首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Angrite Sahara 99555 (hereafter SAH), precisely dated by Baker et al. (Baker J., Bizzarro M., Wittig N., Connelly J. and Haack H. (2005) Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature436, 1127-1131), has been proposed as a new reference point for the early Solar System timescale and for calculation of the revised minimum age of our Solar System. The Pb-Pb age of SAH of 4566.18 ± 0.14 Ma, reported by Baker et al., differs from the Pb-Pb age of D’Orbigny, another basaltic angrite, of 4564.42 ± 0.12 Ma (Amelin Y. (2008) U-Pb ages of angrites. Geochim. Cosmochim. Acta72, 221-232), despite the fact that the relative 53Mn-53Cr and 182Hf-182W ages of these meteorites are identical. Here I report U-Pb data for 21 whole rock and pyroxene fractions from SAH, analyzed using the same approach as D’Orbigny (Amelin, 2008). These fractions contain between 1.3 and 8.9 pg of total common Pb, slightly more than analytical blank. Measured 206Pb/204Pb ratios are between 625 and 2817 for D’Orbigny, blank-corrected 206Pb/204Pb ratios are between 1173 and 6675. Eight acid-washed whole rock fractions yielded an isochron age of 4564.86 ± 0.38 Ma, MSWD = 1.5. Data for pyroxene fractions plot mostly above the whole rock isochron, and do not form a linear array in 207Pb/206Pb vs. 204Pb/206Pb isochron coordinates. The 207Pb/206Pb model dates of the pyroxene fractions vary from 4563.8 ± 0.3 to 4567.1 ± 0.5 Ma. The difference between whole rock and pyroxene U-Pb systematics may be a result of re-distribution of radiogenic Pb at a mineral grain scale several million years after crystallization. Complexities of Sm-Nd, Lu-Hf, and possibly 26Al-26Mg mineral systematics of SAH, described previously, may be related to the same process that caused the re-distribution of radiogenic Pb. Disturbance of isotopic chronometers renders SAH an imperfect anchor for the early Solar System timescale. The problems with age determination revealed by the studies of SAH call for greater attention in Pb-isotopic dating of angrites and other achondrites.  相似文献   

2.
As the internal precision of radiometric dates approaches the 0.1% level, systematic biases between different methods have become apparent. Many workers have suggested that calibrating other decay constants against the U-Pb system is a viable solution to this problem. We test this assertion empirically and quantitatively by analyzing U-Pb systematics of zircon and xenotime on the single- to sub-grain scale by high-precision ID-TIMS geochronology on 11 rock samples ranging from 0.1 to 3.3 Ga. Large statistically equivalent datasets give 207Pb/206Pb dates that are systematically older than 206Pb/238U dates by ∼0.15% in Precambrian samples to as much as ∼3.3% in Mesozoic samples, suggesting inaccuracies in the mean values of one or both of the U decay constants. These data are used to calculate a ratio of the U decay constants that is lower than the accepted ratio by 0.09% and is a factor of 5 more precise. Four of the samples are used to augment existing data from which the U-Pb and 40Ar/39Ar systems can be compared. The new data support most previous observations that U-Pb and 207Pb/206Pb dates are older than 40Ar/39Ar by ?1%, though scatter in the amount of offset in samples as a function of age suggests that the bias is not entirely systematic, and may incorporate interlaboratory biases and/or geologic complexities. Studies that calibrate other decay schemes against U-Pb should include an assessment of inaccuracies in the U decay constants in addition to other systematic biases and non-systematic geologic uncertainty.  相似文献   

