首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the copper isotope ratio of primary high temperature Cu-sulfides, secondary low temperature Cu-sulfides (and Cu-oxides) as well as Fe-oxides in the leach cap, which represent the weathered remains of a spectrum of Cu mineralization, from nine porphyry copper deposits. Copper isotope ratios are reported as δ65Cu‰ = ((65Cu/63Cusample/65Cu/63CuNIST 976 standard) − 1) ? 103. Errors for all the analyses are ± 0.14‰ (determined by multiple analyses of the samples) and mass bias was corrected through standard-sample-standard bracketing. The overall isotopic variability measured in these samples range from − 16.96‰ to 9.98‰.  相似文献   

2.
The isotopic composition of dissolved Cu and solid Cu-rich minerals [δ65Cu (‰) = (65Cu/63Cusample/65Cu/63Custd) - 1)*1000] were monitored in batch oxidative dissolution experiments with and without Thiobacillus ferrooxidans. Aqueous copper in leach fluids released during abiotic oxidation of both chalcocite and chalcopyrite was isotopically heavier (δ65Cu = 5.34‰ and δ65Cu = 1.90‰, respectively, [±0.16 at 2σ]) than the initial starting material (δ65Cu = 2.60 ± 0.16‰ and δ65Cu = 0.58 ± 0.16‰, respectively). Isotopic mass balance between the starting material, aqueous copper, and secondary minerals precipitated in these experiments explains the heavier isotopic values of aqueous copper. In contrast, aqueous copper from leached chalcocite and chalcopyrite inoculated with Thiobacillus ferrooxidans was isotopically similar to the starting material. The lack of fractionation of the aqueous copper in the biotic experiments can best be explained by assuming a sink for isotopically heavy copper present in the bacteria cells with δ65Cu = 5.59 ± 0.16‰. Consistent with this inference, amorphous Cu-Fe oxide minerals are observed surrounding cell membranes of Thiobacillus grown in the presence of dissolved Cu and Fe.Extrapolating these experiments to natural supergene environments implies that release of isotopically heavy aqueous Cu from oxidative leach caps, especially under abiotic conditions, should result in precipitates in underlying enrichment blankets that are isotopically heavy. Where iron-oxidizing cells are involved, isotopically heavy oxidized Cu entrained in cellular material may become associated with leach caps, causing the released aqueous Cu to be less isotopically enriched in the heavy isotope than predicted for the abiotic system. Rayleigh fractionation trends with fractionation factors calculated from our experiments for both biotic and abiotic conditions are consistent with large numbers of individual abiotic or biotic leaching events, explaining the supergene chalcocites in the Morenci and Silver Bell porphyry copper deposits.  相似文献   

3.
Copper isotopes may prove to be a useful tool for investigating bacteria-metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ65Cu) to investigate Cu-bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5-6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ65Cusolution-solid = δ65Cusolution − δ65Cusolid) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to −0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ65Cusolution-solid ranging from ∼+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu machinery is shared by fungi, plants, and higher organisms, the influence of biological processes on the δ65Cu of natural waters and soils is probably considerable.  相似文献   

4.
Significant, systematic Cu isotopic variations have been found in the Northparkes porphyry Cu-Au deposit, NSW, Australia, which is an orthomagmatic porphyry Cu deposit. Copper isotope ratios have been measured in sulfide minerals (chalcopyrite and bornite) by both solution and laser ablation multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The results from both methods show a variation in δ65Cu of hypogene sulfide minerals of greater than 1‰ (relative to NIST976). Significantly, the results from four drill holes through two separate ore bodies show strikingly similar patterns of Cu isotope variation. The patterns are characterized by a sharp down-hole decrease from up to 0.8‰ (0.29 ± 0.56‰, 1σ, n = 20) in the low-grade peripheral alteration zones (phyllic-propylitic alteration zone) to a low of ∼−0.4‰ (−0.25 ± 0.36‰, 1σ, n = 30) at the margins of the most mineralized zones (Cu grade >1 wt%). In the high-grade cores of the systems, the compositions are more consistent at around 0.2‰ (0.19 ± 0.14‰, 1σ, n = 40). The Cu isotopic zonation may be explained by isotope fractionation of Cu between vapor, solution and sulfides at high temperature, during boiling and sulfide precipitation processes. Sulfur isotopes also show an isotopically light shell at the margins of the high-grade ore zones, but these are displaced from the low δ65Cu shells, such that there is no correlation between the Cu and S isotope signatures. Fe isotope data do not show any discernable variation along the drill core. This work demonstrates that Cu isotopes show a large response to high-temperature porphyry mineralizing processes, and that they may act as a vector to buried mineralization.  相似文献   

