首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous culture of the coccolithophorid Emiliania huxleyi reveals that coccolith Sr/Ca ratios depend on temperature and growth rate. At a constant temperature of 18°C, coccolith Sr/Ca ratios increased nearly 15% as growth rate increased from 0.1 to 1.5 divisions per day and calcification rate increased from 1.5 to 50 pg calcite per cell per day. When temperature increased from 7 to 26°C, Sr/Ca ratios increased by more than 25% (i.e., 1%/1°C), although the range in growth and calcification rates was the same as for experiments at constant temperature. The temperature dependence of Sr/Ca ratios in coccoliths is consistent with that observed in planktonic foraminifera and abiogenic calcites, suggesting that it is controlled by thermodynamic processes. However, the positive correlation of coccolith Sr/Ca with temperature contrasts with field studies in the equatorial Pacific, where Sr/Ca ratios are highest at the locus of maximum upwelling and productivity despite depressed temperatures. This paradox may reflect different calcification rate effects between E. huxleyi and the other species dominating assemblages in the equatorial Pacific sediments, which may be resolved by new techniques for separation of monospecific coccolith samples from sediments. Models of crystal growth indicate that kinetic effects on Sr partitioning in calcite due to surface enrichment could explain the Sr/Ca variations observed in constant temperature experiments but not the larger amplitude calcification rate effects observed in equatorial Pacific sediments. Despite the dual influence of temperature and growth rate on coccolith Sr/Ca, coccolith Sr/Ca correlates with “b,” the slope of the dependence of carbon isotope fractionation in biomarkers (εp) on CO2(aq) at a range of growth rates and temperatures. Consequently, using coccolith Sr/Ca in combination with alkenone εp may improve paleo-CO2 determinations.  相似文献   

2.
Calcium and magnesium concentrations in seawater have varied over geological time scales. On short time scales, variations in the major ion composition of seawater influences coccolithophorid physiology and the chemistry of biogenically produced coccoliths. Validation of those changes via controlled laboratory experiments is a crucial step in applying coccolithophorid based paleoproxies for the reconstruction of past environmental conditions. Therefore, we examined the response of two species of coccolithophores, Emiliania huxleyi and Coccolithus braarudii, to changes in the seawater Mg/Ca ratio (≈0.5 to 10 mol/mol) by either manipulating the magnesium or calcium concentration under controlled laboratory conditions. Concurrently, seawater Sr/Ca ratios were also modified (≈2 to 40 mmol/mol), while keeping salinity constant at 35. The physiological response was monitored by measurements of the cell growth rate as well as the production rates of particulate inorganic and organic carbon, and chlorophyll a. Additionally, coccolithophorid calcite was analyzed for its elemental composition (Sr/Ca and Mg/Ca) as well as isotope fractionation of calcium and magnesium (Δ44/40Ca and Δ26/24Mg). Our results reveal that physiological rates were substantially influenced by changes in seawater calcium rather than magnesium concentration within the range estimated to have occurred over the past 250 million years when coccolithophores appear in the fossil record. All physiological rates of E. huxleyi decreased at a calcium concentration above 25 mmol L−1, whereas C. braarudii displayed a higher tolerance to increased seawater calcium concentrations. Partition coefficient of Sr was calculated as 0.36 ± 0.04 (±2σ) independent of species. Partition coefficient of Mg2+ increased with increasing seawater Ca2+ concentrations in both coccolithophore species. Calcium isotope fractionation was constant at 1.1 ± 0.1‰ (±2σ) and not altered by changes in seawater Mg/Ca ratio. There is a well-defined inverse linear relationship between calcium isotope fractionation and partition coefficient of Sr2+ in all experiments, suggesting similar controls on both proxies in the investigated species. Magnesium isotope ratios were relatively stable for seawater Mg/Ca ratios ranging from 1 to 5, with a higher degree of fractionation in Emiliania huxleyi (by ≈0.2‰ in Δ26/24Mg). Although Mg/Ca ratios in the calcite of coccolithophores and foraminifera are similar, the former have considerably higher Δ26/24Mg (by >+3‰), presumably due to differences in calcification mechanisms between the two taxa. These observations suggest, a physiological control over magnesium elemental and isotopic fractionation during the process of calcification in coccolithophores.  相似文献   