3.
U-Th-Pb systematics study of Allende inclusions showed that U, Th and Sr concentrations in Ca, Al (pyroxene)-rich chondrules and white and pinkish-white aggregate separates of Allende are five to ten times higher than those of the matrix, whereas Mg (olivine)-rich chondrules have U and Th concentrations about twice as high as the matrix. Th concentrations are extremely high in white aggregates and in pinkish-white (spinel-rich) aggregates while U and Sr concentrations in white aggregates are more than twice as high as those in pinkish-white aggregates. Large enrichment of these refractory elements in the white aggregates indicates that they contain high-temperature condensates from the solar nebula. The Pb concentrations in the inclusions are less than half of those in the whole rock and matrix, indicating that the matrix is a lower-temperature condensate. The isotopic composition of lead in the matrix is less radiogenic than that of the whole meteorite, whereas lead in Ca- and Al-rich chondrules and aggregates is extremely radiogenic. The 206Pb/204Pb ratio reaches as high as 55.9 in a white aggregate separate. The lead of Mg-rich chondrules is moderately radiogenic and the 206Pb/204Pb ratio ranges from 18 to 26. A striking linear relationship exists among leads in the chondrules, aggregates and matrix on the 207Pb/204Pb vs 204Pb/204Pb plot. The slope of the best fit line is 0.6188 ± 0.0016, yielding an isochron age of 4553 ± 4 m.y. The regression line passes through primordial lead values obtained from Canyon Diablo troilite. The data, when corrected for Canyon Diablo troilite Pb and plotted on a U-Pb concordia diagram, show that the pink and white aggregates and the Ca-Al-rich and Mg-rich inclusions have excess Pb and define a chord which intersects the concordia curve at 4548 ± 25 m.y. and 107 ± 70 m.y. The intercepts might correspond to the agglomeration age of the meteorite and a time of probably later disturbance, respectively. The matrix and some chondrules which contain less radiogenic lead did, however, not fit on the chord. The Rb-Sr data of Allende did not define an isochron suggesting that the Rb-Sr system was also disturbed by a later event, as suggested by the U-Pb concordia data. The lowest observed 87Sr/86Sr ratio in Allende inclusions is similar to the initial ratio of the Angra dos Reis achondrite (Papanastassiou, Thesis, 1970).The initial Pb isotopic composition of Orgueil calculated by a single-stage evolution model is more radiogenic than that of Canyon Diablo troilite. To reconcile the U-Pb data of Orgueil and Allende, we propose that the initial lead isotopic composition of the carbonaceous chondrites was slightly different from that of Canyon Diablo troilite Pb.  相似文献   

4.
Lead isotope ratios and associated trace element concentrations (U, Th and Pb) extracted by partial-leaching with 2% nitric acid from Proterozoic sandstones and basement rocks reveal much about the fluid evolution of sedimentary basins hosting unconformity-type uranium deposits. In addition, these techniques have great potential as a guide for exploration of uranium and other types of deposits in basins of any age. Isotope ratios of Pb in Proterozoic sandstones from basins known to contain high-grade uranium deposits are radiogenic at key geological localities and settings distal to known mineralization and particularly in altered zones proximal to mineralization. Sandstones completely cemented by quartz overgrowths typically have non-radiogenic Pb isotope ratios, indicating early closure of porosity and isolation of these rocks from later fluid events. Alternatively, the unconformity served as both a source of uranium and radiogenic Pb as well as an avenue for late-stage (<250–900 Ma) fluid flow. The mafic volcanic units, which are relatively reducing lithologies and therefore have removed uranium from basinal brines, have uranium-supported radiogenic Pb isotope ratios. Comparison of 238U/206Pb and 206Pb/204Pb ratios is useful in determining the timing and nature of U and Pb migration before, during and after mineralization in these basins. This comparison can be used to delineate the presence of radiogenic Pb isotope ratios that are not internally supported by uranium and thorium in rocks, eventually providing the explorationist with geochemical vectors that point toward sites of high potential for economic uranium mineralization.  相似文献   