5.
The stable copper isotope composition of 79 samples of primary and secondary copper minerals from hydrothermal veins in the Schwarzwald mining district, South Germany, shows a wide variation in δ65Cu ranging from −2.92 to 2.41‰. We investigated primary chalcopyrite, various kinds of fahlores and emplectite, as well as supergene native copper, malachite, azurite, cuprite, tenorite, olivenite, pseudomalachite and chrysocolla. Fresh primary Cu(I) ores have at most localities copper isotope ratios (δ65Cu values) of 0 ± 0.5‰ despite the fact that the samples come from mineralogically different types of deposits covering an area of about 100 by 50 km and that they formed during three different mineralization events spanning the last 300 Ma. Relics of the primary ores in oxidized samples (i.e., chalcopyrite relics in an iron oxide matrix with an outer malachite coating) display low isotope ratios down to −2.92‰. Secondary Cu(I) minerals such as cuprite have high δ65Cu values between 0.4 and 1.65‰, whereas secondary Cu(II) minerals such as malachite show a range of values between −1.55 and 2.41‰, but typically have values above +0.5‰. Within single samples, supergene oxidation of fresh chalcopyrite with a δ value of 0‰ causes significant fractionation on the scale of a centimetre between malachite (up to 1.49‰) and relict chalcopyrite (down to −2.92‰). The results show that—with only two notable exceptions—high-temperature hydrothermal processes did not lead to significant and correlatable variations in copper isotope ratios within a large mining district mineralized over a long period of time. Conversely, low-temperature redox processes seriously affect the copper isotope compositions of hydrothermal copper ores. While details of the redox processes are not yet understood, we interpret the range in compositions found in both primary Cu(I) and secondary Cu(II) minerals as a result of two competing controls on the isotope fractionation process: within-fluid control, i.e., the fractionation during the redox process among dissolved species, and fluid-solid control, i.e., fractionation during precipitation involving reactions between dissolved Cu species and minerals. Additionally, Rayleigh fractionation in a closed system may be responsible for some of the spread in isotope compositions. Our study indicates that copper isotope variations may be used to decipher details of natural redox processes and therefore may have some bearing on exploration, evaluation and exploitation of copper deposits. On the other hand, copper isotope analyses of single archeological artefacts or geological or biological objects cannot be easily used as reliable fingerprint for the source of copper, because the variation caused by redox processes within a single deposit is usually much larger than the inter-deposit variation.  相似文献   