3.
The trace elemental composition of calcified larval hard parts may serve as useful tags of natal origin for invertebrate population studies. We examine whether the trace metal barium (Ba) deposits into the calcium carbonate matrix of molluscan larval statolith and protoconch in proportion to seawater Ba concentration at two temperatures (11.5 and 17°C). We also examine strontium (Sr) uptake as a function of temperature. Using encapsulated larvae of the marine gastropod, Kelletia kelletii, reared in the laboratory under controlled conditions, we demonstrate a significant inverse effect of temperature and a positive effect of seawater Ba/Ca ratio on Ba incorporation into larval carbonates. Ba/Ca partition coefficients (DBa) in protoconch were 1.13 at 11.4°C and 0.88 at 17.1°C, while DBa in larval statolith measured 1.58 at 11.4°C and 1.29 at 17.1°C. Strontium incorporation into statoliths is also inversely affected by temperature, but there was a significant positive effect of temperature on Sr incorporation into protoconch. These data suggest larval statoliths and protoconchs can meaningfully record variation in seawater physical and chemical properties, and, hence, have potential as natural tags of natal origin.  相似文献   

4.
To reconstruct patterns of fish migration using otolith chemistry, it is essential to validate the relationship between elements in otoliths and the surrounding water, and in particular, how processes such as competition and facilitation among multiple elements influence otolith chemistry. Using a controlled laboratory experiment, juvenile black bream (Acanthopagrus butcheri) were reared in both brackish and seawater spiked with different concentrations of Sr and Ba. The addition of Sr to the solution facilitated the uptake of Ba into otoliths of fish reared in brackish water, but not in seawater. Conversely, Ba did not facilitate nor compete with the uptake of Sr in either brackish or seawater. In brackish water, Sr incorporation into otoliths may create crystal defects within the CaCO3 matrix, enabling greater incorporation of Ba. Ba:Ca partition coefficients (DBa) for brackish and seawater were 0.058 and 0.136, respectively, whereas Sr:Ca partition coefficients (DSr) for brackish and seawater were 0.463 and 0.287, respectively. The influence of Sr on Ba incorporation in fish otoliths is important to consider when reconstructing migration histories of fish, especially in brackish water environments.  相似文献   

5.
Magnesium/calcium, Sr/Ca, and Na/Ca atom ratios were determined in the calcite and aragonite regions of Mytilus edulis shells which were grown in semi-artificial ‘seawater’ solutions having varying Mg/Ca, Sr/Ca, and Na/Ca ratios. These ratios were measured by instrumental neutron activation, atomic absorption, and electron microprobe analytical techniques. Strontium/calcium ratios in both calcite and aragonite were linearly proportional to solution Sr/Ca ratios. Magnesium/calcium ratios in calcite increased exponentially when solution Mg/Ca ratios were raised above the normal seawater ratio; whereas in aragonite, Mg/Ca ratios increased linearly with increases in solution Mg/Ca ratios. Sodium/calcium and sulfur/calcium ratios in calcite covaried with Mg/Ga solution ratios. Conversely, in aragonite, Na/Ca ratios varied linearly with solution Na/Ca ratios.Magnesium is known to inhibit calcite precipitation at its normal seawater concentration. We infer from the results of the work reported here that Mytilus edulis controls the Mg activity of the outer extrapallial fluid, thus facilitating the precipitation of calcitic shell. Increases in sulfur content suggest that changes in shell organic matrix content occur as a result of environmental stress. Certain increases in Mg content may also be correlated to stress. Sodium/calcium variations, and their absolute amounts in calcite and aragonite, are best explained by assuming that a substantial amount of Na is adsorbed on the calcium carbonate crystal surface. Strontium/calcium ratios show more promise than either Mg/Ca or Na/Ca ratios as seawater paleochemistry indicators, because the Sr/Ca distribution coefficients for both aragonite and calcite are independent of seawater Ca and Sr concentrations.  相似文献   