5.
We present the results of a comparative study of several geochronometer minerals (baddeleyite, zircon, apatite, phlogopite and tetraferriphlogopite) and isotopic systems (U-Pb, Th-Pb and Rb-Sr) from phoscorites (magnetite-forsterite-apatite-calcite rocks) and carbonatites of the Kovdor ultramafic-alkaline-carbonatite massif, Kola Peninsula, Russia. Uranium, thorium and their decay products are extremely fractionated by minerals that crystallise from carbonatite and phoscorite magma. We obtain high-precision ages from different chronometers, compare their accuracy, and evaluate the role of geochronological pitfalls of initial radioactive disequilibrium, differential migration of radiogenic isotopes, and inaccurate decay constants.Apatite yielded concordant U-Th-Pb ages between 376 and 380 Ma. The accuracy of the apatite 238U-206Pb ages is, however, compromised by uncertainty in the amount of radiogenic 206Pb produced from initial excess 230Th. The 235U-207Pb ages are relatively imprecise due to large common Pb correction and the uncertainty in the initial Pb isotopic composition. The Th-Pb system yields a more precise age of 376.4 ± 0.6 Ma.Zircon from two carbonatite samples is characterised by moderate to low U contents, high Th contents, and very high Th/U ratios up to 9000. The 206Pb*/238U systems in the zircon are strongly affected by the presence of excess 206Pb*, produced by decay of initial 230Th. The 208Pb*/232Th ages of zircon from both carbonatite samples are uniform and yield a weighted average of 377.52 ± 0.94 Ma.Baddeleyite U-Pb analyses are 3 to 6% normally discordant and have variable 207Pb*/206Pb* apparent ages. Eleven alteration-free baddeleyite fractions from three samples with no evidence for Pb loss yield uniform 206Pb*/238U ages with a weighted average of 378.54±0.23 Ma (378.64 Ma after correction for initial 230Th deficiency), which we consider the best estimate for age of the phoscorite-carbonatite body of the Kovdor massif. The 206Pb*/238U ages of baddeleyite fractions from five other samples spread between 378.5 and 373 Ma, indicating a variable lead loss up to 1.5%. The anomalously old 207Pb/235U and 207Pb/206Pb ages are consistent with the presence of excess radiogenic 207Pb* in the baddeleyite. We interpret this as a result of preferential partitioning of 231Pa to baddeleyite.Fifteen phlogopite and tetraferriphlogopite fractions from five carbonatite and phoscorite samples yielded precise Rb-Sr isochron age of 372.2 ± 1.5 Ma, which is 5 to 7 m.y. younger than our best estimate based on U-Th-Pb age values. This difference is unlikely to be a result of the disturbance or late closure of Rb-Sr system in phlogopite, but rather suggests that the accepted decay constant of 87Rb is too high.Comparative study of multiple geochronometer minerals from the Kovdor massif has revealed an exceptional complexity of isotopic systems. Reliable ages can be understood through systematic analysis of possible sources of distortion. No single geochronometer is sufficiently reliable in these rocks. Th-Pb and Rb-Sr can be a very useful supplement to U-Pb geochronometry, but the routine use of these geochronometers together will require more precise and accurate determination of decay constants for 232Th and 87Rb.  相似文献   

6.
We report elemental abundances and the isotopic systematics of the short-lived 26Al-26Mg (half-life of ∼0.73 Ma) and long-lived U-Pb radiochronometers in the ungrouped basaltic meteorite Northwest Africa (NWA) 2976. The bulk geochemical composition of NWA 2976 is clearly distinct from that of the eucrites and angrites, but shows broad similarities to that of the paired NWA 001 and 2400 ungrouped achondrites indicating that it is likely to also be paired with these two samples. The major and trace element abundances in NWA 2976 further indicate that it formed by extensive melting and magmatic fractionation processes on its parent body. The Al-Mg and Pb-Pb isotope systematics indicate that this meteorite represents the earliest stages of crust formation on a differentiated parent body in the early Solar System. The absolute Pb-Pb internal isochron age of NWA 2976, obtained from acid leaching residues of three whole-rock samples and two pyroxene separates, is 4562.89 ± 0.59 Ma (MSWD = 0.02). This Pb-Pb age is calculated using the measured 238U/235U ratio of a NWA 2976 whole-rock of 137.751 ± 0.018 (2σ) which was determined relative to the recently revised value of 137.840 ± 0.008 for the SRM 950a U isotope standard. The Al-Mg systematics reveal the presence of 26Mg isotopic anomalies produced by the decay of 26Al with an (26Al/27Al)0 of (3.94 ± 0.16) × 10−7, and indicate a time of formation of 0.26 ± 0.18 Ma after the D’Orbigny angrite. Using the revised Pb-Pb age of 4563.36 ± 0.34 Ma for the D’Orbigny anchor (corrected for its U isotopic composition), we deduce an Al-Mg model age of 4563.10 ± 0.38 Ma for NWA 2976, which is consistent with its Pb-Pb internal isochron age.The concordance of the Pb-Pb and Al-Mg chronometers, when taking into account the differences in the U isotopic compositions of the D’Orbigny and NWA 2976 achondrites (whose parent bodies likely formed in distinct regions of early Solar System as indicated by their different oxygen isotopic compositions), implies that 26Al was homogeneously distributed in the early Solar System. It also suggests that igneous processes on planetesimals, as represented by the formation of various basaltic meteorite groups that likely originated on distinct parent bodies (e.g., eucrites and angrites, as well as ungrouped achondrites), were widespread throughout the protoplanetary disk within the first ∼5 Ma of the history of the Solar System.  相似文献   