6.
We report high precision Cu isotope data coupled with Cu concentration measurements for metal, troilite and silicate fractions separated from magmatic and non-magmatic iron meteorites, analysed for Fe isotopes (δ57Fe; permil deviation in 57Fe/54Fe relative to the pure iron standard IRMM-014) in an earlier study (Williams et al., 2006). The Cu isotope compositions (δ65Cu; permil deviation in 65Cu/63Cu relative to the pure copper standard NIST 976) of both metals (δ65CuM) and sulphides (δ65CuFeS) span much wider ranges (−9.30 to 0.99‰ and −8.90 to 0.63‰, respectively) than reported previously. Metal-troilite fractionation factors (Δ65CuM-FeS = δ65CuM − δ65CuFeS) are variable, ranging from −0.07 to 5.28‰, and cannot be explained by equilibrium stable isotope fractionation coupled with either mixing or reservoir effects, i.e. differences in the relative proportions of metal and sulphide in the meteorites. Strong negative correlations exist between troilite Cu and Fe (δ57FeFeS) isotope compositions and between metal-troilite Cu and Fe (Δ57FeM-FeS) isotope fractionation factors, for both magmatic and non-magmatic irons, which suggests that similar processes control isotopic variations in both systems. Clear linear arrays between δ65CuFeS and δ57FeFeS and calculated Cu metal-sulphide partition coefficients (DCu = [Cu]metal/[Cu]FeS) are also present. A strong negative correlation exists between Δ57FeM-FeS and DCu; a more diffuse positive array is defined by Δ65CuM-FeS and DCu. The value of DCu can be used to approximate the degree of Cu concentration equilibrium as experimental studies constrain the range of DCu between Fe metal and FeS at equilibrium to be in the range of 0.05-0.2; DCu values for the magmatic and non-magmatic irons studied here range from 0.34 to 1.11 and from 0.04 to 0.87, respectively. The irons with low DCu values (closer to Cu concentration equilibrium) display the largest Δ57FeM-FeS and the lowest Δ65CuM-FeS values, whereas the converse is observed in the irons with large values DCu that deviate most from Cu concentration equilibrium. The magnitudes of Cu and Fe isotope fractionation between metal and FeS in the most equilibrated samples are similar: 0.25 and 0.32‰/amu, respectively. As proposed in an earlier study (Williams et al., 2006) the range in Δ57FeM-FeS values can be explained by incomplete Fe isotope equilibrium between metal and sulphide during cooling, where the most rapidly-cooled samples are furthest from isotopic equilibrium and display the smallest Δ57FeM-FeS and largest DCu values. The range in Δ65CuM-FeS, however, reflects the combined effects of partial isotopic equilibrium overprinting an initial kinetic signature produced by the diffusion of Cu from metal into exsolving sulphides and the faster diffusion of the lighter isotope. In this scenario, newly-exsolved sulphides initially have low Cu contents (i.e. high DCu) and extremely light δ65CuFeS values; with progressive equilibrium and fractional crystallisation the Cu contents of the sulphides increase as their isotopic composition becomes less extreme and closer to the metal value. The correlation between Δ65CuM-FeS and Δ57FeM-FeS is therefore a product of the superimposed effects of kinetic fractionation of Cu and incomplete equilibrium between metal and sulphide for both isotope systems during cooling. The correlations between Δ65CuM-FeS and Δ57FeM-FeS are defined by both magmatic and non-magmatic irons record fractional crystallisation and cooling of metallic melts on their respective parent bodies as sulphur and chalcophile elements become excluded from crystallised solid iron and concentrated in the residual melt. Fractional crystallisation processes at shallow levels have been implicated in the two main classes of models for the origin of the non-magmatic iron meteorites; at (i) shallow levels in impact melt models and (ii) at much deeper levels in models where the non-magmatic irons represent metallic melts that crystallised within the interior of a disrupted and re-aggregated parent body. The presence of non-magmatic irons with a range of Fe and Cu isotope compositions, some of which record near-complete isotopic equilibrium implies crystallisation at a range of cooling rates and depths, which is most consistent with cooling within the interior of a meteorite parent body. Our data therefore lend support to models where the non-magmatic irons are metallic melts that crystallised in the interior of re-aggregated, partially differentiated parent bodies.  相似文献   

