首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The oxygen-isotope record from fossil foraminifera in deep-sea sediments is commonly used as a proxy for global ice volume. The linkage between δ18O and ice volume, however, is probably nonlinear. We have developed a simple numerical model of the isotopic response of the oceans to ice-volume change. The major features it simulates are (1) the changing mean isotopic composition of snow as a function of ice volume (colder snow temperatures forced by climate change and higher-elevation accumulation areas imply more negative mean δ18O); (2) the nonequilibrium isotopic composition of ice sheets (the past history of an ice sheet is integrated into its mean isotopic composition, which introduces a lag of isotopic “ice volume,” i.e., the measured δ18O record, scaled to ice-volume units, behind true ice volume); (3) selective preservation of isotopically more negative (colder, higher-latitude) ice (this geographic effect can selectively amplify or dampen the isotopic response to the ice-volume signal). We illustrate the response of our model to simple hypothetical ice-volume transitions of ice growth and ice decay. Sensitivity tests are illustrated for all model parameters. The results suggest that oxygen-isotope records reproduce the general patterns of ice-volume change fairly accurately. The foraminiferal isotope record, however, may misrepresent the true amplitude of the ice-volume signal and lag true ice volume by 1000 to 3000 yr.  相似文献   

2.
The barium deposits in Ankang and Xunyang counties,Shaanxi Province,China,occur in the northernmost part of the world-class barium metallogenic belt in south Qinling.The deposits are hosted by the Lower Silurian carbonaceous siliceous rocks,with a unique combination of barite and witherite.The homogenization temperatures of fluid inclusions in the barite are mainly concentrated between 135 and 155 ℃,whereas those from the witherite have two peaks of 165-175 ℃,and 215-225℃,respectively.Laser Raman analysis of fluid inclusions indicates that the vapor phase of fluid inclusions in barite is dominated by H_2O,although some contains N_2,H_2S,and CH_4.The compositions of the vapor and liquid phases of fluid inclusions in witherite can be divided into two end-members,one dominated by H_2O without other volatiles,and the other containing CH_4,C_2H_6,C_3H_8,C_2H_4,and C_6H_6 in addition to H_2O.CO_2,H_2S,and some CH_4 are interpreted as products of chemical reactions during mineralization.Organic gases(CH_4,C_2H_6,C_3H_8,C_2H_4,and C_6H_6) in the fluids were critical in the formation of barium sulfate versus carbonate.The δ~(34)S values of barite range from 38.26‰ to54.23‰(CDT),the δ~(34)S values of sulfides coexisting with barium minerals vary from 22.44‰ to25.11‰(CDT),and those in the wall rock from 11.60‰ to 19.06‰(CDT).We propose that the SO_4~(2-)generally experienced bacterial sulfate reduction in seawater before mineralization,and some SO_4~(2-)also experienced thermochemical sulfate reduction in hydrothermal system during mineralization.The δ~(13)C values of witherite range from-27.30‰ to-11.80‰(PDB),suggesting that carbon was sourced from organic substances(like CH_4,C_2H_4,and C_2H_6).The formation of witherite was possibly associated with thermochemical sulfate reduction,which caused the consumption of the organic gases and SO_4~(2-) in the hydrothermal solutions,consequently inhibiting barite formation.The important conditions for forming witherite include high fluid temperatures,high Ba~(2+) concentrations,CO_2 in the fluids,low HS~- concentrations,and the subsequent rapid diffusion of H_2S during thermochemical sulfate reduction of the fluids.  相似文献   

3.
The Jinshachang lead–zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan–Yunnan–Guizhou(SYG) Pb–Zn–Ag multimetal mineralization area in China.Sulfides minerals including sphalerite,galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite,quartz,and barite,making this deposit distinct from most lead–zinc deposits in the SYG.This deposit is controlled by tectonic structures,and most mineralization is located along or near faults zones.Emeishan basalts near the ore district might have contributed to the formation of orebodies.The δ34S values of sphalerite,galena,pyrite and barite were estimated to be 3.6‰–13.4‰,3.7‰–9.0‰,6.4‰ to 29.2‰ and 32.1‰–34.7‰,respectively.In view of the similar δ34S values of barite and sulfates being from the Cambrian strata,the sulfur of barite was likely derived from the Cambrian strata.The homogenization temperatures(T ≈ 134–383°C) of fluid inclusions were not suitable for reducing bacteria,therefore,the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district.Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur,it was not the main mechanism.Considering other aspects,it can be suggested that sulfur of sulfides should have been derived from magmatic activities.The δ34S values of sphalerite were found to be higher than those of coexisting galena.The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions,suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.  相似文献   

