首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radioactive fission product, 137Cs, has been observed to mobilize from bottom sediments of two South Carolina reservoirs during summer thermal stratification and hypolimnetic anoxia. Mobilization is attributed to ion-exchange displacement of 137Cs from sediments by cations such as NH+4, Fe+2 and Mn+2 released under anaerobic conditions.Three types of 137Cs binding sites to sediment clay minerals are identified: 1) surface and planar sites from which 137Cs is generally exchangeable by all cations studied (Na+, NH+4, H+, Cs+, Ca+2, Mg+2, Fe+2, and Mn+2); 2) wedge sites where 137Cs exchange is sterically limited to cations of similar size and charge (NH+4, Cs+, K+, and perhaps H3O+); 3) interlayer sites from which 137Cs is not readily exchanged. More than 15 years after final 137Cs inputs, the reservoir sediments we studied showed the following percentage distribution of sites: 2 to 9% surface sites, 6 to 13% wedge sites, and 78 to 85% interlayer sites. In contrast, lake and stream sediments near Oak Ridge, Tennessee receiving 137Cs inputs more than 20 years earlier had greater than 99% of their 137Cs associated with non-exchangeable interlayer sites. The difference is attributed to the paucity in the South Carolina sediments of weathered micaceous clay minerals with their abundant interlayer sites. Such interlayer deficient clays are dominant in the Atlantic and Gulf coastal plains of the United States and elsewhere. This suggests that 137Cs will be physically and chemically more mobile in such areas as well as more biologically available. Mobility will be enhanced in regimes where cation inputs favoring 137Cs exchange occur. Subsurface waste disposal sites where anaerobic conditions develop with NH+4 production and Fe+2 and Mn+2 release might be such a regime.  相似文献   

2.
3.
Diffusion experiments with HTO, 36Cl, Br, I, 22Na+, 85Sr2+ and 134Cs+ at trace concentrations in a single sample of Opalinus Clay are modeled with PHREEQC’s multicomponent diffusion module. The model is used first in a classical approach to derive accessible porosities, geometrical factors (the ratio of pore tortuosity and constrictivity) and sorption behavior of the individual tracers assuming that the clay is homogeneous. The accessible porosity for neutral species and cations is obtained from HTO, the anion exclusion volume from 36Cl and Br, and the cation exchange capacity from 22Na+. The homogeneous model works well for tritium, the anions and 22Na+. However, the 85Sr2+ and 134Cs+ experiments show an early arrival of the tracer and a front-form that suggest a dual porosity structure. A model with 10% dead-end pores, containing 19% of the total exchange capacity, can satisfactorily calculate all the experimental data. The Cs+ diffusion model builds on a 3-site exchange model, constructed from batch sorption data. The excellent agreement of modeled and measured data contradicts earlier reports that the exchange capacity for Cs+ would be smaller in diffusion than in batch experiments.The geometrical factors for the anions are 1.5 times larger than for HTO, and for the cations 2-4 times smaller than for HTO. The different behavior is explained by a tripartite division of the porespace in free porewater, diffuse double layer (DDL) water, and interlayer water in montmorillonite. Differences between estimated and observed geometrical factors for cations are attributed to increased ion-pairing of the divalent cations in DDL water as a result of the low relative dielectric permittivity. Interlayer and/or surface diffusion contributes significantly to the diffusive flux of Cs+ but is negligible for the other solutes. The geometrical factors for anions are higher than estimated, because pore constrictions with overlapping double layers force the anions to take longer routes than HTO and the cations. Small differences among the anions can also be attributed to different ion-pairing in DDL water.  相似文献   