7.
To study geochemical processes for migration and fixation of fissiogenic rare earth elements (REE) in association with uranium dissolution, in situ isotopic analyses using an ion microprobe were performed on U- and REE-bearing secondary minerals, such as coffinite, françoisite, uraniferous goethite, and uraninite found in a sandstone layer 30 to 110 cm beneath a natural fission reactor at Bangombé, Gabon. Phosphate minerals such as phosphatian coffinite and françoisite with depleted 235U (235U/238U = 0.00609 to 0.00638) contained large amount of fissiogenic light REE, while micro-sized uraninite grains in a solid bitumen aggregate have normal U isotopic values (235U/238U = 0.00725) and small amount of fissiogenic REE components. The proportions of fissiogenic and non-fissiogenic REE components in four samples from the core of BAX03 vary in depth ranging from 30 cm to 130 cm beneath the reactor, which suggests mixing between fissiogenic isotopes from the reactor and non-fissiogenic isotopes from original minerals in the sandstone. Significant chemical fractionation was observed between Ce and the other REE in the secondary minerals, which shows evidence of an oxidizing atmosphere during their formation. Pb-isotopic analyses of individual minerals do not directly provide chronological information because of the disturbance of U-Pb decay system due to recent geologic alteration. However, systematic Pb-isotopic results from all of the minerals reveal the mobilization of fissiogenic isotopes, Pb and U from the reactor in association with dolerite dyke intrusion ∼0.798 Ga ago and the formation of the secondary minerals by mixing event between 2.05 Ga-old original minerals and reactor materials due to recent alteration.  相似文献   

8.
Precise U-Pb ages, determined with double spike (202Pb-205Pb) thermal ionization m1ass spectrometry, are reported for angrites Angra dos Reis (AdoR), Lewis Cliff 86010 (LEW), and D’Orbigny. Nineteen of 23 acid-washed pyroxene fractions from these meteorites and whole rock fractions from D’Orbigny contain between 0.5 and 1.3 pg of total common Pb, indistinguishable from analytical blank. Measured 206Pb/204Pb ratios in these fractions are between 6300 and 14,100 for AdoR, 1160-4500 for LEW, and 608-8500 for D’Orbigny. Blank-corrected 206Pb/204Pb ratios for all three meteorites vary from 2160 to over 100,000. These fractions yielded precise and reproducible 207Pb/206Pb dates with the average values of 4557.65 ± 0.13 Ma for AdoR, 4558.55 ± 0.15 Ma for LEW, and 4564.42 ± 0.12 Ma for D’Orbigny. Pb-Pb isochrons including data with slightly elevated common Pb, and U-Pb upper concordia intercepts, yield similar dates. The implications of these new Pb-isotopic ages of angrites are threefold. First, they demonstrate that AdoR and LEW are not coeval, and the group of “slowly cooled” angrites is therefore genetically diverse. Second, the new age of LEW suggests an upward revision of 53Mn-53Cr “absolute” ages by 0.7 Ma. Third, a precise age of D’Orbigny allows consistent linking of the 53Mn-53Cr and 26Al-26Mg extinct nuclide chronometers to the absolute lime scale.  相似文献   

9.
Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2% and essentially confirm the primordial Pb value defined by Tatsumotoet al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. Our results support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase.  相似文献   