4.
The evolution of the global sulfur isotope curve was plotted based on the δ34S values of evaporates resultant from oceanic evaporation. In the long period of geological history the δ34S values showed obvious peaks for three times during the process of ancient oceans’ sulfur isotope evolution, namely the Early Cambrian (+30‰), the Late Devonian (+25‰) and the Permian-Triassic transition interval (+17‰), but the causes of the abnormal rise of sulfur isotopic values during the geological period are still in question. In this paper, 18 samples collected from a large Devonian barite deposit from Zhenning County were analyzed to determine their δ34S values, revealing that the 18 samples have very high δ34S values (δ34S=41.88‰-+68.39‰), with an average close to 56.30‰, which are higher than the isotopic values of contemporary sulfates (+17‰- +25‰). A comparative analysis was conducted of the emerging of high δ34S barite deposits (from Cambrian and Devonian) and the δ34S variation curves of the ancient oceans. The results indicate that the time when the obvious peaks of δ34S values appeared and the time of massive sedimentation of high δ34S barite deposits are very close to each other, which, in our opinion, is not a coincidence. There may exist some correlations between the sulfur isotope evolution of ancient oceans during the diverse periods of geological history and the massive sedimentation of high δ34S barite deposits. Therefore, it is inferred that perhaps it was the massive sedimentation of high δ34S barites that caused the sharp rise of δ34S values in a short period of time.  相似文献   

5.
Lead and zinc mineralization occurs in dolostones of the Middle Devonian Sibzar Formation at Ozbak-Kuh, which is located 150 km north of Tabas city in East Central Iran. The ore is composed of galena, sphalerite and calcite, with subordinate dolomite and bitumen. Wall-rock alterations include carbonate recrystallization and dolomitization. Microscopic studies reveal that the host rock is replaced by galena and sphalerite. The Pb–Zn mineralization is epigenetic and stratabound. The δ13C values of hydrothermal calcite samples fall in the narrow range between ?0.3‰ and 0.8‰. The δ18O values in calcite display a wider range, between ?14.5‰ and ?11.9‰. The δ13C and δ18O values overlap with the oxygen and carbon isotopic compositions of Paleozoic seawater, indicating the possible important participation of Paleozoic seawater in the ore-forming fluid. The δ18O signature corresponds to a spread in temperature of about 70 °C in the ore-bearing fluid. The δ13C values indicate that the organic materials within the host rocks did not contribute significantly in the hydrothermal fluid. The δ34S values of galena and sphalerite samples occupy the ranges of 12.2‰–16.0‰ and 12.1–16.8‰, respectively. These values reveal that the seawater sulfate is the most probable source of sulfur. The reduced sulfur was most likely supplied through thermochemical sulfate reduction. The sulfur isotope ratios of co-precipitated sphalerite–galena pairs suggest that deposition of the sulfide minerals took place under chemical disequilibrium conditions. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of the galena samples represent average values of 18.08, 15.66, and 38.50, respectively. These ratios indicate that galena Pb likely originated from an orogenic source in which supracrustal rocks with high 238U/204Pb and 232Th/204Pb ratios are dominant. The average lead isotope model age portrays Cambrian age. This model age is not coeval with the host rocks, which are of middle Devonian age. It is probable that the pre-Middle Devonian model age shows the derivation of Pb from older sources either from host rocks of Cambrian age or from deposits previously formed in these rock units. The Pb isotopic composition of galena accords with the occurrence of an orogenic activity from Late Neoproterozoic to Lower Cambrian in Central Iran. The proposed genetic model considers the fact that mineralization formed in fractured and brecciated host rocks along shear zones and faults from metal-bearing connate waters that were discharged due to deformational dewatering of sediments.  相似文献   

6.
Stratiform and stratabound barite ± magnetite beds are intimately associated with the polymetallic Broken Hill-type (BHT) massive sulfide deposits of the Aggeneys-Gamsberg Pb–Zn–Cu ± Ag–Ba district in the Northern Cape Province, South Africa. Barite samples were collected and studied from four localities in the district. Although metamorphic water–rock interaction processes have partially altered the chemical and to a lesser degree the isotopic composition of barite, samples identified as being the least altered display distinctly different isotopic compositions that are thought to reflect different modes of origin. All barite samples are marked by low concentrations of SrO (0.5 ± 0.2 wt%), highly radiogenic 87Sr/86Sr ratios, elevated δ 34S and δ 18O values compared to contemporaneous Mesoproterozoic seawater. Radiogenic 87Sr/86Sr signatures (0.7164 ± 0.0028) point to an evolved continental crustal source for Sr and Ba, while elevated δ 34S values (27.3 ± 4.9‰) indicate that contemporaneous seawater sulfate, modified by bacterial sulfate reduction, was the single most important sulfur reservoir for barite deposition. Most importantly, δ 18O values suggest a lower temperature of formation for the Gamsberg deposit compared with the occurrences in the Aggeneys area, i.e. Swartberg-Tank Hill and Big Syncline. The obvious differences in temperature of formation are in good agreement with the Cu-rich, Ba-poor nature of the sulfide mineralization of the Aggeneys deposits vs the Cu-poor, Ba-rich character of the Gamsberg deposit. In conjunction with this, isotopic and petrographic arguments favor a sub-seafloor replacement model for the stratabound barite occurrences of the Aggeneys deposits, while at Gamsberg, deposition at the sediment–water interface as a true sedimentary exhalite appears more likely.  相似文献   