7.
Isotopic fractionation of Cu in tektites   总被引:1,自引:0,他引:1  
Tektites are terrestrial natural glasses of up to a few centimeters in size that were produced during hypervelocity impacts on the Earth’s surface. It is well established that the chemical and isotopic composition of tektites is generally identical to that of the upper terrestrial continental crust. Tektites typically have very low water content, which has generally been explained by volatilization at high temperature; however, the exact mechanism is still debated. Because volatilization can fractionate isotopes, comparing the isotopic composition of volatile elements in tektites with those of their source rocks may help to understand the physical conditions during tektite formation.Interestingly, volatile chalcophile elements (e.g., Cd and Zn) seem to be the only elements for which isotopic fractionation is known so far in tektites. Here, we extend this study to Cu, another volatile chalcophile element. We have measured the Cu isotopic composition for 20 tektite samples from the four known different strewn fields. All of the tektites (except the Muong Nong-types) are enriched in the heavy isotopes of Cu (1.98 < δ65Cu < 6.99) in comparison to the terrestrial crust (δ65Cu ≈ 0) with no clear distinction between the different groups. The Muong Nong-type tektites and a Libyan Desert Glass sample are not fractionated (δ65Cu ≈ 0) in comparison to the terrestrial crust. To refine the Cu isotopic composition of the terrestrial crust, we also present data for three geological reference materials (δ65Cu ≈ 0).An increase of δ65Cu with decreasing Cu abundance probably reflects that the isotopic fractionation occurred by evaporation during heating. A simple Rayleigh distillation cannot explain the Cu isotopic data and we suggest that the isotopic fractionation is governed by a diffusion-limited regime. Copper is isotopically more fractionated than the more volatile element Zn (δ66/64Zn up to 2.49‰). This difference of behavior between Cu and Zn is predicted in a diffusion-limited regime, where the magnitude of the isotopic fractionation is regulated by the competition between the evaporative flux and the diffusive flux at the diffusion boundary layer. Due to the difference of ionic charge in silicates (Zn2+ vs. Cu+), Cu has a diffusion coefficient that is larger than that of Zn by at least two orders of magnitude. Therefore, the larger isotopic fractionation in Cu than in Zn in tektites is due to the significant difference in their respective chemical diffusivity.  相似文献   

8.
Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (αsoln-solid) are 0.99927 ± 0.00008 for Cu and 0.99948 ± 0.00004 for Zn or, alternately, the separation factors (Δsoln-solid) are −0.73 ± 0.08‰ for Cu and −0.52 ± 0.04‰ for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).  相似文献   

9.
The δ18O of ground water (−13.54 ± 0.05 ‰) and inorganically precipitated Holocene vein calcite (+14.56 ± 0.03 ‰) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 °C of 1.02849 ± 0.00013 (1000 ln αcalcite-water = 28.09 ± 0.13). Using the commonly accepted value of ∂(αcalcite-water)/∂T of −0.00020 K−1, this corresponds to a 1000 ln αcalcite-water value at 25 °C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 °C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a δ18O of water, from which the calcite precipitated, that is too negative by 1.5 ‰ using a temperature of 33.7 °C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order.Assuming the Devils Hole oxygen isotopic value of αcalcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a δ18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.  相似文献   

10.
Lithological, chemical, and stable isotope data are used to characterize lacustrine tufas dating back to pre-late Miocene and later unknown times, capping different surfaces of a Tertiary carbonate (Sinn el-Kedab) plateau in Dungul region in the currently hyperarid south-western Egypt. These deposits are composed mostly of calcium carbonate, some magnesium carbonate and clastic particles plus minor amounts of organic matter. They have a wide range of (Mg/Ca)molar ratios, from 0.03 to 0.3. The bulk-tufa carbonate has characteristic isotope compositions: (δ13Cmean = −2.49 ± 0.99‰; δ18Omean = −9.43 ± 1.40‰). The δ13C values are consistent with a small input from C4 vegetation or thinner soils in the recharge area of the tufa-depositing systems. The δ18O values are typical of fresh water carbonates. Covariation between δ13C and δ18O values probably is a reflection of climatic conditions such as aridity. The tufas studied are isotopically similar to the underlying diagenetic marine chalks, marls and limestones (δ13Cmean = −2.06 ± 0.84‰; δ18Omean = −10.06 ± 1.39‰). The similarity has been attributed to common meteoric water signatures. This raises large uncertainties in using tufas (Mg/Ca)molar, δ13C and δ18O records as proxies of paleoclimatic change and suggests that intrinsic compositional differences in material sources within the plateau may mask climatic changes in the records.  相似文献   

