首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
X-ray photoelectron and absorption spectra have been obtained for natural specimens of cubanite and compared with the corresponding spectra for chalcopyrite. Synchrotron X-ray photoelectron spectra of surfaces prepared by fracture under ultra-high vacuum revealed some clear differences for the two minerals, most notably those reflecting their different structures. In particular, the concentration of the low binding energy S species formed at cubanite fracture surfaces was approximately double that produced at chalcopyrite surfaces. However, the core electron binding energies for the two S environments in cubanite were not significantly different, and were similar to the corresponding values for the single environment in chalcopyrite. High binding energy features in the S 2p and Cu 2p spectra were not related to surface species produced either by the fracture or by oxidation, and most probably arose from energy loss due to inter-band excitation. Differences relating to the Fe electronic environments were detectable, but were smaller than expected from some of the observed physical properties and Mössbauer spectroscopic parameters for the two minerals. X-ray absorption and photoelectron spectra together with the calculated densities of states for cubanite confirmed an oxidation state of CuI in the mineral. It was concluded that the best formal oxidation state representation for cubanite is CuI(Fe2)VS 3 ?II .  相似文献   

2.
Metal L2,3, sulfur K and oxygen K near-edge X-ray absorption fine structure (NEXAFS) spectra for chalcopyrite, bornite, chalcocite, covellite, pyrrhotite and pyrite have been determined from single-piece natural mineral specimens in order to assess claims that chalcopyrite should be regarded as CuIIFeIIS2 rather than CuIFeIIIS2, and that copper oxide species are the principal initial oxidation products on chalcopyrite and bornite exposed to air. Spectra were obtained using both fluorescence and electron yields to obtain information representative of the bulk as well as the surface. Where appropriate, NEXAFS spectra have been interpreted by comparison with the densities of unfilled states and simulated spectra derived from ab initio calculations using primarily the FEFF8 code and to a lesser extent WIEN2k. Metal 2p and S 2p photoelectron spectra excited by monochromatised Al Kα X-rays were determined for each of the surfaces characterised by NEXAFS spectroscopy. The X-ray excited Cu LMM Auger spectrum was also determined for each copper-containing sulfide. FEFF8 calculations were able to simulate the experimental NEXAFS spectra quite well in most cases. For covellite and chalcocite, it was found that FEFF8 did not provide a good simulation of the Cu L3-edge spectra, but WIEN2k simulations were in close agreement with the experimental spectra. Largely on the basis of these simulations, it was concluded that there was no convincing evidence for chalcopyrite to be represented as CuIIFeIIS2, and no strong argument for some of the Cu in either bornite or covellite to be regarded as Cu(II). The ab initio calculations for chalcopyrite and bornite indicated that the density of Cu d-states immediately above the Fermi level was sufficient to account for the Cu L3-edge absorption spectrum, however these incompletely filled Cu d-states should not be interpreted as indicating some Cu(II) in the sulfide structure. It was also concluded that the X-ray absorption spectra were quite consistent with the initial oxidation products on chalcopyrite and bornite surfaces being iron oxide species, and inconsistent with the concomitant formation of copper-oxygen species.  相似文献   

3.
Energy gaps and electrical conductivities in the ferrous silicates, Fe2SiO4 and FeSiO3, depend primarily on Fe-O bonding and may be studied by ultraviolet and soft X-ray spectroscopy. We have measured FeLII–III X-ray band spectra under conditions of “minimal” (I4, at 4.0 keV) and “high” (I10, at 10.0 keV) self absorption to determine 3d orbital energy levels, to delineate d states in the valence band, and to construct band gap models. Absorption spectra, I4/I10, were computed to determine vacant orbital levels in the gap. A difference function (I4–I10) has been proposed to identify X-radiation at photon energies above the measured LIII absorption edge, including high-energy, double-vacancy satellites and radiative transitions involving the anti-parallel (spin-down) d 6 electron in the ground state. The proposed band gap model for Fe2SiO4 is consistent with that of Nitsan and Shankland (1976), including an intrinsic transition of 6.5 eV and an energy gap of 7.8 eV. The 3d orbital energy level electronic structures are in general agreement with levels computed by Tossell et al. (1974) for [FeO6]10? in FeO using an SCF Xα cluster MO method. A high-energy, double-vacancy satellite was found at ~710.7 eV, and is presumed to originate from an LIIIMII,III initial state. The intensity of these satellites for the ferrous silicates and other iron compounds, and corresponding Fe LII/LIII intensity ratios are correlated with differences in band gap magnitudes and gap structure. Fe LII/LIII intensity ratios are not well correlated with iron oxidation state.  相似文献   