4.
The effect of temperature on the sorption of cations onto a dioctahedral smectite was investigated by running batch experiments at 25, 40, 80 and 150°C. We measured the distribution coefficient (Kd) of Cs+, Ni2+ and 14 lanthanides (Ln3+) between solutions and the montmorillonite fraction of the MX80 bentonite at various pH and ionic strengths. Up to 80°C we used a conventional experimental protocol derived from Coppin et al. (2002). At 150°C, the experiments were conducted in a PTFE reactor equipped with an internal filter allowing the sampling of clear aliquots of solution.The results show a weak but measurable influence of the temperature on the elements sorption. Kd’s for Ni2+ and Ln3+ increase by a factor 2 to 5 whereas temperature raises from 25 to 150°C. This effect seems higher at high ionic strength. The estimated apparent endothermic sorption enthalpies are 33 ± 10 kJ.mol−1 and 39 ± 15 kJ.mol−1 for Ni2+ and Eu3+, respectively. On the other hand, the temperature effect on Cs+ sorption is only evidenced at low ionic strength and under neutral conditions where the Kd decreases by a factor 3 between 25 and 150°C. Apparent exothermic sorption enthalpy for Cs+ on the montmorillonite is −19 ± 5 kJ.mol−1.Experiments conducted at the four temperatures with the coexistence of all of the cations in the reacting solution (100 ppb of each element in the starting solution) or only one of them, produced similar values of Kd. This suggests the absence of competition between the sorbed cations, and consequently a low degree of saturation of the available sites. A fractionation of the lanthanides spectrum is also observed at high pH and high ionic strength whatever the temperature.The conclusion of this study is that the temperature dependence on sorption reflects, as the fractionation of REE or the pH and ionic strength effects, the chemical process which controls the overall reaction. In the case of an exchange dominated reaction (low pH and low ionic strength), the temperature effect is negligible. In the case of surface complexation (high pH and high ionic strength), the observed increase of Kd with temperature reflects either an increase of the sorption equilibrium constant with temperature or an endothermic property for reactions describing the montmorillonite surface chemistry.  相似文献   

5.
Sorption of Cs to micaceous subsurface sediments from the Hanford site, USA   总被引:1,自引:0,他引:1  
The sorption of Cs+ was investigated over a large concentration range (10−9−10−2 mol/L) on subsurface sediments from a United States nuclear materials site (Hanford) where high-level nuclear wastes (HLW) have been accidentally released to the vadose zone. The sediment sorbs large amounts of radiocesium, but expedited migration has been observed when HLW (a NaNO3 brine) is the carrier. Cs+ sorption was measured on homoionic sediments (Na+, K+, Ca2+) with electrolyte concentrations ranging from 0.01 to 1.0 mol/L. In Na+ electrolyte, concentrations were extended to near saturation with NaNO3(s) (7.0 mol/L). The sediment contained nonexpansible (biotite, muscovite) and expansible (vermiculite, smectite) phyllosilicates. The sorption data were interpreted according to the frayed edge-planar site conceptual model. A four-parameter, two-site (high- and low-affinity) numeric ion exchange model was effective in describing the sorption data. The high-affinity sites were ascribed to wedge zones on the micas where particle edges have partially expanded due to the removal of interlayer cations during weathering, and the low-affinity ones to planar sites on the expansible clays. The electrolyte cations competed with Cs+ for both high- and low-affinity sites according to the trend K+ >> Na+ ≥ Ca2+. At high salt concentration, Cs+ adsorption occurred only on high-affinity sites. Na+ was an effective competitor for the high-affinity sites at high salt concentrations. In select experiments, silver-thiourea (AgTU) was used as a blocking agent to further isolate and characterize the high-affinity sites, but the method was found to be problematic. Mica particles were handpicked from the sediment, contacted with Cs+(aq), and analyzed by electron microprobe to identify phases and features important to Cs+ sorption. The microprobe study implied that biotite was the primary contributor of high-affinity sites because of its weathered periphery. The poly-phase sediment exhibited close similarity in ion selectivity to illite, which has been well studied, although its proportion of high-affinity sites relative to the cation exchange capacity (CEC) was lower than that of illite. Important insights are provided on how Na+ in HLW and indigenous K+ displaced from the sediments may act to expedite the migration of strongly sorbing Cs+ in subsurface environments.  相似文献   

6.
Radiocaesium (137Cs) dispersion and Cs+ fixation were studied in the sediments collected from the lagoon systems of “Ria de Aveiro”. The Cs+ sorption was tested for the fine mica grains and for the < 2 μm clay fractions extracted from silty clays. The Cs+ exchange is found strongly onto mica-rich fractions than smectite-rich fractions. The distribution coefficient increases if the silty material is constituted by rich-mica clay fractions or if the non-clay minerals are removed from the silty-clay material. The samples studied behave as multisite ion exchange, where Cs+ engages in ion-exchange reactions with hydrated cations on planar sites on expansible layer silicates. Higher concentrations of the 137Cs were found associated with mica-rich silty clays. The 137Cs ranges from 3.2 to 3.9 Bq kg− 1 in the < 38 μm fractions and from 2.9 to 3.3 Bq kg− 1 in the < 64 μm fractions.  相似文献   