6.
Many applications of otolith chemistry use the ratios of strontium (Sr) and barium (Ba) to calcium (Ca) as indicators of salinity exposure, because typically, as salinity increases, Sr concentration increases and Ba concentration decreases. However, these relationships are nonlinear, can be confounded by temperature, and investigations of salinity and temperature effects on otolith chemistry produce varied results. To determine the relationships of temperature and salinity on Sr:Ca and Ba:Ca in otoliths, we used free ranging Gulf Killifish (Fundulus grandis) in the northern Gulf of Mexico. This species is ideal because it is euryhaline and exhibits limited movements. Otolith edge Sr:Ca and Ba:Ca ratios were related to the previous 30-day mean salinity and temperature experienced by fish. The best model to describe otolith Sr:Ca was one that included a positive asymptotic relationship for both salinity and temperature. However, the salinity asymptotic maximum was reached at 10 psu and changes in otolith Sr:Ca above 10 psu were indicative of temperature changes. Otolith Ba:Ca exhibited an exponential decreasing relationship with salinity, and an exponential increasing relationship with temperature, and these two models combined best explained otolith Ba:Ca. Above 10 psu, the modeled Ba:Ca ratio continued to decrease demonstrating that this ratio may be indicative of salinity changes beyond this value. Therefore, using both Sr:Ca and Ba:Ca could be beneficial in reconstructing fish environmental histories. Temperature effects on otolith element ratios could confound past salinity reconstructions as well and must be a result of endogenous processes, given that no relationship between temperature and water chemistry existed.  相似文献   

7.
Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (δ44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in δ44/40Ca (∼0.3‰) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between δ44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 μmol/m2/h, respectively. The lower δ44/40Ca observed at ?29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of δ44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the δ44/40Ca of the reservoir is constrained as −0.2‰ relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on δ44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes.  相似文献   

8.
颗石藻元素地球化学研究进展   总被引:2,自引:0,他引:2  
颗石藻元素地球化学研究在古海洋学研究中有着重要意义。目前开始研究的主要有Sr/Ca和Mg/Ca比值。研究发现,颗石的Sr/Ca比值主要受颗石藻生长和钙化速度控制,其次受温度影响;而Mg/Ca比值主要与温度有关,属种间受影响程度有差别。样品清洗和单种分离是颗石藻元素地球化学分析的重点和难点。倒置显微镜挑出单种颗石是目前最为方便且准确的分析方法。颗石Sr/Ca比值可以用来反映古生产力,Mg/Ca比值可以用来重建古温度。  相似文献   

9.
Sr/Ca ratios in the clay (< 2 μ) weathering products of basalt rocks from the Lake Kinneret drainage basin were found to be very similar to the ratios in the rocks, indicating similar depletion intensities for the two elements. In the clays from the scoriae and some lapilli tuffs the ratios were found to be somewhat higher than in the corresponding rocks, indicating preferential retention of strontium in the clays. The ratio in drainage water from these areas was much lower than that obtained by mass balance calculations.The Sr/Ca ratio in Jordan river water draining primarily limestone areas is 2.3 · 10?3. Very high Sr/Ca ratios in Lake Kinneret water were attributed to the influence of saline sublacustrine springs. The carbonate fraction from recent lake sediments was shown to have the Sr/Ca ratios characteristic for calcite precipitated biogenically in marine environments. The relative enrichment in strontium of the lake water was explained by the intensive precipitation of carbonates with low strontium distribution coefficients.  相似文献   

10.
颗石藻是海洋中广泛分布的超微型浮游藻,经生物矿化作用形成的碳酸钙质颗石,在古海洋学研究中具有重要意义。海洋粘土矿物与有机质的有机-无机相互作用在全球碳循环中扮演着重要角色。本文选取广泛分布于海洋的赫氏颗石藻Emiliania huxleyi与海洋粘土矿物中具有代表性的伊利石和蒙脱石共培养。通过对颗石藻生长曲线和Sr/Ca、Mg/Ca元素比值、颗石藻与粘土矿物样品的紫外可见光吸收光谱、红外吸收光谱和矿物物相等分析,研究海洋粘土矿物与颗石藻的相互作用规律。通过研究表明伊利石对颗石藻的影响较小,蒙脱石因对营养元素的吸附和颗石藻的絮凝作用对颗石藻的生长和Sr/Ca、Mg/Ca元素比值影响较大。颗石藻代谢分泌的生物分子未能通过层间插层作用进入伊利石层间,颗石藻分泌的生物分子可通过插层作用进入并储存于蒙脱石层间,海洋粘土矿物中的蒙脱石与海洋微生物的相互作用值得地球微生物家关注,可能有助于对古海洋环境的认识。  相似文献   