10.
Ion microprobe U-Th-Pb isotopic analyses of zircons from a granodioritic orthogneiss from the Napier Complex, Mount Sones, Enderby Land, Antarctica, have identified an unambiguous example of unsupported radiogenic Pb in a 3,950 Ma-old crystal. At one 40 m spot on the crystal an unusually large heterogeneity in Pb content was found, the concentration of radiogenic Pb ranging from 5 to 50 percent higher than could have been generated in 3,950 Ma by radioactive decay of the co-existing U and Th. This relative excess of radiogenic Pb is attributed to Pb gain rather than to U and Th loss because first, the Pb content varied by more than the U or Th contents and secondly, changes in the Pb/U, Pb/Th and Pb isotopic composition correlated directly with changes in the Pb concentration. The individual 207Pb/206Pb apparent ages ranged from 4,000 Ma to 4,145 Ma, all greater than the inferred age of the crystal. A correlation between 207Pb/206Pb and Pb/U shows that the Pb excess has not resulted from recent Pb movement. The spot apparently gained radiogenic Pb about 2,500 Ma ago, at the same time as the majority of the other zircons in the rock suffered substantial Pb loss. The Pb movement occurred in response to a discrete geologic event. Reverse discordance is a phenomenon that must be considered when interpreting zircon U-Pb ages, especially 207Pb/206Pb ages of single crystals or portions of crystals. Decay constants. Ages in this paper are calculated using the decay constant convention recommended by the Subcommission on Geochronology (Steiger and Jaeger 1977).  相似文献   

11.
Lead-205 decays to 205Tl with a half-life of 15 Myr and should have been present in the early solar system according to astrophysical models. However, despite numerous attempts, Tl isotopic measurements of meteorites have been unable to demonstrate convincingly its former presence. Here, we report large (∼5‰) variations in Tl isotope composition in metal and troilite fragments from a range of iron meteorites that were determined at high precision using multiple collector inductively coupled plasma mass spectrometry. The Tl isotopic compositions of seven metal samples of the IAB iron meteorites Toluca and Canyon Diablo define a correlation with 204Pb/203Tl. When interpreted as an isochron, this corresponds to an initial 205Pb/204Pb ratio of (7.4 ± 1.0) × 10−5. Alternative explanations for the correlation, such as mixing of variably mass-fractionated meteorite components or terrestrial contamination are harder to reconcile with independent constraints. However, troilite nodules from Toluca and Canyon Diablo contain Tl that is significantly less radiogenic than co-existing metal with isotope compositions that are variable and decoupled from 204Pb/203Tl. These effects are similar to those recently reported by others for Fe and Ni isotopes in iron meteorite sulfides and appear to be the result of kinetic stable isotope fractionation during diffusion. Though it cannot conclusively be shown that the metal fragments are unaffected by the secondary processes that disturbed the troilites, mass balance modeling indicates that the alteration of the troilites is unlikely to have significantly affected the Tl isotope compositions of the co-existing metals. It is therefore reasonable to conclude that the IAB metal isochron is a product of the in situ decay of 205Pb. If the I-Xe ages of IAB silicate inclusions record the same event as the 205Pb-205Tl chronometer then crystallization of the IAB metal was probably completed between 10 and 20 Myr after the condensation of the first solids. This implies an initial solar system 205Pb/204Pb of (1.0-2.1) × 10−4, which is in excellent agreement with recently published astrophysical predictions. Similar calculations yield an initial solar system Tl isotope composition of ε205Tl = −2.8 ± 1.7. The Tl isotopic composition and concentration of the silicate Earth depends critically on the timing and mechanism of core formation and Earth’s volatile element depletion history. Modeling of the Earth’s accretion and core formation using the calculated initial solar system Tl isotope composition and 205Pb/204Pb, however, does not yield reasonable results for the silicate Earth unless either the Earth lost Tl and Pb late in its accretion history or the core contains much higher concentrations of Pb and Tl than are found in iron meteorites.  相似文献   