7.
The rate of silica removal from two montmorillonites (Chambers and Polkville) has been measured as a function of time, temperature, solution composition, and exchange ion on the clay. Silica removal rate increased with temperature from 200 to 350°C, decreased with time, and could be approximated initially by a parabolic rate law. Solution composition influenced silica removal rate by determining the exchange population of the clay; silica removal is most rapid when K-exchange ions are present. Thus increasing the concentration of K+ accelerated silica removal, whereas increasing the concentration of Na+, Ca2+, and Mg2+ inhibited silica removal. Activation energies for silica removal range from 5 to 10 kcal/mol. The largest values are associated with the largest concentrations of inhibitor ions in solution. Activation energies of this magnitude suggest that the rate-limiting step for silica removal is transport through a hydrated, expanded interlayer space. Application of experimental results to diagenesis in moderately to deeply buried sediments suggests that K+ uptake by montmorillonite may precede and accelerate illite formation.  相似文献   

8.
In environmental studies, it is necessary to be able to predict the behaviour of contaminants in more or less complex physico-chemical contexts. The improvement of this prediction partly depends on establishing thermodynamic models that can describe the behaviour of these contaminants and, in particular, the sorption reactions on mineral surfaces. In this way, based on the mass action law, it is possible to use surface complexation models and ion exchange models. Therefore, the aim of this study is (i) to develop an ion-exchange model able to describe the sorption of transition metal onto pure clay minerals and (ii) to test the ability of this approach to predict the sorption of these elements onto natural materials containing clay minerals (i.e. soils/sediments) under various chemical conditions. This study is focused on the behaviour of Zn(II) in the presence of clayey sediments. Considering that clay minerals are cation exchangers containing multiple sorption sites, it is possible to interpret the sorption of Zn(II), as well as competitor cations, by ion-exchange equilibria with the clay minerals. This approach is applied with success to interpret the experimental data obtained previously in the Zn(II)–H+–Na+–montmorillonite system. The authors’ research team has already studied the behaviour of Na+, K+, Ca2+ and Mg2+ versus pH in terms of ion exchange onto pure montmorillonite, leading to the development of a thermodynamic database including the exchange site concentrations associated with montmorillonite and the selectivity coefficients of Na+, K+, Ca2+, Mg2+, and Zn2+ versus H+.  相似文献   

9.
In order to determine whether Li+ cations penetrate into the octahedral layers of montmorillonites upon mild heating (Hofmann-Klemen effect) 57Fe Mössbauer spectra of Na+ and Li+ exchanged montmorillonite were obtained before and after treatment at 220 ° C. The 57Fe nucleus was used as a remote probe to detect electronic perturbations which would occur if a Li cation was to move into the octahedral layer from the interlayer after heating. The ambient Mössbauer spectra showed that a high charge density interlayer cation such as Li+ is effective in reducing the phonon energy of VIFe2+. In addition the EFG at octahedral sites can be significantly modified by interlayer cations as evidenced by the larger quadrupole splitting value measured for the Li+-exchanged sample with respect to the Na+-sample. Interlayer collapse and migration of exchange cations into the montmorillonite lattice after heating to 220 ° C resulted in the oxidation of the VIFe2+ and a decrease in site distortion for IVFe3+. Similar spectral parameters for the Fe3+ resonances of both Na+ — and Li+-heated samples suggested the interlayer cations do not penetrate as far as the octahedral layers. In order to utilize the enhanced sensitivity of VIFe2+ Δ values to changes in EFG the Fe3+ in the heated montmorillonites was reduced to Fe2+ with hydrazine. Similar spectral parameters for both the Na+ — and Li+-exchanged montmorillonite were observed giving further evidence that Li cations do not migrate into vacant octahedral sites.  相似文献   

10.
The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100–350° for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100°. Exchange rates were 3–5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure.Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange.At 350° kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor.  相似文献   