7.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

8.
The discovery of 33S anomalies in Archean sedimentary rocks has established that the early Earth before ∼2.2 Ga (billion years ago) had a very different sulfur cycle than today. The origin of the anomalies and the nature of early sulfur cycle are, however, poorly known and debated. In this study, we analyzed the total sulfur and oxygen isotope compositions, the δ18O, Δ17O, δ34S, Δ33S, and Δ36S, for the >3.2 Ga Fig Tree barite deposits from the Barberton Greenstone Belt, South Africa. The goal is to address two questions: (1) was Archean barite sulfate a mixture of 33S-anomalous sulfate of photolysis origin and 33S-normal sulfate of other origins? (2) did the underlying photochemical reactions that generated the observed 33S anomalies for sulfide and sulfate also generate 17O anomalies for sulfate?We developed a new method in which pure barite sulfate is extracted for oxygen and sulfur isotope measurements from a mixture of barite sands, cherts, and other oxygen-bearing silicates. The isotope data reveal that (1) there is no distinct 17O anomaly for Fig Tree barite, with an average Δ17O value the same as that of the bulk Earth (−0.02 ± 0.07‰, N = 49); and (2) the average δ18O value is +10.6 ± 1.1‰, close to that of the modern seawater sulfate value (+9.3‰). Evidence from petrography and from the δ18O of barites and co-existing cherts suggest minimum overprinting of later metamorphism on the sulfate’s oxygen isotope composition. Assuming no other processes (e.g., biological) independently induced oxygen isotope exchange between sulfate and water, the lack of reasonable correlation between the δ18O and Δ33S or between the δ34S and Δ33S suggests two mutually exclusive scenarios: (1) An overwhelming majority of the sulfate in the Archean ocean was of photolysis origin, or (2) The early Archean sulfate was a mixture of 33S-normal sulfates and a small portion (<5%?) of 33S-anomalous sulfate of photolysis origin from the atmosphere. Scenario 1 requires that sulfate of photolysis origin must have had only small 33S or 36S anomalies and no 17O anomaly. Scenario 2 requires that the photolysis sulfate have had highly negative δ34S and Δ33S values, recommending future theoretical and experimental work to look into photochemical processes that generate sulfate in Quadrant I and sulfide in Quadrant III in a δ34S (X)-Δ33S (Y) Cartesian plane. A total sulfur and oxygen isotope analysis has provided constraints on the underlying chemical reactions that produced the observed sulfate isotope signature as well as the accompanying atmospheric, oceanic, and biological conditions.  相似文献   

9.
Cellulose and silica phytoliths were extracted from the leaves and stems of Calamovilfa longifolia, a C4 grass, grown under varying climatic conditions across the North American prairies. The oxygen-isotope compositions of both cellulose and silica record a complex signal of the isotopic composition of the soil water that feeds the plants and the relative humidity conditions that influence transpiration rates, stomatal conductance, and ultimately the 18O-enrichment of leaf water. As the initial stages of cellulose formation occur in the leaves, cellulose in both the leaves and stems forms primarily from leaf water and does not differ greatly in its oxygen-isotope composition between these locations. In contrast, the δ18O values of leaf phytoliths are significantly enriched in 18O relative to stem phytoliths, reflecting the varying isotopic composition of the water in these tissues. The oxygen-isotope compositions of leaf cellulose may be used as a proxy for the isotopic composition of water involved in leaf phytolith formation, while the δ18O values of stem phytoliths can be used to determine the δ18O values of stem water involved in partial exchange reactions during the transport of carbohydrates through the plant. A comparison of the isotopic compositions of phytoliths with cellulose allows for the deduction of soil and leaf water δ18O values as well as temperature and relative humidity conditions during plant growth. This approach has application in paleoclimate studies that traditionally have required estimations of one or more of these variables because direct measurements were unavailable.  相似文献   