12.
The r-process only nuclide 247Cm decays to 235U with a characteristic half-life of ∼16 million years. 247Cm is presently extinct, but offers considerable potential as a short-lived r-process chronometer, providing constraints on the time interval between the last r-process nucleo-synthetic event and the formation of the solar system. The existence of “live” 247Cm in the early solar system should be manifested today as variations in 235U/238U, provided Cm was chemically fractionated from U when solids formed in the early solar system. Using multiple-collector ICPMS and a high-purity mixed 233U-236U spike to monitor instrumental mass fractionation, we are able to resolve variations in 235U/238U at the 1-2 epsilon level (2σM; 1 epsilon = 1 part in 10,000) on sample sizes consisting of 20 ng of uranium. Data can be acquired on smaller (<10 ng) samples with ±2-3 epsilon 2σ uncertainties. Uranium isotopic measurements and U, Nd and Sm concentrations were acquired on bulk samples of a suite of carbonaceous chondrites, unequilibrated and equilibrated ordinary chondrites and eucrites, for which conflicting results had previously been obtained. Our results show no well-resolved excursions in 235U/238U away from the terrestrial value at the ∼2 epsilon level, and constrain the amount of 247Cm-produced excess 235U atoms to less than ∼1 × 108 atoms per gram of chondritic meteorite, with respect to terrestrial 235U/238U. Large (permil- level) anomalies in 235U/238U could, however, be artificially generated in the ordinary chondrites during laboratory processing. Therefore, U may be more susceptible to isotopic fractionation during chemical processing than previously recognized, and may reconcile some of the highly conflicting ε235U results reported by previous workers for chondritic meteorites. Our results indicate that a timescale of ∼1-2 × 108 years between the last actinide producing r-process event and the formation of the solar system may not be unreasonable based on the 247Cm-235U system. However, this conclusion is far from robust at this stage because the only bulk meteorites analysed that display strong Nd/U fractionation are highly metamorphosed chondrites that may have experienced a protracted history of redistribution and re-equilibration. The search for “live” 247Cm in the early solar system can now be extended to early-formed condensates and mineral phases displaying strong Cm-U fractionations.  相似文献   

13.
U-Pb zircon geochronology is increasingly called upon to achieve the resolution of absolute time at the 0.1% to 1% level for rocks of Phanerozoic to Hadean age. Doing so requires accurate calibration of the several methods (conventional isotope dilution thermal ionization mass spectrometry [ID-TIMS], Pb evaporation, high-resolution ion microprobe [e.g. SHRIMP], and laser ablation inductively coupled plasma mass spectrometry [LA-ICPMS]) currently in use, in numerous laboratories, for the analysis of U and Pb isotopes in accessory minerals. Toward this end, the geochronological community would benefit from the establishment, distribution and widespread analysis of one or more standard reference materials. Among the candidates is natural zircon from the Duluth Complex anorthositic series of the Midcontinent Rift system of North America. These zircons, first dated by conventional ID-TIMS at 1099.1 ± 0.5 Ma, have been subsequently adopted as a geochronological standard by a number of high resolution ion microprobe facilities. A new and independent analysis of the systematics of a large set of single zircons (n = 27) from the same mineral separate yields indistinguishable 207Pb/206Pb, upper intercept, and U-Pb concordia dates for the AS3 zircons. The concordia date, based on a subset of 12 concordant and equivalent zircons, of 1099.1 ± 0.2 Ma (±1.2 Ma considering systematic uncertainties in Pb/U tracer calibration and U decay constants) is indistinguishable from previously published results. We further document the absence of inherited Pb in the AS3 zircons, and discuss strategies for avoiding certain domains within the AS3 zircons exhibiting small amounts of radiation-induced, surface and fracture-correlated, recent Pb loss. Although the AS3 zircons do not represent the ideal (and elusive) homogeneous closed U-Pb system, we conclude that these and similar zircons from the Duluth Complex anorthositic series can provide a suitable geochronological reference standard for numerous U-Pb zircon analytical methods, given appropriate preparation guided by the results of this study. Our high-precision data set also serves as a useful confirmatory test of the currently accepted U decay constants.  相似文献   