11.
The through-diffusion of HTO, 22Na+ and 36Cl in kaolinite, homo-ionic Na-illite and homo-ionic Na-montmorillonite was measured at a high degree of compaction as a function of the salt concentration in the ‘external solution’, i.e. in the solution in contact with the clay sample. The clays were chosen for this study because of their differences in the number and nature of ion exchange sites leading to different proportions of interlayer-, inter-particle and free pore water. It was found that the diffusive mass transfer of Na+ in Na-montmorillonite and Na-illite increased with decreasing external salt concentration, while the opposite trend was observed for the diffusion of Cl. These trends are more pronounced in the case of Na-montmorillonite than in Na-illite, while almost no salt effect was observed for kaolinite. Similarly no salt effect was observed for the diffusion of HTO through all of the clays tested. These observations are in agreement with a conceptual model where it is assumed that cations diffuse preferentially in the interlayer or diffuse double-layer porosity, while anions are almost completely excluded from these regions. In the case of Na+ diffusion, the salt effects can be explained by an influence on the concentration gradient of diffusing cations, while in the case of Cl the external salt concentration has an effect on the accessible porosity. Effective diffusion coefficients of Cl fulfil the same relationship to porosity as those of the uncharged HTO, when using accessible porosities for such a comparison. Furthermore it is shown that pore diffusion coefficients for the three tracers are fairly well correlated with the respective diffusion coefficients in bulk water, if the effective diffusion coefficients for Na+ are derived from calculated tracer concentration gradients in the interlayer or diffuse double-layer porosities.  相似文献   

12.
Studies of seawater-sediment and seawater-clay mineral exchange equilibria demonstrate that rinsing procedures employed in many previous studies have grossly shifted the exchange equilibria away from the true seawater conditions. Exchange complements have been determined here by measurement of compositional changes in seawater that result from reaction with clays, thereby avoiding rinsing. These data show that exchangeable Na+ is normally greater than or equal to exchangeable Mg2+ on clays and sediments in exchange equilibrium with seawater.On introduction to seawater, fluvial clays are shown to give up their exchangeable Ca2+ for Na+, a process of importance in the geochemical budget of Na+.  相似文献   

13.
The distribution and dynamics of water molecules and monovalent cations (Li+, Na+, K+, Cs+, and H3O+) on muscovite surfaces were investigated by molecular dynamics (MD) simulations. The direct comparison of calculated X-ray reflectivity profiles and electron density profiles with experiments revealed the precise structure at the aqueous monovalent electrolyte solutions/muscovite interface. To explain the experimentally observed electron density profiles for the CsCl solution-muscovite interface, the co-adsorption of Cs+ and Cl ion pairs would be necessary. Two types of inner-sphere complexes and one type of outer-sphere complex were observed for hydrated Li+ ions near the muscovite surface. For Na+, K+, Cs+, and H3O+ ions, the inner-sphere complexes were stable on the muscovite surface. The density oscillation of water molecules was observed to approximately 1.5 nm from the muscovite surface. The number of peaks and the locations for the density of water oxygen atoms were almost similar among the water molecules coordinated to Li+, Na+, K+, and H3O+ ions adsorbed on the muscovite surfaces. The water molecules around Cs+ ions that were adsorbed to muscovite surfaces seemed to avoid coordinating with Cs+ ions on the surface, and the density of water oxygen near the muscovite surface decreased relative to that in a bulk state. There was no significant difference in self-diffusion, viscosity, retention time, and reorientation time of water molecules among different cations adsorbed to muscovite surfaces. These translational and rotational motions of water molecules located at less than 1 nm from the muscovite surfaces were slower than those in a bulk state. A significant difference was observed for the exchange times of water molecules around monovalent cations. The exchange time of water molecules was long around Li+ ions and decreased with an increase in the ionic radius.  相似文献   

14.
Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.  相似文献   

15.
Microscopic and spectroscopic studies were conducted to assess mineral transformation processes in aqueous suspensions of illite (Il), vermiculite (Vm) and montmorillonite (Mt) that were subjected to weathering in a simulated high-level radioactive tank waste leachate (0.05 m AlT, 2 m Na+, 1 m NO3, pH ∼14, Cs+ and Sr2+ present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10−5 to 10 mol kg. Incongruent clay dissolution resulted in an accumulation of secondary aluminosilicate precipitates identified as nitrate-sodalite, nitrate-cancrinite and zeolite X, by molecular spectroscopy and electron microscopy (XRD, IR, NMR, SEM-EDS and TEM-EDS). Contaminant fate was dependent on competing uptake to parent clays and weathering products. TEM-EDS results indicated that high Il affinity for Cs was due to adsorption at frayed edge sites. The Il system also comprised Sr-rich aluminous precipitates after 369 d reaction time. In Mt systems, Cs and Sr were co-precipitated into increasingly recalcitrant spheroidal precipitates over the course of the experiment, whereas contaminant association with montmorillonite platelets was less prevalent. In contrast, Cs and Sr were found in association with weathered Vm particles despite the formation of spheroidal aluminosilicate precipitates that were comparable to those formed from Mt dissolution.  相似文献   