11.
In order to investigate the interindividual and ontogenetic effects on Mg and Sr incorporation, magnesium/calcium (Mg/Ca) and strontium/calcium (Sr/Ca) ratios of cultured planktonic foraminifera have been determined. Specimens of Globigerinoides sacculifer were grown under controlled physical and chemical seawater conditions in the laboratory. By using this approach, we minimised the effect of potential environmental variability on Mg/Ca and Sr/Ca ratios. Whereas temperature is the overriding control of Mg/Ca ratios, the interindividual variability observed in the Mg/Ca values contributes 2-3 °C to the apparent temperature variance. Interindividual variability in Sr/Ca ratios is much smaller than that observed in Mg/Ca values. The variability due to ontogeny corresponds to −0.43 mmol/mol of Mg/Ca ratio per chamber added. This translates into an apparent decrease of ∼1 °C in Mg/Ca-based temperature per ontogenetic (chamber) stage. No significant ontogenetic effect is observed on Sr incorporation. We conclude that the presence of a significant ontogenetic effect on Mg incorporation can potentially offset Mg/Ca-based temperature reconstructions. We propose two new empirical Mg/Ca-temperature equation based on Mg/Ca measurements of the last four ontogenetic (chamber) stages and whole foraminiferal test: Mg/Ca = (0.55(±0.03) − 0.0002(±4 × 10−5) MSD) e0.089T and, Mg/Ca = (0.55(±0.03) − 0.0001(±2 × 10−5) MSD) e0.089T, respectively, where MSD corresponds to the maximum shell diameter of the individual.  相似文献   

12.
A suite of elements (B, Na, Mg, S, K, Ca, V, Mn, Cr, Sr, and Ba) was measured in aragonitic shells of the estuarine bivalve Corbula amurensis, the Asian clam, using the Sensitive High-Resolution Ion MicroProbe with Reverse Geometry (SHRIMP RG). Our initial intent was to explore potential geochemical proxy relationships between shell chemistry and salinity (freshwater inflow) in northern San Francisco Bay (SFB). In the course of this study we observed variations in shell trace element to calcium ([M]/Ca) ratios that could only be attributed to internal biological processes. This paper discusses the nature and sources of internal trace element variability in C. amurensis shells related to the shell organic fraction and shell calcification rates. The average organic content of whole C. amurensis shells is 19%. After treating whole powdered shells with an oxidative cleaning procedure to remove organic matter, shells contained on average 33% less total Mg and 78% less total Mn. Within our analytical uncertainty, Sr and Ba contents were unchanged by the removal of organic matter. These results show that aragonitic C. amurensis shells have a large component of non-lattice-bound Mg and Mn that probably contribute to the dissimilarity of [M]/Ca profiles among five same-sized shells. Non-lattice-bound trace elements could complicate the development and application of geochemical proxy relationships in bivalve shells. Because B, Ba and Sr occur exclusively in shell aragonite, they are good candidates for external proxy relationships. [M]/Ca ratios were significantly different in prismatic and nacreous aragonite and in two valves of the same shell that had different crystal growth rates. Some part of these differences can be attributed to non-lattice-bound trace elements associated with the organic fraction. The differences in [M]/Ca ratios were also consistent with the calcification rate-dependent ion transport model developed by Carré et al. [Carré M., Bentaleb I., Bruguier O., Ordinola E., Barrett N. T. and Fontugne M. (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim. Cosmochim. Acta70, 4906-4920] which predicts that [M]/Ca ratios increase as calcification rates increase and Ca2+ channel specificity decreases. This result, in combination with the possibility that there were ontogenetic variations in growth rates among individuals younger than 2 years, underscores the need to develop an independent age model for C. amurensis shells. If growth-rate effects on lattice-bound [M]/Ca ratios can be constrained, it may yet be possible to develop high-resolution geochemical proxies for external solution chemistry in low-salinity regions of SFB.  相似文献   