14.
An assessment of the utility of staurolite in U-Pb dating of metamorphism   总被引:1,自引:0,他引:1  
Pb isotope data, major and trace element compositions, fission track and synchrotron X-ray fluorescence analyses are presented for staurolites from nine pelitic schists in the continental United States to evaluate their potential use in U-Pb geochronology. Seven U-Pb analyses from Lanzirotti and Hanson (1995) are reexamined with respect to this additional data which was not available at the time. These data are then compared to 21 new U-Pb analyses of staurolite of varying composition from a variety of localities. The primary goals of this study are to: (1) evaluate the variability in U and Pb abundance and U/Pb ratio in staurolites of varying composition; (2) constrain how much of the measured U and Pb is derived from radiogenic solid inclusions such as monazite and zircon; (3) constrain how much of the measured U and Pb is derived from staurolite itself and evaluate any possible correlation of U and Pb abundance and U/Pb ratio to major element composition; (4) place preliminary constraints on closure temperature to Pb diffusion in staurolite; (5) evaluate how meaningful U-Pb ages can better be calculated for the low U/Pb ratio minerals. In the staurolite fractions analyzed U abundances range from 0.2 to 24.9 ppm, Pb from 0.13 to 2.41 ppm, the 238U/204Pb ratios vary from 135 to 9447, and the 206Pb/204Pb ratios from 23 to 623. For many of the fractions analyzed precise U-Pb ages can be calculated (±10 Ma or better) that appear to be consistent with available age constraints on the time of peak metamorphism. Mass balance calculations, fission track analysis, and synchrotron X-ray fluorescence trace element mapping show that although radiogenic inclusions are almost always present in large staurolite porphyroblasts, it is difficult for inclusions to account for the measured Pb isotopic compositions. It is also demonstrated that the U-Pb ages calculated for staurolites from Connecticut are at least 20 Ma older than nearby Rb-Sr muscovite and 40Ar-39Ar hornblende ages. This is consistent with staurolite having a closure temperature to U and Pb diffusion significantly higher than 500 °C. Received: 14 July 1995 / Accepted: 16 May 1997  相似文献   

15.
Open-system behaviour of uraniferous shales, which has been known for many years, has discouraged attempts to use U-Pb geochronology to date sedimentary systems. Techniques now available can facilitate better understanding of their geochemical evolution and their possible use in geochronometry. For the U-rich Alton (G. listeri) Marine Band, a combined fission track mapping, electron optical and sequential chemical extraction study confirms that uranium is incorporated into francolite, an early diagenetic precipitate. U-Pb analyses of uranium-rich (>1000 ppm) francolite nodules are discordant and imply ages ∼50-150 Ma younger than the date of sedimentation. Pb isotopic analysis suggests that uranium daughters continually leaked from the francolite, 238U daughters being released more efficiently than those of 235U. Extrapolation of the U-Pb data to concordia produces an age consistent with the time of sedimentation. These features are also displayed by other uranium-rich shales such as the Swedish Kolm Measures, despite uranium being incorporated into different phases. Preferential loss of 238U daughters from fine-grained particles due to alpha recoil could explain the unusual U-Pb isotopic composition, in both examples. Further work would be justified to investigate the application of U-Pb isotopic analysis of such material to date sedimentary sequences.  相似文献   

16.
Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar-39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/36Ar and 40Ar/36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems.In 40Ar-39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly precise dating technique. Our results also indicate the importance of thermally activated diffusion as a possible fractionation mechanism, e.g., for hydrothermal gas exhalations, or for carbonaceous carrier phases such as “Q” in meteorites that have been suggested as carriers of highly fractionated noble gas residues from the early solar nebula.  相似文献   

17.
Helium has been proposed as a pathfinder in exploration for uranium deposits, hydrocarbons and geothermal energy sources, as an indicator of faults and fissures and as a possible tool for earthquake prediction. The rationale is that during the decay of 238U to 206 Pb, eight 4He atoms are produced via the intermediary of alpha particle emission. Similarly, six 4He atoms are produced by the decay of 232Th to 208Pb. Some of the common isotopes of the rare earths Ce, Nd and Sm are also alpha emitters, but they are unlikely to give rise to detectable helium anomalies.  相似文献   

18.
The isotopic (U-Pb, 238U-235U, 234U-238U) and chemical study of whole-rock samples and finegrained fractions of rocks in a vertical section of the terrigenous sequence at the Dybryn uranium deposit in the Khiagda ore field shows that a wide U-Pb isotopic age range (26.9-6.5 Ma) is caused by oxidation and disturbance of the U-Pb isotopic system in combination with protracted uranium ore deposition. The oxidation of rocks resulted in the loss of uranium relative to lead and eventually to an overestimated 206Pb/238U age at sites with a low U content. The 238U/235U ratios in the studied samples are within the range of 137.74–137.88. Samples with a high uranium content are characterized by a decreasing 238U/235U ratio with a decrease in 207Pb/235U and 206Pb/238U ages. A nonequilibrium 234U/238U ratio in most studied samples furnishes evidence for young (<1.5 Ma) transformation of the Miocene uranium ore, which is responsible for uranium migration and its redeposition.  相似文献   