16.
Diffusion and sorption behaviors of cationic Cs+, anionic I and neutral HTO in samples of the Wakkanai Formation from the Horonobe underground research laboratory (URL), Japan, were investigated as a function of ionic strength (I) of synthetic groundwater by through-diffusion and batch sorption experiments and mechanistic modeling. The effective diffusivities (De) measured by through-diffusion experiments showed cation excess and anion exclusion effects, which were strongly dependent on I; De for Cs+ decreased as I increased, De for I showed the opposite dependency and De for HTO showed no dependence. The sorption of Cs+ measured by through-diffusion and batch sorption experiments were described by Freundlich isotherms with consistent parameters and decreased with I as a result of competitive ion exchange.Diffusion and sorption behaviors were interpreted by assuming the clay components of illite and smectite control diffusion and sorption mechanisms. The component additive (CA) sorption model, which includes illite and smectite contents and their ion exchange constants, provided a reasonable account of the Cs+ sorption trends measured as functions of I and Cs concentration. The diffusion model was developed by coupling the electrical double layer (EDL) model, describing the change of ionic concentrations (cation excess and anion deficit) and viscoelectric effects caused by electrostatic interaction at negatively charged clay surfaces, and a simplified pore model assuming one type of pore shape and includes their size distribution. When averaging the electrostatic effects by using the pore surface area distribution, the model could predict the cation excess and anion exclusion effects, and its dependence on I reasonably well. This result implies the nanoscale pores dominating the pore surface area can strongly impact on ionic diffusion in argillaceous rocks. The clay-based modeling approach described here provides a useful tool to predict ionic diffusion and sorption in argillaceous rocks.  相似文献   

17.
18.
The effects of heating and cation exchange on the solid acidity of montmorillonite were investigated using n-butylamine titration in non-aqueous system and diffuse reflectance Fourier transform infrared spectroscopy. The number of total, Brønsted, and Lewis acid sites showed the same modulation tendency with increasing heating temperature, reaching a maximum at 120 °C and subsequently decreasing until it reaches a minimum at 600 °C. The Lewis acid sites result from unsaturated Al3+ cations, and their number increased with the heating temperature due to the dehydration and dehydroxylation of montmorillonite. The generation and evolution of Brønsted acidity were mainly related to interlayer-polarized water molecules. Water adsorbed on the unsaturated Al3+ ions also acted as a Brønsted acid. The acid strength of the Brønsted acid sites was dependent on the polarization ability of the exchangeable cation, the amount of interlayer water, and the degree of dissociation of the interlayer water coordinated to exchangeable cations. All cation-exchanged montmorillonites exhibited different numbers of acid sites and various distributions of acid strength. Brønsted acidity was predominant in Al3+-exchanged montmorillonite, whereas the Na+- and K+-exchanged montmorillonites showed predominantly Lewis acidity. Moreover, Mg2+- and Li+-exchanged montmorillonites exhibited approximately equal numbers of Brønsted and Lewis acid sites. The Brønsted acidity of cation-exchanged montmorillonite was positively correlated with the charge-to-radius ratios of the cations, whereas the Lewis acidity was highly dependent on the electronegativity of the cations. The acid strengths of Al3+- and Mg2+-exchanged montmorillonites were remarkably higher than those of monovalent cation-exchanged montmorillonites, showing the highest acid strength (H 0 ≤ ?3.0). Li+- and Na+-exchanged montmorillonites exhibited an acid strength distribution of ?3.0 < H 0 ≤ 4.8, with the acid strength ranging primarily from 1.5 to 3.3 in Li+-exchanged montmorillonite, whereas only weaker-strength acid sites (1.5 < H 0 ≤ 4.8) were present in K+-exchanged montmorillonite. The results of the catalysis experiments indicated that montmorillonite promoted the thermal decomposition of the model organic. The catalytic activity showed a positive correlation with the solid acidity of montmorillonite and was affected by cation exchange, which occurs naturally in geological processes.  相似文献   