10.
The relationship between molluscan shell growth rate and skeletal δ18O and δ13C was investigated in a detailed field study for the scallop, Pecten maximus. Seasonal variation in shell growth rate was found to be a governing factor influencing shell δ18O and δ13C. At low shell growth rates, shell δ18O were more positive (of the order +0.4‰) and δ13C more negative (up to −2‰) as compared with predicted values for precipitation of inorganic calcite in isotopic equilibrium with seawater. The deviations in δ18O were hypothesized as reflecting possible differences in solution carbonate chemistry at the site of mineralization in the extrapallial fluid as compared with that of the external seawater medium. The deviations in shell δ13C were consistent with incorporation of isotopically depleted respiratory 13C (i.e., a metabolic effect). A trend toward more depleted shell δ18O and δ13C values occurred at higher shell growth rates, with negative δ18O values as compared with predicted equilibrium at shell growth rates above 0.13 mm per day. These simultaneous negative deviations in skeletal δ18O and δ13C were interpreted as resulting from a kinetic effect. The implications for environmental reconstruction from molluscan isotopic records are discussed in light of a model of isotopic behavior based on the findings of the study.  相似文献   

11.
In the Eastern Pontide Region of northeastern Turkey, volcanogenic Cu-Zn-Pb deposits of the Kuroko type are widespread within the dacitic series of the Liassic-Eocene volcano-sedimentary succession. Sulfide mineralization within the studied deposits shows four different depositional styles: disseminated ore; polymetallic stockwork ores; polymetallic massive ores; and disseminated pyrite in the hanging-wall tuff units. Only the stockwork and massive ores are economically important, and usually one or the other dominates in each ore body.

The δ34S of sulfide minerals belonging to the various styles of mineralization are in the range from ?2.6 to +5.2% (VCDT): pyrite has the highest values and the galena lowest values in agreement with the usual isotopic-fractionation trends. Massive ores have heavier sulfur-isotope composition among the mineralization styles and the heaviest values are recorded in barite- and gypsum-rich deposits. The close similarity of the δ34S among the various mineralization episodes in some deposits indicates a single sulfur source having a stable and homogenous composition.

The δ34S of sulfates fall into three groups: barites and primary gypsum (15.4 to 20.4%), close to coeval seawater sulfate; one value of barite (25.4%) heavier than coeval sea water; and values of secondary gypsum (2.2 to 8.0%) either very light compared to coeval seawater sulfate, or within the range recorded from sulfide minerals. The δ34S values of pyrite disseminated in the brecciated dacite tuff units are very close to zero and similar to the ones reported for magmatic rocks, suggesting a magmatic source for the sulfur of the earliest sulfide mineralization episode. These δ34S data are not sufficient to calculate the fraction of the reduced sulfur derived from seawater sulfate, as the associated fractionation factor cannot be constrained.  相似文献   

12.
The dominantly shallow-marine Vendian succession of NE Spitsbergen contains distinctive types of carbonate rock. Limestones deposited before Vendian glaciation resemble those described from other Upper Proterozoic successions, being high in Sr and inferred to have been originally aragonitic, including the distinctive 5–10 Jim equant polygonal calcite of cemented shrinkage cracks. In contrast, manganoan stromatolitic limestones within marginal-marine glacial-outwash deposits, and consisting of micrite, microspar and fascicular-optic calcite are interpreted as originally calcitic. The restriction of primary marine calcite to cold seawater is comparable with Recent and Permian carbonates, although the Precambrian example formed in a sea diluted with meltwater. There is good textural preservation of relatively 18O-rich oolitic dolostones which were cemented in a supratidal environment by artesian fluids. Nevertheless, early diagenetic replacement is inferred, immediately prior to a glacial episode. Post-glacial dolostones are either replacive marine, or evaporative lacustrine, but share rather more negative δ18O values, closer to the mean of Late Precambrian dolostones. The heaviest oxygen isotope values constrain seawater δ18O to no more negative than — 2 to — 4SMOW. The main reason for the pronounced oxygen isotopic depletion of most Late Precambrian carbonates is their initial metastable mineralogy. The possibility of determining palaeolatitudes of the enigmatic widespread Late Proterozoic glaciations by isotopic analysis of freshwater periglacial calcareous precipitates is raised. Significant carbon isotope variations reflect changes in depositional water chemistry: some of these could be global in extent.  相似文献   