19.
New isotopic studies of 142Nd, the daughter product of the short-lived and now extinct isotope 146Sm, have revealed that the accessible part of the silicate Earth (e.g., upper mantle and crust) is more radiogenic in 142Nd/144Nd than that of chondritic meteorites. The positive 142Nd anomaly of the Earth’s mantle implies that the Sm/Nd ratio of the mantle was fractionated early in Earth’s history and that the complementary low 142Nd reservoir has remained isolated from the mantle since its formation. This has led to the suggestion that an early enriched reservoir, formed within Earth’s first hundred million years (the Hadean), resides permanently in the deep interior of the Earth. One hypothesis for a permanently isolated reservoir is that there may be an Fe-rich, and hence intrinsically dense, chemical boundary layer at the core-mantle boundary. The protoliths of this chemical boundary layer could have originated at upper mantle pressures during extreme fractional crystallization of a global magma ocean during the Hadean but testing this hypothesis is difficult because samples of this early enriched reservoir do not exist. This hypothesis, however, is potentially refutable. Here, we investigate a post-Archean magnetite-sulfide magma formed by extreme magmatic differentiation to test whether residual Fe-rich liquids of any kind have the necessary trace-element signatures to satisfy certain global geochemical imbalances. The magnetite-sulfide magma is found to have high Pb contents (and low U/Pb ratios), high Re/Os ratios, and anti-correlated Sm/Nd and Lu/Hf fractionations. Permanent segregation of such a magma would (1) provide a means of early Pb sequestration, resulting in the high U/Pb ratio of the bulk silicate Earth, (2) be a source of radiogenic 187Os in the source regions of plumes, and (3) provide an explanation for decoupled Hf and Nd isotopic evolution in the early Archean, which is not easily produced by silicate fractionation. However, the magnetite-sulfide magma is not highly enriched in K, and thus, at face value, this magma analog would not serve as a repository for all of the heat producing elements. Nevertheless, other Fe-O-S liquids reported elsewhere are enriched in apatite, which carries high concentrations of K, U and Th. Given some promising geochemical fractionations of the Fe-rich liquids investigated here, the notion of a Hadean Fe-rich residual liquid deserves continued consideration from additional experimental or analog studies.  相似文献   

20.
U-Th-Pb isotopic data are reported for mineral fractions, individual chondrules and fractions of chondrule fragments from the equilibrated ordinary chondrite Richardton (H5). Chondrules and milligram-sized fractions of pyroxene-rich chondrule fragments contain highly radiogenic Pb and concordant or nearly concordant U-Th-Pb isotopic systems, and are suitable for precise Pb-Pb age determinations. Olivine and sulfide have low U concentrations and contain less radiogenic Pb. The ages of individual chondrules, pyroxene-rich and phosphate fractions are determined using U-Pb and Pb-Pb isochron and model date calculations. The Pb-Pb isochron date of 4562.7 ± 1.7 Ma of the Richardton chondrules and chondrule fragments is resolved from the Pb-Pb isochron date of 4550.7 ± 2.6 Ma obtained from multiple phosphate fractions. Possible biases of the isochron dates due to single-stage approximation of multi-stage evolution, contamination with modern common Pb, and disturbance to the system by reheating, are examined and are found to be insignificant. The chondrule and phosphate dates are interpreted as the timing of cessation of Pb diffusion during cooling following metamorphism in chondrite parent bodies. The difference in estimated closure temperatures, ∼950-1150 K for pyroxenes, and 700-800 K for phosphates (temperature estimates are based on published diffusion rates for Pb in pyroxenes and apatite), allows evaluation of the average cooling rate at 26 ± 13 K/million years for the Richardton parent body over the period of 4563-4551 my. Thermal modeling of the H-chondrite parent body (which is assumed to be asteroid 6 Hebe, heated by decay of 26Al) suggests a scenario in which accretion initiated at 1.7 m.y. after formation of calcium-aluminum-rich inclusions and continued for 3.5 m.y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号