19.
The sorption of Eu(III) onto kaolinite and montmorillonite was investigated up to 150 °C. The clays were purified samples, saturated with Na in the case of montmorillonite. Batch experiments were conducted at 25, 40, 80 and 150 °C in 0.5 M NaClO4 solutions to measure the distribution coefficients (Kd) of Eu as a trace element (<10−6 mol/L) between the solution and kaolinite. For the Na-montmorillonite, we used Kd results from a previous study [Tertre, E., Berger, G., Castet, S., Loubet, M., Giffaut, E., 2005. Experimental study of adsorption of Ni2+, Cs+ and Ln3+ onto Na-montmorillonite up to 150 °C. Geochim. Cosmochim. Acta69, 4937-4948] obtained under exactly the same conditions. The number and nature of the Eu species sorbed onto both clay minerals were investigated by time resolved laser fluorescence spectroscopy (TRLFS) in specific experiments in the same temperature range. We identified a unique inner-sphere complex linked to the aluminol sites in both clays, assumed to be AlOEu2+ at the edge of the particles, and a second exchangeable outer-sphere complex for montmorillonite, probably in an interlayer position. The Kd values were used to adjust the parameters of a surface complexation model (DLM: diffuse layer model) from 25 to 150 °C. The number of Eu complexes and the stoichiometry of reactions were constrained by TRLFS. The acidity constants of the amphoteric aluminol sites were taken from another study [Tertre, E., Castet, S., Berger, G., Loubet, M., Giffaut, E. Acid/base surface chemistry of kaolinite and Na-montmorillonite at 25 and 60 °C: experimental study and modelling. Geochim. Cosmochim. Acta, in press], which integrates the influence of the negative structural charge of clays on the acid/base properties of edge sites as a function of temperature and ionic strength. The results of the modelling show that the observed shift of the sorption edge towards low pH with increasing temperature results solely from the contribution of the AlOEu2+ edge complexes. Finally, we successfully tested the performance of our model by confronting the predictions with experimental Kd data. We used our own data obtained at lower ionic strength (previous study) or higher suspension density and higher starting concentration (TRLFS runs, this study), as well as published data from other experimental studies [Bradbury, M.H., Baeyens, B., 2002. Sorption of Eu on Na and Ca-montmorillonite: experimental investigations and modeling with cation exchange and surface complexation. Geochim. Cosmochim. Acta66, 2325-2334; Kowal-Fouchard, A., 2002. Etude des mécanismes de rétention des ions U(IV) et Eu(III) sur les argiles: influence des silicates. Ph.D. Thesis, Université Paris Sud, France, 330p].  相似文献   

20.
The effect of caustic NaNO3 solutions on the sorption of 137Cs to a Hanford site micaceous subsurface sediment was investigated as a function of base exposure time (up to 168 d), temperature (10°C or 50°C), and NaOH concentration (0.1 mol/L to 3 mol/L). At 10°C and 0.1 M NaOH, the slow evolution of [Al]aq was in stark contrast to the rapid increase and subsequent loss of [Al]aq observed at 50°C (regardless of base concentration). Exposure to 0.1 M NaOH at 10°C for up to 168 d exhibited little if any measurable effect on sediment mineralogy, Cs+ sorption, or Cs+ selectivity; sorption was well described with a two-site ion exchange model modified to include enthalpy effects. At 50°C, dissolution of phyllosilicate minerals increased with [OH]. A zeolite (tetranatrolite; Na2Al2Si3O10·2H2O) precipitated in 0.1 M NaOH after about 7 days, while an unnamed mineral phase (Na14Al12Si13O51·6H2O) precipitated after 4 and 2 days of exposure to 1 M and 3 M NaOH solutions, respectively. Short-term (16 h) Cs+ sorption isotherms (10−9-10−2 mol/L) were measured on sediment after exposure to 0.1 M NaOH for 56, 112, and 168 days at 50°C. There was a trend toward slightly lower conditional equilibrium exchange constants (Δlog NaCsKc ∼ 0.25) over the entire range of surface coverage, and a slight loss of high affinity sites (15%) after 168 days of pretreatment with 0.1 M base solution. Cs+ sorption to sediment over longer times was also measured at 50°C in the presence of NaOH (0.1 M, 1 M, and 3 M NaOH) at Cs+ concentrations selected to probe a range of adsorption densities. Model simulations of Cs+ sorption to the sediment in the presence of 0.1 M NaOH for 112 days slightly under-predicted sorption at the lower Cs+ adsorption densities. At the higher adsorption densities, model simulations under-predicted sorption by 57%. This under-prediction was surmised to be the result of tetranatrolite precipitation, and subsequent slow Na → Cs exchange. At higher OH concentrations, Cs+ sorption in the presence of base for 112 days was unexpectedly equal to, or greater than that expected for pristine sediment. The precipitation of secondary phases, coupled with the fairly unique mica distribution and quantity across all size-fractions in the Hanford sediment, appears to mitigate the impact of base dissolution on Cs+ sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号