13.
Fourteen stratiform, stratabound and vein-type sulphide occurrences in the Upper Allochthon of the Central–North Norwegian Caledonides have been studied for their sulphur, oxygen and hydrogen isotope composition. Depositional ages of host rocks to the stratabound and stratiform sulphide occurrences range from 590 to 640?Ma. The sulphides and their host rocks have been affected by polyphase deformation and metamorphism with a peak temperature of 650?°C dated to 432?Ma. A total of 104 sulphide and 2 barite samples were analysed for δ34S, 16 whole-rock and quartz samples for δ18O and 12 samples of muscovite for δD. The overall δ34S values range from ?14 to +31‰ with the majority of sampled sulphides lying within a range of +4 to +15‰. In most cases δ34S within each hand specimen behaves in accordance with the equilibrium fractionation sequence, δ34Sgn34Scp34Ssph34Spy. A systematic increase in δ34S from the vein sulphides (?8‰) through schist/amphibolite-hosted (+6‰) and schist-hosted (+7 to +12‰) to dolomite-hosted (+12 to +31‰) occurrences is documented. The δ34S averages of the stratiform schist-hosted sulphides are 17 to 22‰ lower than in the penecontemporaneous seawater sulphate. The Bjørkåsen (+4 to +6‰) occurrence is a volcanogenic massive sulphide (VMS) transitional to sedimentary massive sulphide (SMS), exhalative, massive, pyritic deposit of Cu–Zn–Pb sulphides formed by fluids which obtained H2S via high-temperature reduction of seawater sulphate by oxidation of Fe2+ during the convective circulation of seawater through underlying rock sequences. The Raudvatn, volcanic-hosted, disseminated Cu sulphides (+6 to +8‰) obtained sulphur via a similar process. The Balsnes, stratiform, ‘black schist’-hosted, pyrite–pyrrhotite occurrence (?6 to ?14‰) is represented by typical diagenetic sulphides precipitated via bacteriogenic reduction of coeval (ca. 600?Ma) seawater sulphate (+25 to +35‰) in a system open to sulphate supply. The δ34S values of the Djupvik–Skårnesdalen (+7 to +12‰), Hammerfjell (+5 to 11‰), Kaldådalen (+10 to +12‰) and Njallavarre (+7 to +8‰) stratiform, schist-hosted, massive and disseminated Zn–Pb (±Cu) sulphide occurrences, as well as the stratabound, quartzite-hosted, Au-bearing arsenopyrite occurrence at Langvatnet (+7 to +11‰), suggest that thermochemically reduced connate seawater sulphate was a principal sulphur source. The Sinklien and Tårstad, stratabound, dolomite- and dolomite collapse breccia-hosted, Zn (±Cu–Pb) sulphides are marked by the highest enrichment in 34S (+20 to +31‰). The occurrences ?are?assigned to the Mississippi-Valley-type deposits.?High δ34S values require reduction/replacement of contemporaneous (ca. 590?Ma) evaporitic sulphate (+23 to +34‰) with Corg-rich fluids in a closed system. The Melkedalen (+12 to +15‰), stratabound, fault-controlled, Cu–Zn sulphide deposit is hosted by the ca. 595?Ma dolomitised Melkedalen marble. The deposit is composed of several generations of ore minerals which formed by replacement of host dolomite. Polyphase hydrothermal fluids were introduced during several reactivation episodes of the fault zone. The positive δ34S values with a very limited fractionation (<3‰) are indicative of the sulphide-sulphur generated through abiological, thermochemical reduction of seawater sulphate by organic material. The vein-type Cu (±Au–W) occurrences at Baugefjell, Bugtedalen and Baugevatn (?8 to ?4‰) are of hydrothermal origin and obtained their sulphur from igneous sources with a possible incorporation of sedimentary/diagenetic sulphides. In a broad sense, all the stratiform/stratabound, sediment-hosted, sulphide occurrences studied formed by epigenetic fluids within two probable scenarios which may be applicable separately or interactively: (1) expulsion of hot metal-bearing connate waters from deeper parts of sedimentary basins prior to nappe translation (late diagenetic/catagenetic/epigenetic fluids) or (2) tectonically driven expulsion in the course of nappe translation (early metamorphic fluids). A combination of (1) and (2) is favoured for the stratabound, fault-controlled, Melkedalen and Langvatnet occurrences, whereas the rest are considered to have formed within option (1). The sulphides and their host rocks were transported from unknown distances and thrust on to the Fennoscandian Shield during the course of the Caledonian orogeny. The displaced/allochthonous nature of the Ofoten Cu–Pb–Zn ‘metallogenetic province’ would explain the enigmatically high concentration of small-scale Cu–Pb–Zn deposits that occur only in this particular area of the Norwegian Caledonides.  相似文献   

