of C3 and C4 vegetations were mainly driven by variations in monsoonal rainfall.  相似文献   

18.
The isotopic composition of land snail shells was analyzed to investigate environmental changes in the eastern Canary Islands (28–29°N) over the last ~ 50 ka. Shell δ13C values range from −8.9‰ to 3.8‰. At various times during the glacial interval (~ 15 to ~ 50 ka), moving average shell δ13C values were 3‰ higher than today, suggesting a larger proportion of C4 plants at those periods. Shell δ18O values range from −1.9‰ to 4.5‰, with moving average δ18O values exhibiting a noisy but long-term increase from 0.1‰ at ~ 50 ka to 1.6–1.8‰ during the LGM (~ 15–22 ka). Subsequently, the moving average δ18O values range from 0.0‰ at ~ 12 ka to 0.9‰ at present. Calculations using a published snail flux balance model for δ18O, constrained by regional temperatures and ocean δ18O values, suggest that relative humidity at the times of snail activity fluctuated but exhibited a long-term decline over the last ~ 50 ka, eventually resulting in the current semiarid conditions of the eastern Canary Islands (consistent with the aridification process in the nearby Sahara). Thus, low-latitude oceanic island land snail shells may be isotopic archives of glacial to interglacial and tropical/subtropical environmental change.  相似文献   

19.
Studies of the chemical characteristics of mussels and clams in seafloor hydrothermal fields are important for understanding mass fluxes and elemental partitioning from hydrothermal vents into the biosphere, metal bioaccumulation of seafloor hydrothermal ecosystems, and the sources and sinks of biogeochemical and fluid cycles. We are the first to measure the mineral, major, trace and rare earth element, and carbon and oxygen isotope compositions of mussels (Bathymodiolus platifrons) and clams (Conchocele bisecta) from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough. Mineralogical analysis shows that the carbonate shells of the mussel and clam samples are mainly composed of calcite and aragonite. Metal elements exhibit linear correlations in the shells (e.g., V and U) and tissues (e.g., Li and Rb) of the mussels and clams, suggesting that not all positive correlations of elements in tissues are inherited by the shells. V/As, Ca/Sr, and Fe/Cr ratios in the mussels and clams are close to those in the seawater, indicating that element ratios of seawater might be inherited by the mussels and clams. In addition, the Fe/Cr ratio of the shells of both mussels and clams can be used to trace the local seawater composition.The total LREE concentrations of mussel and clam tissue samples are higher than those of the mussel and clam shell samples, are similar to the hydrothermal fluids, exhibit LREE enrichment (LaCN/NdCN ratios = 1.86-32.1), and no or only slightly negative Eu anomalies, indicating that benthic animals are a sink of LREEs from hydrothermal fluids, and that the Eu/Eu* ratios of fluids change when fluids are incorporated into the tissues of the mussels and clams. In addition, the δ13C values of mussel shell samples are heavier than those of the clam shell samples in the hydrothermal field, indicating that more than one carbon source may be involved in defining the δ13C compositions of the shells. The majority of the δ18O values of clam shell samples fall in the range of δ18O values of the mussel shell samples, and are close to the hydrothermal fluid δ18OH2O values, implying that the δ18O values of mussel and clam shell carbonate is influenced by the hydrothermal environment (magmatic water and fluid dilution with seawater).  相似文献   

20.
The surface sediments of two mud mounds (“Mound 11” and “Mound 12”) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded δ18Ocarbonate values ranging between 34.0 and 37.7 ‰ Vienna standard mean ocean water (VSMOW) and δ13Ccarbonate values from ?52.2 to ?14.2 ‰ Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The δ18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (δ18Oporefluid = 0 ‰ VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (δ18Oporefluid ≈5 ‰) in Mound 11. A positive correlation between δ13Ccarbonate and δ18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (δ13Cporefluid ≈0 ‰) and (2) bicarbonate which formed during the AOM (δ13Cporefluid ≈?70 ‰). Furthermore, the δ18Oporefluid composition, with values up to +4.7 ‰ Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boron-enriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (δ13CCH4 = ?38 ‰). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号