11.
The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (δ44/40Ca = −2.01 ± 0.15‰) but are different from hydrothermal and cold seep barite samples (δ44/40Ca = −4.13 to −2.72‰). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, Δ44/40Ca = −3.42 to −2.40‰. Temperature, saturation state, , and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by −9‰ at 0 °C and −8‰ at 25 °C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower δ44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals.  相似文献   

12.
Atmospheric carbon dioxide is widely studied using records of CO2 mixing ratio, δ13C and δ18O. However, the number and variability of sources and sinks prevents these alone from uniquely defining the budget. Carbon dioxide having a mass of 47 u (principally 13C18O16O) provides an additional constraint. In particular, the mass 47 anomaly (Δ47) can distinguish between CO2 produced by high temperature combustion processes vs. low temperature respiratory processes. Δ47 is defined as the abundance of mass 47 isotopologues in excess of that expected for a random distribution of isotopes, where random distribution means that the abundance of an isotopologue is the product of abundances of the isotopes it is composed of and is calculated based on the measured 13C and 18O values. In this study, we estimate the δ13C (vs. VPDB), δ18O (vs. VSMOW), δ47, and Δ47 values of CO2 from car exhaust and from human breath, by constructing ‘Keeling plots’ using samples that are mixtures of ambient air and CO2 from these sources. δ47 is defined as , where is the R47 value for a hypothetical CO2 whose δ13CVPDB = 0, δ18OVSMOW = 0, and Δ47 = 0. Ambient air in Pasadena, CA, where this study was conducted, varied in [CO2] from 383 to 404 μmol mol−1, in δ13C and δ18O from −9.2 to −10.2‰ and from 40.6 to 41.9‰, respectively, in δ47 from 32.5 to 33.9‰, and in Δ47 from 0.73 to 0.96‰. Air sampled at varying distances from a car exhaust pipe was enriched in a combustion source having a composition, as determined by a ‘Keeling plot’ intercept, of −24.4 ± 0.2‰ for δ13C (similar to the δ13C of local gasoline), δ18O of 29.9 ± 0.4‰, δ47 of 6.6 ± 0.6‰, and Δ47 of 0.41 ± 0.03‰. Both δ18O and Δ47 values of the car exhaust end-member are consistent with that expected for thermodynamic equilibrium at∼200 °C between CO2 and water generated by combustion of gasoline-air mixtures. Samples of CO2 from human breath were found to have δ13C and δ18O values broadly similar to those of car exhaust-air mixtures, −22.3 ± 0.2 and 34.3 ± 0.3‰, respectively, and δ47 of 13.4 ± 0.4‰. Δ47 in human breath was 0.76  ± 0.03‰, similar to that of ambient Pasadena air and higher than that of the car exhaust signature.  相似文献   

13.
Silicon isotopes in meteorites and planetary core formation   总被引:1,自引:0,他引:1  
The silicon (Si) isotope compositions of 42 meteorite and terrestrial samples have been determined using MC-ICPMS with the aim of resolving the current debate over their compositions and the implications for core formation. No systematic δ30Si differences are resolved between chondrites (δ30Si = −0.49 ± 0.15‰, 2σSD) and achondrites (δ30Si = −0.47 ± 0.11‰, 2σSD), although enstatite chondrites are consistently lighter (δ30Si = −0.63 ± 0.07‰, 2σSD) in comparison to other meteorite groups. The data reported here for meteorites and terrestrial samples display an average difference Δ30SiBSE−meteorite∗ = 0.15 ± 0.10‰, which is consistent within uncertainty with previous studies. No effect from sample heterogeneity, preparation, chemistry or mass spectrometry can be identified as responsible for the reported differences between current datasets. The heavier composition of the bulk silicate Earth is consistent with previous conclusions that Si partitioned into the metal phase during metal-silicate equilibration at the time of core formation. Fixing the temperature of core formation to the peridotite liquidus and using an appropriate metal silicate fractionation factor (ε ∼0.89), the Δ30SiBSE−meteorite∗ value from this study indicates that the Earth core contains at least 2.5 and possibly up to 16.8 wt% Si.  相似文献   