14.
Integrated studies of seven Proterozoic sediment-hosted, Pb-Zn-Ag sulfide deposits of Brazil, permit the estimation of the age of the hosting sequence and the mineralization, the nature of the sulfur and metal sources, the temperature range of sulfide formation and the environment of deposition. These deposits can be classified into three groups, according to their ages. (a) Archean to Paleoproterozoic: the Boquira deposit, in Bahia state, consists of stratiform massive and disseminated sulfides hosted by parametamorphic sequences of grunnerite-cummingtonite+magnetite that represent a silicate facies of the Boquira Formation (BF). Lead isotope data of galena samples indicate a time span between 2.7 and 2.5 Ga for ore formation, in agreement with the stratigraphic position of the BF. The relatively heavy sulfur isotope compositions for the disseminated and stratiform sulfides (+8.3 to +12.8 ‰ CDT)suggest a sedimentary source for the sulfur. (b) Paleo to Mesoproterozoic: stratiform and stratabound sulfides in association with growth faults are present in the Canoas mine (Ribeira, in Paraná state) and in the Caboclo mineralization (Bahia state). They are hosted by calcsilicates and amphibolites in the Canoas deposit, whereas in the Caboclo area the mineralization is associated with hydrothermally altered dolarenites at the base of the 1.2 Ga Caboclo Formation. The interpreted Pb-Pb age of the Canoas mineralization is coeval with the 1.7 Ga host rocks. Sulfur isotopic data for Canoas sulfides (+1.2 to +16 ‰ CDT) suggest a sea water source for the sulfur. The range between −21.1 and +8.8 ‰ CDT for the Caboclo sulfides could suggest the action of bacterial reduction of seawater sulfates, but this interpretation is not conclusive. (c) Neoproterozoic: stratiform and stratabound sulfide deposits formed during the complex diagenetic history of the host carbonate rocks from the Morro Agudo (Bambui Group), Irecê and Nova Redenção (Una Group), yield heavy sulfur isotope values (+18.9 to +39.4 ‰ CDT). The uniform heavy isotope composition of the barites from these deposits (+25.1 to +40.9 ‰) reflect their origin from Neoproterozoic seawater sulfates. The late-stage, and most important, metallic concentrations represent sulfur scavenged from pre-existing sulfides or from direct reduction of evaporitic sulfate minerals. Lead isotope data from the Bambui Group suggest focused fluid circulation from diverse Proterozoic sediment sources, that probably was responsible for metal transport to the site of sulfide precipitation. (d) Late Proterozoic to Early Paleozoic: lead-zinc sulfides (+pyrite and chalcopyrite) of Santa Maria deposits, in Rio Grande do Sul, form the matrix of arkosic sandstones and conglomerates, and are closely associated with regional faults forming graben structures. Intermediate volcanic rocks are intercalated with the basal siliciclastic members. Lead isotope age of the mineralization (0.59 Ga) is coeval with the host rocks. Sulfur isotopic values between −3.6 and +4.1 are compatible with a deep source for the sulfur.Geological, petrographic and isotopic data of the deposits studied suggest that they were formed during periods of extensional tectonics. Growth faults or reactivated basement structures probably were responsible for localized circulation of metal-bearing fluids within the sedimentary sequences. Sulfides were formed by the reduction of sedimentary sulfates in most cases. Linear structures are important controls for sulfide concentration in these Proterozoic basins.  相似文献   

15.
The Hemlo deposit, near Marathon, Ontario, is one of the largest gold deposits in North America. It is stratiform within Archean metamorphosed volcano-sedimentary rocks. The main ore zone is composed of pyritic, sericitic schist, and massive barite. This is the first report of stratiform barite in the Archean of North America, but other occurrences have since been found west of Hemlo. The mineralization is substantially enriched in Au, Mo, Sb, Hg, Tl and V and lacks carbonate. Because of metamorphism and deformation of the body its genesis is uncertain.87Sr86Sr of .7017 for barite from the deposit is similar to that of the sedimentary barite west of Hemlo and to initial ratios of contemporaneous volcanic rocks. At the base of the main ore zone, barite with δ34S of +8 to +12%. was deposited with ~0%. pyrite. Upward, both barite and pyrite get isotopically lighter, with minimum values for pyrite, to ?17.5%, in non-baritic schist forming the upper part of the ore zone. In drill section, Au grades correlate with the isotopic composition of pyrite. This, and the association of fractionated sulphide with sulphate, suggests that Au, pyrite and barite were deposited contemporaneously. The linked, asymmetric distributions of S minerals and isotopic distributions, which are continuous from section to section, and the isotopic similarity of the Hemlo and western barites are consistent with a syngenetic depositional model.Two sources for the S minerals are considered. In the first, exogenous sulphate from a restricted basin were partially reduced in a geothermal system to form 34S-depleted sulphide. In the second, the sulphate and sulphide are of magmatic-hydrothermal origin. Sulphate and fractionated sulphide are uncommon in Archean rocks, but one or both occur with unusual frequency in major Archean gold deposits. Hydrothermal fluids of moderately high ?O2, containing sulphate and permitting isotopic fractionation between oxidized and reduced S species, may have favoured the dissolution, transport and precipitation of Au.  相似文献   