4.
The nature of the surface oxidation phase on pyrite, FeS2, reacted in aqueous electrolytes at pH = 2 to 10 and with air under ambient atmospheric conditions was studied using synchrotron-based oxygen K edge, sulfur LIII edge, and iron LII,III edge X-ray absorption spectroscopy. We demonstrate that O K edge X-ray absorption spectra provide a sensitive probe of sulfide surface oxidation that is complementary to X-ray photoelectron spectroscopy. Using total electron yield detection, the top 20 to 50 Å of the pyrite surface is characterized. In air, pyrite oxidizes to form predominantly ferric sulfate. In aqueous air-saturated solutions, the surface oxidation products of pyrite vary with pH, with a marked transition occurring around pH 4. Below pH = 4, a ferric (hydroxy)sulfate is the main oxidation product on the pyrite surface. At higher pH, we find iron(III) oxyhydroxide in addition to ferric (hydroxy)sulfate on the surface. Under the most alkaline conditions, the O K edge spectrum closely resembles that of goethite, FeOOH, and the surface is oxidized to the extent that no FeS2 can be detected in the X-ray absorption spectra. In a 1.667 × 10−3 mol/L Fe3+ solution with ferric iron present as FeCl3 in NaCl, the oxidation of pyrite is autocatalyzed, and formation of the surface iron(III) oxyhydroxide phase is promoted at low pH.  相似文献   

5.
The interaction of freshly abraded surfaces of cuprite, Cu2O, with neutral or mildly alkaline aqueous solutions of diethyl or di-n-butyl dithiophosphate (DTP) has been investigated by means of conventional and synchrotron X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. It was confirmed that DTP adsorbs readily on Cu atoms in the surface layer of the mineral treated with solutions of the collector at pH values near 7 and 9 in the presence of air, and renders the surface hydrophobic. When cuprite is treated with relatively high concentrations of DTP for sufficiently long periods, collector can also be adsorbed as CuDTP, but the coverage does not exceed a thin layer of CuDTP on the adsorbed DTP monolayer, unlike the situation with Cu metal or chalcocite where a thick multilayer can be formed.  相似文献   

6.
L-edge X-ray absorption spectroscopy employing a synchrotron radiation source has been used to study the electronic structure and valency of Cu in the chemically and structurally complex tetrahedrite group of minerals. Mechanical mixtures of Cu2+O and Cu+FeS2 were used to estimate the relative cross sections of Cu2+ and Cu+; the absorption of Cu2+ at 931 eV is 25 times greater than that of Cu+ at 945 eV. Using this calibration, Cu2+/Cu ratios were found to vary from 0.00 to 0.054 in the tetrahedrite samples studied; the highest proportion of Cu2+ occurs in synthetic tetrahedrites with a composition close to Cu12Sb4S13. This study reveals the utility of the technique for determining the valence state of copper in complex minerals, allowing the crystal chemistry to be more fully characterised.  相似文献   

7.
The complex interaction between CrIIIaq and manganite (γ-MnOOH) was systematically studied at room temperature over a pH range of 3 to 6, and within a concentration range of 10−4 to 10−2 M CrOH2+aq. Solution compositional changes during batch reactions were characterized by inductively coupled plasma spectroscopy and ultraviolet-visible spectrophotometry. The manganites were characterized before and after reaction with X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), high-resolution field-emission SEM, and energy-dispersive spectroscopy analysis. Fluid-cell atomic force microscopy was used to follow these metal-mineral interactions in situ. The reactions are characterized by (1) sorption of CrIII and the surface-catalyzed microprecipitation of CrIII-hydroxy hydrate on manganite surfaces, (2) the acidic dissolution of the manganite, and (3) the simultaneous reductive dissolution of manganite coupled with the oxidation of CrIIIaq to highly toxic CrVIaq. CrIII-hydroxy hydrate was shown to precipitate on the manganite surface while still undersaturated in bulk solution. The rate of manganite dissolution increased with decreasing pH due both to acid-promoted and Mn-reduction-promoted dissolution. Cr oxidation also increased in the lower pH range, this as a result of its direct redox coupling with Mn reduction. Neither MnII nor CrVI were ever detected on manganite surfaces, even at the maximum rate of their generation. At the highest pHs of this study, CrIIIaq was effectively removed from solution to form CrIII-hydroxy hydrate on manganite surfaces and in the bulk solution, and manganite dissolution and CrVIaq generation were minimized. All interface reactions described above were heterogeneous across the manganite surfaces. This heterogeneity is a direct result of the heterogeneous semiconducting nature of natural manganite crystals and is also an expression of the proximity effect, whereby redox processes on semiconducting surfaces are not limited to next nearest neighbor sites.  相似文献   