13.
We report results from time-series decay and sequential leaching experiments of laboratory cultured and coastal plankton to elucidate the mechanisms controlling barite formation in seawater. Batch-cultured diatoms (Stephanopyxis palmerina) and coccolithophorids (Emiliania huxleyi) were let to decay in the dark for 8-10 weeks, suspended in aerated seawater. The development of barite crystals was monitored by Scanning Electron Microscopy (SEM). A similar experiment was conducted with plankton collected during the spring-bloom in Vineyard Sound (MA). In addition to SEM, suspended particles were sequentially leached for Ba (distilled water rinse; 10% (v/v) HNO3 rinse at room temperature; 30% (v/v) HCl at 80°C overnight; 50% (v/v) HNO3 at 80°C overnight) immediately after collection, and after 10-week decay in seawater, in seawater poisoned with HgCl2, and in seawater spiked with 135Ba.Both experiments showed an increase in the number of barite crystals during decay. The spring-bloom plankton had initially a large pool of labile Ba, soluble in distilled water and cold dilute HNO3 that was lost from the plankton after 10-week decay in both axenic and nonaxenic conditions. In contrast, Ba in the decayed plankton samples was predominantly in forms extracted by hot HCl and hot HNO3 acids, which were attributed to presence of barite Ba and refractory organic Ba respectively. The increase in barite crystal counts under a Scanning Electron Microscope (SEM), the increase in HCl extractable Ba relative to organic carbon, and the loss of a large fraction of Ba during plankton decay suggest that living plankton consists of a relatively large pool of labile Ba, which is rapidly released during plankton decomposition and acts as the main source of Ba for barite formation in supersaturated microenvironments. Since mass balance indicates that only a small proportion (2 to 4%) of the labile-Ba pool is converted to barite, the availability of microenvironments that could locally concentrate Ba released by plankton decay seems to be the main limiting factor in barite precipitation.  相似文献   

14.
 The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K d's) using simulated wastewater solutions prepared at pH 8.0±0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K d's ranged from 12±1 to 85±3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment. Received: 8 November 1996 · Accepted: 6 January 1997  相似文献   

15.
The Sr/Ca and Ba/Ca ratios in inorganic apatite are strongly dependent on the temperature of the aqueous medium during precipitation. If valid in biogenic apatite, these thermometers would offer the advantage of being more resistant to diagenesis than those calibrated on biogenic calcite and aragonite. We have reared seabreams (Sparus aurata) in tanks with controlled conditions during experiments lasting for more than 2 years at 13, 17, 23 and 27 °C, in order to determine the variations in Sr and Ba partitioning relative to Ca (DSr and DBa, respectively) between seawater and fish apatitic hard tissues (i.e. teeth and bones), as a function of temperature. The sensitivity of the Sr and Ba thermometers (i.e. ∂DSr/∂T and ∂DBa/∂T, respectively), are similar in bone (/∂T = 0.0036 ± 0.0003 and /∂T = 0.0134 ± 0.0026, respectively) and enamel (/∂T = 0.0037 ± 0.0005 and /∂T = 0.0107 ± 0.0026, respectively). The positive values of ∂DSr/∂T and ∂DBa/∂T in bone and enamel indicate that DSr and DBa increase with increasing temperature, a pattern opposite to that observed for inorganic apatite. This distinct thermodependent trace element partitioning between inorganic and organic apatite and water highlights the contradictory effects of the crystal-chemical and biological controls on the partitioning of Ca, Sr and Ba in vertebrate organisms. Taking into account the diet Sr/Ca and Ba/Ca values, it is shown that the bone Ba/Ca signature of fish can be explained by Ca-biopurification and inorganic apatite precipitation, whereas both of these processes fail to predict the bone Sr/Ca values. Therefore, the metabolism of Ca as a function of temperature still needs to be fully understood. However, the biogenic Sr thermometer is used to calculate an average seawater temperature of 30.6 °C using the Sr/Ca compositions of fossil shark teeth at the Cretaceous/Tertiary boundary, and a typical seawater Sr/Ca ratio of 0.02. Finally, while the present work should be completed with data obtained in natural contexts, it is clear that Sr/Ca and Ba/Ca ratios in fossil biogenic apatite already constitute attractive thermometers for marine paleoenvironments.  相似文献   