16.
Volcanic‐hosted massive sulfide (VHMS) deposits of the eastern Lachlan Fold Belt of New South Wales represent a VHMS district of major importance. Despite the metallogenic importance of this terrane, few data have been published for sulfur isotope distribution in the deposits, with the exception of previously published studies on Captains Flat and Woodlawn (Captains Flat‐Goulburn Trough) and Sunny Corner (Hill End Trough). Here is presented 105 new sulfur isotope analyses and collation of a further 92 analyses from unpublished sources on an additional 12 of the VHMS systems in the Hill End Trough. Measured δ34S values range from ‐7.4% to 38.3%, mainly for massive and stockwork mineralisation. Sulfur isotope signatures for polymetallic sulfide mineralisation from the Lewis Ponds, Mt Bulga, Belara and Accost deposits (group 1) are all very similar and vary from ‐1.7% to 5.9%. Ore‐forming fluids for these deposits were likely to have been reducing, with sulfur derived largely from a magmatic source, either as a direct magmatic contribution accompanying felsic volcanism or indirectly through dissolution and recycling of rock sulfide in host volcanic sequences. Sulfur isotope signatures for sulfide mineralisation from the Calula, Commonwealth, Cordillera and Kempfield deposits, Peelwood mine and Sunny Corner (group 2) are similar and have average δ34S values ranging from 5.4% to 8.1%. These deposits appear to have formed from ore fluids that were more oxidising than group 1 deposits, representing a mixed contribution of sulfur derived from partial reduction of seawater sulfate, in addition to sulfur from other sources. The δ34S values for massive sulfides from the John Fardy deposit are the highest in the present study and have a range of 11.9–14.5%, suggesting a greater component of sulfur of seawater origin compared to other VHMS deposits in the Hill End Trough. For barite the sulfur isotope composition for samples from the Commonwealth, Stringers and Kempfield deposits ranges from 12.6% to 38.3%. More than 75% of barite samples have a sulfur isotope composition between 23.4 and 30.6%, close to the previously published estimates of the composition of seawater sulfate during Late Silurian to earliest Devonian times, providing supporting evidence that these deposits formed concurrently with the Late Silurian volcanic event. Sulfur isotope distribution appears to be independent of the host rock unit, although there appears to be a relation linking the sulfur isotope composition of different deposits to defined centres of felsic volcanism. The Mt Bulga, Lewis Ponds and Accost systems are close to coherent felsic volcanic rocks and/or intrusions and have sulfur isotope signatures with a stronger magmatic affinity than group 2 deposits. By contrast, group 2 deposits (including John Fardy) are characterised by 34S‐enrichment and a lesser magmatic signature, are generally confined to clastic units and reworked volcanogenic sediments with lesser coherent volcanics in the local stratigraphy, and are interpreted to have formed distal from the magmatic source. An exception is the Belara deposit, which is hosted by reworked felsic volcanic rocks and has a more pronounced magmatic sulfur isotope signature.  相似文献   

17.
The Bijgan barite deposit, which is located northeast of Delijan in Markazi Province of Iran, occurs as a small lenticular body at the uppermost part of an Eocene volcano-sedimentary rock unit. The presence of fossiliferous and carbonaceous strata suggests that the host rocks were deposited in a quiet marine sedimentary environment. Barite, calcite, iron oxides and carbonaceous clay materials are found as massive patches as well as thin layers in the deposit. Barite is marked by very low concentrations of Sr (1–2%) and total amounts of rare earth elements (REEs) (6.25–17.39?ppm). Chondrite-normalized REE patterns of barite indicate a fractionation of light REEs (LREEs) from La to Sm, similar to those for barite of different origins from elsewhere. The LaCN/LuCN ratios and chondrite-normalized REE patterns reveal that barite in the Bijgan deposit is enriched in LREE relative to heavy rare earth elements (HREEs). The similarity between the Ce/La ratios in the barite samples and those found in deep-sea barite supports a marine origin for barite. Lanthanum and Gd exhibit positive anomalies, which are common features of marine chemical sediments. Cerium shows a negative anomaly in most samples that was inherited from the negative Ce anomaly of hydrothermal fluid that mixed with seawater at the time of barite precipitation. The δ18O values of barites show a narrow range of 9.1–11.4‰, which is close to or slightly lower than that of contemporaneous seawater at the end of the Eocene. This suggests a contribution of oxygen from seawater in the barite-forming solution. The δ34S values of barites (9.5–15.3‰) are lower than that of contemporaneous seawater, which suggests a contribution of magmatic sulfur to the ore-forming solution. The oxygen and sulfur isotope ratios indicate that submarine hydrothermal vent fluids are a good analog for solutions that precipitated barite, due to similarities in the isotopic composition of the sulfates. The available data including tectonic setting, host rock characteristics, REE geochemistry, and oxygen and sulfur isotopic compositions support a submarine hydrothermal origin for the Bijgan barite deposit. At the seafloor, barite deposition occurred where ascending Ba-bearing hydrothermal fluids encountered seawater. Sulfate was derived from the sulfate-bearing marine waters, and, to a lesser extent, by oxidized H2S, which was derived from magmatic hydrothermal fluids.  相似文献   