8.
The determination of the oxidation states of copper and iron in sulfides, and chalcopyrite (CuFeS2) in particular, using 2p X-ray photoemission spectroscopy (XPS) and L2,3-edge X-ray absorption spectroscopy (XAS) is revisited. Reassessment of the published spectra derived by these methods produces consistent results and reveals the ‘d count’ in the copper compounds to be intermediate between d9 and d10. Nevertheless, these covalent copper compounds can be divided into those nominally monovalent and those nominally divalent. The Fe L2,3-edge XAS of chalcopyrite, along with Mössbauer data, confirm the presence of high-spin Fe3+. Chalcopyrite, despite recent published reports to the contrary, clearly belongs to the monovalent copper class.  相似文献   

9.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

10.
Molecular orbital calculations are presented for the copper-sulfur polyhedral clusters CuS 4 7? , CuS 4 6? , CuS 3 5? and CuS 3 4? , which occur in many minerals. Calculated and experimental optical and X-ray energies are found to be in good agreement. The crystal field orbitals of Cu+ in tetrahedrally coordinated sulfides are found to be less tightly bound than the S3p nonbonding orbitals by about 2–3 eV whereas the e and t 2 crystal field orbitals are split by about 1 eV. The crystal field splitting of Cu2+ in tetrahedral coordination is about 0.7–0.8 eV while the separation of the S3p nonbonding orbitals and the partially filled t 2 crystal field orbital is about 2 eV. In triangular coordination both the Cu+ and Cu2+ crystal field orbitals are more stable than in tetrahedral coordination, more widely split and more strongly mixed with the S3p orbitals. CuS is shown to be unstable as the mixed oxidation state compound Cu2+III (Cu+IV)2S2?(S 2 2? ); rather each Cu is predicted to have a fractional oxidation state and partially-empty crystal field orbitals.  相似文献   

11.
We examined the LIII-edge Pb X-ray absorption near-edge structure (XANES) of three natural zircon samples with different amounts of radiation doses (1.9 × 1015 to 6.8 × 1015 α-decay events/mg). The results suggest that the oxidation state of radiogenic Pb in the zircon sample with the highest radiation dose is divalent. The XANES spectra of the two other samples with lower radiation doses suggest that radiogenic Pb(II) is present, and further that some Pb may be tetravalent. This is the first work on the determination of the oxidation state of radiogenic Pb in natural zircon using XANES.  相似文献   

12.
Fe L-, S L-, and O K-edge X-ray absorption spectra of natural monoclinic and hexagonal pyrrhotites, Fe1-xS, and arsenopyrite, FeAsS, have been measured and compared with the spectra of minerals oxidized in air and treated in aqueous acidic solutions, as well as with the previous XPS studies. The Fe L-edge X-ray absorption near-edge structure (XANES) of vacuum-cleaved pyrrhotites showed the presence of, aside from high-spin Fe2+, small quantity of Fe3+, which was higher for a monoclinic mineral. The spectra of the essentially metal-depleted surfaces produced by the non-oxidative and oxidative acidic leaching of pyrrhotites exhibit substantially enhanced contributions of Fe3+ and a form of high-spin Fe2+ with the energy of the 3d orbitals increased by 0.3–0.8 eV; low-spin Fe2+ was not confidently distinguished, owing probably to its rapid oxidation. The changes in the S L-edge spectra reflect the emergence of Fe3+ and reduced density of S s–Fe 4s antibonding states. The Fe L-edge XANES of arsenopyrite shows almost unsplit eg band of singlet Fe2+ along with minor contributions attributable to high-spin Fe2+ and Fe3+. Iron retains the low-spin state in the sulphur-excessive layer formed by the oxidative leaching in 0.4 M ferric chloride and ferric sulphate acidic solutions. The S L-edge XANES of arsenopyrite leached in the ferric chloride, but not ferric sulphate, solution has considerably decreased pre-edge maxima, indicating the lesser admixture of S s states to Fe 3d orbitals in the reacted surface layer. The ferric nitrate treatment produces Fe3+ species and sulphur in oxidation state between +2 and +4.  相似文献   