14.
This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric (Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic (Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine (Skeletonema costatum) and freshwater (Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria (Rhodobacter sp.), cyanobacteria (Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria (P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ65Cu (solid-solution) = −1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and Brantley S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta69, 5233-5246] and Balistrieri et al. [Balistrieri L. S., Borrok D. M., Wanty R. B. and Ridley W. I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorhous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim. Cosmochim. Acta72, 311-328] who reported heavy Cu isotope enrichment onto amorphous ferric oxyhydroxide and on metal hydroxide precipitates on the external membranes of Fe-oxidizing bacteria, respectively.Although measured isotopic fractionation does not correlate with the relative thermodynamic stability of surface complexes, it can be related to their structures as found with available EXAFS data. Indeed, strong, bidentate, inner-sphere complexes presented by tetrahedrally coordinated Cu on metal oxide surfaces are likely to result in enrichment of the heavy isotope on the surface compared to aqueous solution. The outer-sphere, monodentate complex, which is likely to form between Cu2+ and surface phosphoryl groups of bacteria in acidic solutions, has a higher number of neighbors and longer bond distances compared to inner-sphere bidentate complexes with carboxyl groups formed on bacterial and diatom surfaces in circumneutral solutions. As a result, in acidic solution, light isotopes become more enriched on bacterial surfaces (as opposed to the surrounding aqueous medium) than they do in neutral solution.Overall, the results of the present study demonstrate important isotopic fractionation of copper in both organic and inorganic systems and provide a firm basis for using Cu isotopes for tracing metal transport in earth-surface aquatic systems. It follows that both adsorption on oxides in a wide range of pH values and adsorption on bacteria in acidic solutions are capable of producing a significant (up to 2.5-3‰ (±0.1-0.15‰)) isotopic offset. At the same time, Cu interaction with common soil and aquatic bacteria, as well as marine and freshwater diatoms, at 4 < pH < 8 yields an isotopic shift of only ±0.2-0.3‰, which is not related to Cu concentration in solution, surface loading, the duration of the experiment, or the type of aquatic microorganisms.  相似文献   

15.
The chemical and isotopic composition of speleothem calcite and particularly that of stalagmites and flowstones is increasingly exploited as an archive of past environmental change in continental settings. Despite intensive research, including modelling and novel approaches, speleothem data remain difficult to interpret. A possible way foreword is to apply a multi-proxy approach including non-conventional isotope systems. For the first time, we here present a complete analytical dataset of magnesium isotopes (δ26Mg) from a monitored cave in NW Germany (Bunker Cave). The data set includes δ26Mg values of loess-derived soil above the cave (−1.0 ± 0.5‰), soil water (−1.2 ± 0.5‰), the carbonate hostrock (−3.8 ± 0.5‰), dripwater in the cave (−1.8 ± 0.2‰), speleothem low-Mg calcite (stalactites, stalagmites; −4.3 ± 0.6‰), cave loam (−0.6 ± 0.1‰) and runoff water (−1.8 ± 0.1‰) in the cave, respectively. Magnesium-isotope fractionation processes during weathering and interaction between soil cover, hostrock and solute-bearing soil water are non-trivial and depend on a number of variables including solution residence times, dissolution rates, adsorption effects and potential neo-formation of solids in the regolith and the carbonate aquifer. Apparent Mg-isotope fractionation between dripwater and speleothem low-Mg calcite is about 1000lnαMg-cc-Mg(aq) = −2.4‰. A similar Mg-isotope fractionation (1000lnαMg-cc-Mg(aq) ≈ −2.1‰) is obtained by abiogenic precipitation experiments carried out at aqueous Mg/Ca ratios and temperatures close to cave conditions. Accordingly, 26Mg discrimination during low-Mg calcite formation in caves is highly related to inorganic fractionation effects, which may comprise dehydration of Mg2+ prior to incorporation into calcite, surface entrapment of light isotopes and reaction kinetics. Relevance of kinetics is supported by a significant negative correlation of Mg-isotope fractionation with the precipitation rate for inorganic precipitation experiments.  相似文献   