16.
Massive corals in the Great Barrier Reef, analyzed at high-resolution for Sr/Ca (thermal ionization mass spectrometry) and trace elements such as Ba and Mn (laser ablation inductively coupled plasma mass spectrometry), can provide continuous proxy records of dissolved seawater concentrations, as well as sea surface temperature (SST). A 10-yr record (1989 to 1998) from Pandora Reef, an inshore reef regularly impacted by the freshwater plumes of the Burdekin River, is compared with an overlapping record from a midshelf reef, away from runoff influences. Surface seawater samples, taken away from river plumes, show little variability for Sr/Ca (8484 ± 10 μmol/mol) and Ba (33.7 ± 0.7 nmol/kg). Discrete Ba/Ca peaks in the inshore coral coincide with flood events. The magnitude of this Ba/Ca enrichment is most likely controlled by the amount of suspended sediments delivered to the estuary, which remains difficult to monitor. The maximum flow rate at peak river discharge is used here as a proxy for the sediment load and is shown to be strongly correlated with coral Ba/Ca (r = 0.97). After the wet summer of 1991, the coral Ba/Ca flood peak is followed by a plateau that lingers for several months after dissipation of plume waters, signifying an additional flux of Ba that may originate from submarine groundwater seeps and/or mangrove reservoirs. Both Mn and Y are enriched by a factor of ∼5 in inshore relative to midshelf corals. Mn/Ca ratios show a seasonal cycle that follows SST (r = 0.7), not river discharge, with an additional high variability in summer suggesting a link with biological activity. P and Cd show no significant seasonal variation and are at a low level at both inshore and midreef locations. However, leaching experiments suggest that part of the coral P is not lattice bound.  相似文献   

17.
黄思静  黄喻  兰叶芳  黄可可 《岩石学报》2011,27(12):3831-3842
在四川盆地东北部14条野外剖面和地下钻井的二叠系长兴组、三叠系飞仙关组和嘉陵江组石灰岩和白云岩岩石学研究的基础上,对其中189个不同类型的碳酸盐样品(包括代表海水的石灰岩样品和在不同成岩阶段形成的各种白云岩样品)进行了锶同位素组成和相应的MgO、CaO和Mn、Sr元素分析,获得了系统的晚二叠-早三叠世海水的锶同位素组成数据并建立了相应演化曲线.在此基础上,对不同地层组/段和不同类型白云岩的锶同位素组成与同期海水锶同位素组成进行了对照研究,取得了如下主要认识:(1)川东北晚二叠-早三叠世白云岩的锶同位素组成与同期海水具有类似的演化趋势,结合白云岩的低锰、高锶特征,说明白云化流体与海水存在显著的亲缘关系,与铝硅酸盐地层无关;(2)白云岩的锶同位素组成与同期海水存在差别,各地层组/段白云岩的87Sr/86Sr比值都不同程度地高于同期海水,但从下往上,即从长兴组、飞2+3段、嘉2段到嘉4段,这种差值逐渐缩小,嘉4段白云岩的锶同位素组成已和同期海水基本一致;(3)川东北长兴组、飞2+3段白云岩形成的时间显著晚于同层石灰岩,白云化流体为时间上更晚的海源流体,但嘉2、嘉4段白云岩的形成时间仅略晚于同层石灰岩,白云化流体来源于非常近同期的蒸发浓缩的高Mg/Ca比值海水,一些嘉4段的白云岩的白云化流体就是同期海水,因而这些白云岩是同生或准同生的;(4)如果把白云化的时间看作白云岩的形成时间,则违背地层叠置原理是川东北长兴组和飞仙关组结晶白云岩的主要特征之一,其形成机制可用非同期海源流体的隐伏回流-对流模式来解释,嘉陵江组白云岩形成机制可用活跃回流-萨布哈模式来解释.白云岩和代表同期海水的石灰岩锶同位素组成的对比为解决白云化流体与海水之间的时间关系提供一种新的研究途径.  相似文献   