13.
2p (L 2,3) X-ray absorption spectra are presented for a range of minerals to demonstrate the usefulness of L-edge spectroscopy as a symmetry- and valenceselective probe. 2p XAS provides a sensitive fingerprint of the electronic states of 3 d transition metals and can be applied to phases containing mixtures of such elements. Calculated spectra for 3d n → 2p 5 3d n+1 transitions provide a basis for the interpretation of the measured spectra. Thus, in principle, multiple valence states of a particular 3 d metal can be precisely characterized from a single L-edge spectrum. Examples of vanadium L-edge spectra are presented for a range of minerals; these complex spectra hold information concerning the presence of vanadium in multiple valence states. The Cu L-edge spectrum of sulvanite (Cu3 VS4) indicates the presence of both Cu+ and Cu2+; the V L-edge spectrum of the same sample shows that both V2+ and V5+ are present. Spectral simulations representing mixtures of Fe d 5 and Fe d 6 states are used to quantify Fe3+/Fe in a spinel, a glass, and an amphibole, all of which contain Fe as a major component. To illustrate the sensitivity of 2p XAS in a dilute system, the Fe L-edge spectrum of amethyst (α-SiO2: Fe) has been recorded; this spectrum shows that ~68% of the Fe in amethyst is Fe2+, and ~32% is Fe3+. Although previous studies on amethyst using other spectroscopic methods cite evidence for Fe4+, there is no indication in the L-edge spectrum for Fe4+ in amethyst. Comparison of theoretical and experimental spectra not only allows the valence states of 3 d ions to be recognised, but also provides site-symmetry information and crystal field parameters for each ion site.  相似文献   

14.
In the present study, the dissolution and mobilization of Ce introduced in a simulated nuclear waste glass (MW) as a surrogate of Pu was investigated after leaching in pure water over 12 a at 90 °C and pH ∼ 9.6. The microscopic distribution and oxidation state of Ce in the altered glass were studied using micro-X-ray fluorescence (micro-XRF) mapping techniques and micro-X-ray near-edge absorption spectroscopy (micro-XANES). Distribution maps of CeIII and CeIV were obtained by recording the Lα fluorescence emission at two different incident X-ray energies, coinciding with the maximum contrast between CeIII and CeIV fluorescence intensities. The micro-XRF maps revealed that Ce was dominantly present as oxidized species (CeIV) in the original glass. After dissolution from the glass matrix, CeIV was partly reduced and re-immobilized as CeIII at grain boundaries or in the interstitial spaces between the glass particles. The concentration of CeIII was found to correlate with the spatial distribution of secondary Mg-clay formed during the aqueous corrosion as the main glass alteration product. Micro-XANES spectra collected at locations representative of both altered and non-altered glass domains confirmed the findings obtained by the redox mapping. Because redox-sensitive elements in the pristine MW glass (Fe, Cr, Se) occur almost exclusively as oxidized species, reduction of CeIV was probably mediated by an external source of reductants, such as Fe(0) from the steel reaction vessel.  相似文献   

15.
The S K and L-edge x-ray absorption near-edge structures (XANES) of low bornite, cubanite, chalcocite, covellite, enargite and tetrahedrite have been measured with synchrotron radiation. The near-edge features are interpreted based on comparison with the S K- and L-edge spectra of chalcopyrite and a MO/energy band structure model. The XANES spectra of these sulfides reflect the DOS of unoccupied S s-, p- and d-like states near and above the Fermi level. In tetrahedral Cu-Fe sulfides, the Fe3+ 3d crystal field band has much more significant DOS of unoccupied S 3p-and 3s-like states than the Cu+ 3d crystal field band. For Cu sulfides, the Cu+ 3d crystal field band has the higher DOS of S 3p- and 3 s-like states in tetrahedral structure than in structures with the triangular CuS3 cluster. The shifts in both S K- and L-edges correlate approximately linearly with the energy gap.  相似文献   