18.
The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (δ44/40Ca = −2.01 ± 0.15‰) but are different from hydrothermal and cold seep barite samples (δ44/40Ca = −4.13 to −2.72‰). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, Δ44/40Ca = −3.42 to −2.40‰. Temperature, saturation state, , and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by −9‰ at 0 °C and −8‰ at 25 °C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower δ44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals.  相似文献   

19.
This study investigates the sulfur and oxygen isotope fractionations of dissimilatory sulfate reduction and works to reconcile the relationships between the oxygen and sulfur isotopic and elemental systems. We report results of experiments with natural populations of sulfate-reducing bacteria using sediment and seawater from a marine lagoon at Fællestrand on the northern shore of the island of Fyn, Denmark. The experiments yielded relatively large magnitude sulfur isotope fractionations for dissimilatory sulfate reduction (up to approximately 45‰ for 34S/32S) with higher δ18O accompanying higher δ34S, similar to that observed in previous studies. The seawater used in the experiments was spiked by addition of 17O-labeled water and the 17O content of residual sulfate was found to depend on the fraction of sulfate reduced in the experiments. The 17O data provides evidence for recycling of sulfur from metabolic intermediates and for an 18O/16O fractionation of ∼25-30‰ for dissimilatory sulfate reduction. The close correlation between the 17O data and the sulfur isotope data suggests that isotopic exchange between cell water and external water (reactor water) was rapid under experimental conditions. The molar ratio of oxygen exchange to sulfate reduction was found to be about 2.5. This value is slightly lower than observed in studies of natural ecosystems [e.g., Wortmann U. G., Chernyavsky B., Bernasconi S. M., Brunner B., Böttcher M. E. and Swart P. K. (2007) Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim. Cosmochim. Acta71, 4221-4232]. Using recent models of sulfur isotope fractionations we find that our combined sulfur and oxygen isotopic data places constraints on the proportion of sulfate recycled to the medium (78-96%), the proportion of sulfur intermediate sulfite that was recycled by way of APS to sulfate and released back to the external sulfate pool (∼70%), and also that a fraction of the sulfur intermediates between sulfite and sulfide were recycled to sulfate. These parameters can be constrained because of the independent information provided by δ18O, δ34S, δ17O labels, and Δ33S.  相似文献   

20.
Luiswishi is a Congo-type Neoproterozoic sediment-hosted stratiform Cu–Co ore deposit of the Central Africa Copperbelt, located northwest of Lubumbashi (DRC). The ores form two main Cu–Co orebodies hosted by the Mines Subgroup, one in the lower part of the Kamoto Formation and the other at the base of the Dolomitic Shales Formation. Sulphides occur essentially as early parallel layers of chalcopyrite and carrolite, and secondarily as late stockwork sulphides cross-cutting the bedding and the early sulphide generation. Both types of stratiform and stockwork chalcopyrite and carrolite were systematically analyzed for sulphur isotopes, along the lithostratigraphic succession of the Mine Series. The quite similar δ34S values of stratiform sulphides and late stockwork sulphides suggest an in situ recrystallization or a slight remobilization of stockwork sulphides without attainment of isotopic equilibrium between different sulphide phases (chalcopyrite and carrolite). The distribution of δ34S values (−14.4‰ to +17.5‰) combined with the lithology indicates a strong stratigraphic control of the sulphur isotope signature, supporting bacterial sulphate reduction during early diagenesis of the host sediments, in a shallow marine to lacustrine environment. Petrological features combined with sulphur isotopic data of sulphides at Luiswishi and previous results on nodules of anhydrite in the Mine Series indicate a dominant seawater/lacustrine origin for sulphates, precluding a possible hydrothermal participation. The high positive δ34S values of sulphides in the lower orebody at Luiswishi, hosted in massive chloritic–dolomitic siltite (known as Grey R.A.T.), fine-grained stratified dolostone (D.Strat.) and silicified-stromatolitic dolomites alternating with chloritic–dolomitic silty beds (R.S.F.), suggest that they were probably deposited during a period of regression in a basin cut off from seawater. The variations of δ34S values (i.e. the decrease of δ34S values from the Kamoto Formation to the overlying Dolomitic Shales and then the slight increase from S.D.2d to S.D.3a and S.D.3b members) are in perfect agreement with the inferred lithological and transgressive–regressive evolution of the ore-hosting sedimentary rocks [Cailteux, J., 1994. Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization. In: Kampunzu A.B., Lubala, R.T. (Eds.), Neoproterozoic Belts of Zambia, Zaire and Namibia. Journal of African Earth Sciences 19, 279–301].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号