16.
The application of stable Fe isotopes as a tracer of the biogeochemical Fe cycle necessitates a mechanistic knowledge of natural fractionation processes. We studied the equilibrium Fe isotope fractionation upon sorption of Fe(II) to aluminum oxide (γ-Al2O3), goethite (α-FeOOH), quartz (α-SiO2), and goethite-loaded quartz in batch experiments, and performed continuous-flow column experiments to study the extent of equilibrium and kinetic Fe isotope fractionation during reactive transport of Fe(II) through pure and goethite-loaded quartz sand. In addition, batch and column experiments were used to quantify the coupled electron transfer-atom exchange between dissolved Fe(II) (Fe(II)aq) and structural Fe(III) of goethite. All experiments were conducted under strictly anoxic conditions at pH 7.2 in 20 mM MOPS (3-(N-morpholino)-propanesulfonic acid) buffer and 23 °C. Iron isotope ratios were measured by high-resolution MC-ICP-MS. Isotope data were analyzed with isotope fractionation models. In batch systems, we observed significant Fe isotope fractionation upon equilibrium sorption of Fe(II) to all sorbents tested, except for aluminum oxide. The equilibrium enrichment factor, , of the Fe(II)sorb-Fe(II)aq couple was 0.85 ± 0.10‰ (±2σ) for quartz and 0.85 ± 0.08‰ (±2σ) for goethite-loaded quartz. In the goethite system, the sorption-induced isotope fractionation was superimposed by atom exchange, leading to a δ56/54Fe shift in solution towards the isotopic composition of the goethite. Without consideration of atom exchange, the equilibrium enrichment factor was 2.01 ± 0.08‰ (±2σ), but decreased to 0.73 ± 0.24‰ (±2σ) when atom exchange was taken into account. The amount of structural Fe in goethite that equilibrated isotopically with Fe(II)aq via atom exchange was equivalent to one atomic Fe layer of the mineral surface (∼3% of goethite-Fe). Column experiments showed significant Fe isotope fractionation with δ56/54Fe(II)aq spanning a range of 1.00‰ and 1.65‰ for pure and goethite-loaded quartz, respectively. Reactive transport of Fe(II) under non-steady state conditions led to complex, non-monotonous Fe isotope trends that could be explained by a combination of kinetic and equilibrium isotope enrichment factors. Our results demonstrate that in abiotic anoxic systems with near-neutral pH, sorption of Fe(II) to mineral surfaces, even to supposedly non-reactive minerals such as quartz, induces significant Fe isotope fractionation. Therefore we expect Fe isotope signatures in natural systems with changing concentration gradients of Fe(II)aq to be affected by sorption.  相似文献   

17.
The oxygen-isotope compositions (obtained by laser fluorination) of hand-picked separates of isolated forsterite, isolated olivine and chondrules from the Tagish Lake carbonaceous chondrite describe a line (δ17O = 0.95 * δ18O − 3.24; R2 = 0.99) similar to the trend known for chondrules from other carbonaceous chondrites. The isolated forsterite grains (Fo99.6-99.8; δ18O = −7.2‰ to −5.5‰; δ17O = −9.6‰ to −8.2‰) are more 16O-rich than the isolated olivine grains (Fo39.6-86.8; δ18O = 3.1‰ to 5.1‰; δ17O = −0.3‰ to 2.2‰), and have chemical and isotopic characteristics typical of refractory forsterite. Chondrules contain olivine (Fo97.2-99.8) with oxygen-isotope compositions (δ18O = −5.2‰ to 5.9‰; δ17O = −8.1‰ to 1.2‰) that overlap those of isolated forsterite and isolated olivine. An inverse relationship exists between the Δ17O values and Fo contents of Tagish Lake isolated forsterite and chondrules; the chondrules likely underwent greater exchange with 16O-poor nebular gases than the forsterite. The oxygen-isotope compositions of the isolated olivine grains describe a trend with a steeper slope (1.1 ± 0.1, R2 = 0.94) than the carbonaceous chondrite anhydrous mineral line (CCAMslope = 0.95). The isolated olivine may have crystallized from an evolving melt that exchanged with 16O-poor gases of somewhat different composition than those which affected the chondrules and isolated forsterite. The primordial components of the Tagish Lake meteorite formed under conditions similar to other carbonaceous chondrite meteorite groups, especially CMs. Its alteration history has its closest affinities to CI carbonaceous chondrites.  相似文献   