16.
Arsenopyrite (FeAsS) and enargite (Cu3AsS4) fractured in a nitrogen atmosphere were characterised after acidic (pH 1.8), oxidative dissolution in both the presence and absence of the acidophilic microorganism Leptospirillum ferrooxidans. Dissolution was monitored through analysis of the coexisting aqueous solution using inductively coupled plasma atomic emission spectroscopy and coupled ion chromatography-inductively coupled plasma mass spectrometry, and chemical changes at the mineral surface observed using X-ray photoelectron spectroscopy and environmental scanning electron microscopy (ESEM). Biologically mediated oxidation of arsenopyrite and enargite (2.5 g in 25 ml) was seen to proceed to a greater extent than abiotic oxidation, although arsenopyrite oxidation was significantly greater than enargite oxidation. These dissolution reactions were associated with the release of ∼917 and ∼180 ppm of arsenic into solution. The formation of Fe(III)-oxyhydroxides, ferric sulphate and arsenate was observed for arsenopyrite, thiosulphate and an unknown arsenic oxide for enargite. ESEM revealed an extensive coating of an extracellular polymeric substance associated with the L. ferrooxidans cells on the arsenopyrite surface and bacterial leach pits suggest a direct biological oxidation mechanism, although a combination of indirect and direct bioleaching cannot be ruled out. Although the relative oxidation rates of enargite were greater in the presence of L. ferrooxidans, cells were not in contact with the surface suggesting an indirect biological oxidation mechanism. Cells of L. ferrooxidans appear able to withstand several hundreds of ppm of As(III) and As(V).  相似文献   

17.
L III edge extended X-ray absorption fine structure (EXAFS) spectra of Gd, Er and Lu environments in synthetic epidotes of composition CaLa0.9 X 0.1Al2MgSi3O13H (X=Gd or Er or Lu) were recorded using synchrotron radiation. The Fourier transforms of the Gd-, Er- and Lu-EXAFS are clearly different from one another indicating wholly or partially different site occupancy. Model fitting of the Fourier-filtered partial EXAFS and comparison of pair distribution functions with those calculated for natural epidote leads to the conclusion that three different sites are probably involved in the accommodation of these elements in the epidote structure, and that site preference is a function of the rare earth ionic size. Gd is located in A2-type sites, whereas the local atomic environment of Er is consistent with A1 site occupancy and the Lu environment has been modelled on an M3-type octahedral site.  相似文献   

18.
Vivianite, Fe3(PO4)2×8?H2O, (010) surfaces cleaved in an N2 gas atmosphere are examined using X-ray photoelectron spectroscopy (XPS). Quantitative evaluation of Fe(2p 32) and O(1s) spectra show cleaved surfaces are partly oxidized. Ferric hydroxide is identified as an oxidation product. An auto-reduction-oxidation mechanism involving rupture of hydrogen bonds between the H2O ligands which hold together the sheet structure of vivianite is proposed.  相似文献   

19.
We present an X-ray absorption near-edge structure study performed at the Yb LI- and LIII-edges on synthetic pyrope (Mg3Al2Si3O12) and grossular (Ca3Al2Si3O12) garnets containing about 1% wt of Yb. For the first time Yb L-edge XANES spectra are analyzed by full multiple scattering theory using clusters of different sizes and different final-state potentials. A comparison between experimental spectra and model calculations indicates that Yb3+ enters the dodecahedral X-site in both pyrope and grossular, in agreement with the results of an EXAFS study. Based on the present results, the charge balancing substitution mechanism required by the replacement of divalent Mg and Ca cations with trivalent Yb3+ is discussed in terms of vacancies in dodecahedral sites surrounding the central Yb3+ absorber. Received: 7 December 1998 / Revised, accepted: 7 May 1999  相似文献   

20.
The niobium and zirconium L III-absorption spectra in some niobates and zircons were obtained with a vacuum focusing crystal spectrometer. The effective charges of Nb and Zr in these minerals were derived from the X-ray absorption spectra. The fine structure of the absorption spectra and effective charges Nb and Zr in metamict, partly-metamict minerals and crystalline analogues made it possible to draw a conclusion as to the nature of the first coordination sphere of Nb and Zr during metamict decay and subsequent recrystallization under annealing of these minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号