18.
Sea surface temperatures (SSTs) have been inferred previously from the Sr/Ca ratios of coral aragonite. However, microanalytical studies have indicated that Sr in some coral skeletons is more heterogeneously distributed than expected from SST data. Strontium may exist in two skeletal phases, as Sr substituted for Ca in aragonite and as separate SrCO3 (strontianite) domains. Variations in the size, quantity, or both of these domains may account for small-scale Sr heterogeneity. Here, we use synchrotron X-ray fluorescence to map Sr/Ca variations in a Porites lobata skeleton at a 5 μm scale. Variations are large and unrelated to changes in local seawater temperature or composition. Selected area extended X-ray absorption fine structure (EXAFS) spectroscopy of low- and high-Sr areas indicates that Sr is present as a substitute ion in aragonite i.e., domains of Sr carbonate (strontianite) are absent or in minor abundance. Variations in strontianite abundance are not responsible for the Sr/Ca fluctuations observed in this sample. The Sr microdistribution is systematic and appears to correlate with the crystalline fabric of the coral skeleton, suggesting Sr heterogeneity may reflect nonequilibrium calcification processes. Nonequilibrium incorporation of Sr complicates the interpretation of Sr/Ca ratios in terms of SST, particularly in attempts to extend the temporal resolution of the technique. The micro-EXAFS technique may prove to be valuable, allowing the selection of coral microvolumes for Sr/Ca measurement where strontium is incorporated in a known structural environment.  相似文献   

19.
The 87Sr/86Sr ratios and Sr concentrations in sediment and pore fluids are used to evaluate the rates of calcite recrystallization at ODP Site 807A on the Ontong Java Plateau, an 800-meter thick section of carbonate ooze and chalk. A numerical model is used to evaluate the pore fluid chemistry and Sr isotopes in an accumulating section. The deduced calcite recrystallization rate is 2% per million years (%/Myr) near the top of the section and decreases systematically in older parts of the section such that the rate is close to 0.1/age (in years). The deduced recrystallization rates have important implications for the interpretation of Ca and Mg concentration profiles in the pore fluids. The effect of calcite recrystallization on pore fluid chemistry is described by the reaction length, L, which varies by element, and depends on the concentration in pore fluid and solid. When L is small compared to the thickness of the sedimentary section, the pore fluid concentration is controlled by equilibrium or steady-state exchange with the solid phase, except within a distance L of the sediment-water interface. When L is large relative to the thickness of sediment, the pore fluid concentration is mostly controlled by the boundary conditions and diffusion. The values of L for Ca, Sr, and Mg are of order 15, 150, and 1500 meters, respectively. LSr is derived from isotopic data and modeling, and allows us to infer the values of LCa and LMg. The small value for LCa indicates that pore fluid Ca concentrations, which gradually increase down section, must be equilibrium values that are maintained by solution-precipitation exchange with calcite and do not reflect Ca sources within or below the sediment column. The pore fluid Ca measurements and measured alkalinity allow us to calculate the in situ pH in the pore fluids, which decreases from 7.6 near the sediment-water interface to 7.1 ± 0.1 at 400-800 mbsf. While the calculated pH values are in agreement with some of the values measured during ODP Leg 130, most of the measurements are artifacts. The large value for LMg indicates that the pore fluid Mg concentrations at 807A are not controlled by calcite-fluid equilibrium but instead are determined by the changing Mg concentration of seawater during deposition, modified by aqueous diffusion in the pore fluids. We use the pore fluid Mg concentration profile at Site 807A to retrieve a global record for seawater Mg over the past 35 Myr, which shows that seawater Mg has increased rapidly over the past 10 Myr, rather than gradually over the past 60 Myr. This observation suggests that the Cenozoic rise in seawater Mg is controlled by continental weathering inputs rather than by exchange with oceanic crust. The relationship determined between reaction rate and age in silicates and carbonates is strikingly similar, which suggests that reaction affinity is not the primary determinant of silicate dissolution rates in nature.  相似文献   

20.
Fresh basalt and metabasalt dredged from the Mid-Atlantic Ridge were studied for Na, K, Rb, Sr, and H2O(+) contents, and strontium and hydrogen isotope ratios. Na, K, Rb, and Sr contents of these samples are within the range of those of oceanic tholeiite. H2O(+) content, strontium, and hydrogen isotope ratios vary widely. The variation in water content of metabasalt is apparently related to the chlorite content. The metamorphic temperature was about 550 °C based on the estimated δD value of chlorite. There is positive linear relationship between water content and strontium isotope ratio. Based on this relationship, the variation of strontium isotope ratio of the metabasalt was interpreted as follows: complete exchange occurred between strontium in the chlorite portion of the metabasalt and strontium in sea water (87Sr/86Sr ratio=0.7090), while the original strontium (87Sr/86Sr∼0.7023) was retained in the non-altered portion of the basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号