18.
Boron isotope compositions (δ11B) and B concentrations of rains and snows were studied in order to characterize the sources and fractionation processes during the boron atmospheric cycle. The 11B/10B ratios of instantaneous and cumulative rains and snows from coastal and continental sites show a large range of variations, from −1.5 ± 0.4 to +26.0 ± 0.5‰ and from −10.2 ± 0.5 to +34.4 ± 0.2‰, respectively. Boron concentrations in rains and snows vary between 0.1 and 3.0 ppb. All these precipitation samples are enriched in 10B compared to the ocean value (δ11B = +39.5‰). An empirical rain-vapour isotopic fractionation of +31‰ is estimated from three largely independent methods. The deduced seawater-vapour fractionation is +25.5‰, with the difference between the rain and seawater fractionations principally reflecting changes in the speciation of boron in the liquid with ∼100% B(OH)3 present in precipitations. A boron meteoric water line, δD = 2.6δ11B − 133, is proposed which describes the relationship between δD and δ11B in many, but not all, precipitations. Boron isotopic compositions of precipitations can be related to that of the seawater reservoir by the seawater-vapour fractionation and one or more of (1) the rain-vapour isotopic fractionation, (2) evolution of the δ11B value of the atmospheric vapour reservoir via condensation-precipitation processes (Rayleigh distillation process), (3) any contribution of vapour from the evaporation of seawater aerosols, and (4) any contribution from particulate matter, principally sea salt, continental dust and, perhaps more regionally, anthropogenic sources (burning of biomass and fossil fuels). From the δ11B values of continental precipitations, a sea salt contribution cannot be more than a percent or so of the total B in precipitation over these areas.  相似文献   

19.
Tissue N contents and δ15N signatures in 175 epilithic mosses were investigated from urban to rural sites in Guiyang (SW China) to determine atmospheric N deposition. Moss N contents (0.85–2.97%) showed a significant decrease from the urban area (mean = 2.24 ± 0.32%, 0–5 km) to the rural area (mean = 1.27 ± 0.13%, 20–25 km), indicating that the level of N deposition decreased away from the urban environment, while slightly higher N contents re-occurred at sites beyond 30 km, suggesting higher N deposition in more remote rural areas. Moss δ15N ranged from −12.50‰ to −1.39‰ and showed a clear bimodal distribution (−12‰ to −6‰ and −5‰ to −2‰), suggesting that there are two main sources for N deposition in the Guiyang area. More negative δ15N (mean = −8.87 ± 1.65‰) of urban mosses mainly indicated NH3 released from excretory wastes and sewage, while the less negative δ15N (from −3.83 ± 0.82‰ to −2.48 ± 0.95‰) of rural mosses were mainly influenced by agricultural NH3. With more negative values in the urban area than in the rural area, the pattern of moss δ15N variation in Guiyang was found to be opposite to cities where N deposition is dominated by NOx–N. Therefore, NHx–N is the dominant N form deposited in the Guiyang area, which is supported by higher NHx–N than NOx–N in local atmospheric deposition. From the data showing that moss is responding to NHx–N/NOx–N in deposition it can be further demonstrated that the variation of moss δ15N from the Guiyang urban to rural area was more likely controlled by the ratio of urban-NHx/agriculture-NHx than the ratio of NHx–N/NOx–N. The results of this study have extended knowledge of atmospheric N sources in city areas, showing that urban sewage discharge could be important in cities co-generic to Guiyang.  相似文献   

20.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号