首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samarium-neodymium isotopic analyses of unleached and acid-leached mineral fractions from the recently identified olivine-bearing shergottite Northwest Africa 1195 yield a crystallization age of 347 ± 13 Ma and an value of +40.1 ± 0.9. Maskelynite fractions do not lie on the Sm-Nd isochron and appear to contain a martian surface component with low 147Sm/144Nd and 143Nd/144Nd ratios that was added during shock. The Rb-Sr system is disturbed and does not yield an isochron. Terrestrial Sr appears to have affected all of the mineral fractions, although a maximum initial 87Sr/86Sr ratio of 0.7016 is estimated by passing a 347 Ma reference line through the maskelynite fraction that is least affected by contamination. The high initial value and the low initial 87Sr/86Sr ratio, combined with the geologically young crystallization age, indicate that Northwest Africa 1195 is derived from a source region characterized by a long-term incompatible-element depletion.The age and initial Sr and Nd isotopic compositions of Northwest Africa 1195 are very similar to those of Queen Alexandra Range 94201, indicating these samples were derived from source regions with similar Sr-Nd isotopic systematics. These similarities suggest that these two meteorites share a close petrogenetic relationship and might have been erupted from a common volcano. The meteorites Yamato 980459, Dar al Gani 476, Sayh al Uhaymir 005/008, and Dhofar 019 also have relatively old ages between 474 and 575 Ma and trace element and/or isotopic systematics that are indicative of derivation from incompatible-element-depleted sources. This suggests that the oldest group of meteorites is more closely related to one another than they are to the younger meteorites that are derived from less incompatible-element-depleted sources. Closed-system fractional crystallization of this suite of meteorites is modeled with the MELTS algorithm using the bulk composition of Yamato 980459 as a parent. These models reproduce many of the major element and mineralogical variations observed in the suite. In addition, the rare earth element systematics of these meteorites are reproduced by fractional crystallization using the proportions of phases and extents of crystallization that are calculated by MELTS. Other shergottites that demonstrate enrichments in incompatible-elements and have evolved Sr and Nd isotopic systematics have some geochemical systematics that are similar to those observed in the depleted group. Most notably, although they exhibit a very limited range of incompatible trace element and isotopic compositions, they have highly variable major element compositions. This is also consistent with evolution from a common mantle source region by variable amounts of fractional crystallization. If this scenario is correct, it suggests that the combined effects of source composition and fractional crystallization are likely to account for the major element, trace element, and isotopic diversity of all shergottites.  相似文献   

2.
We report here the results of an investigation of W and Nd isotopes in the SNC (Shergottite-Nakhlite-Chassignite (martian)) meteorites. We have determined that ε182W values in the nakhlites are uniform within analytical uncertainties and have an average value of ∼3. Also, while ε182W values in the shergottites have a limited range (from 0.3-0.7), their ε142Nd values vary considerably (from −0.2-0.9). There appears to be no correlation between ε182W and ε142Nd in the nakhlites and shergottites. These results shed new light on early differentiation processes on Mars, particularly on the timing and nature of fractionation in silicate reservoirs. Assuming a two-stage model, the metallic core is estimated to have formed at ∼12 Myr after the beginning of the solar system. Major silicate differentiation established the nakhlite source reservoir before ∼4542 Ma and the shergottite source reservoirs at 4525 Ma. These ages imply that, within the uncertainties afforded by the 182Hf-182W and 146Sm-142Nd chronometers, the silicate differentiation events that established the source reservoirs of the nakhlites and shergottites may have occurred contemporaneously, possibly during crystallization of a global magma ocean. The distinct 182W-142Nd isotope systematics in the nakhlites and the shergottites imply the presence of at least three isotopically distinct silicate reservoirs on Mars, two of which are depleted in incompatible lithophile elements relative to chondrites, and the third is enriched. The two depleted silicate reservoirs most likely reside in the Martian mantle, while the enriched reservoir could be either in the crust or the mantle. Therefore, the 182W-142Nd isotope systematics indicate that the nakhlites and the shergottites originated from distinct source reservoirs and cannot be petrogenetically related. A further implication is that the source reservoirs of the nakhlites and shergottites on Mars have been isolated since their establishment before ∼4.5 Ga. Therefore, there has been no giant impact or efficient global mantle convection to thoroughly homogenize the Martian mantle following the establishment of the SNC source reservoirs.  相似文献   

3.
Primitive magmas provide critical information on mantle sources, but most Martian meteorites crystallized from fractionated melts. An olivine-phyric shergottite, Yamato 980459 (Y-980459), has been interpreted to represent a primary melt, because its olivine megacrysts have magnesian cores (Fo84-86) that appear to be in equilibrium with the Y-980459 whole-rock composition based on Fe-Mg partitioning. However, crystal size distribution (CSD) plots for Y-980459 olivines show a size gap, suggesting a cumulus origin for some megacrysts. Because melting experiments using the Y-980459 whole-rock composition have been used to infer the thermal structure and volatile contents of the Martian mantle, the interpretation that this rock is primitive should be scrutinized.We report major, minor and trace element compositions of Y-980459 olivines and compare them with results from melting experiments (both hydrous and anhydrous) and thermodynamic calculations. Cores of the olivine megacrysts have major and minor element contents identical to those of the most magnesian olivines from the experiments, but they differ slightly from those of thermodynamic calculations. This is probably because the Y-980459 whole-rock composition lies near the limit of the range of liquids used to calibrate these models. The megacryst cores (Fo80-85) exhibit minor and trace element (Mn-Ni-Co-Cr-V) characteristics distinct from other olivines (megacryst rims and groundmass olivines, Fo < 80), implying that the megacryst cores crystallized under more reduced conditions (∼IW + 1).Y-980459 contains pyroxenes with orthopyroxene cores mantled by pigeonite and augite. We also found some reversely zoned pyroxenes that have augite cores (low-Mg#) mantled by orthopyroxenes (high-Mg#), although they are uncommon. These reversely zoned pyroxenes are interpreted to have grown initially as atoll-like crystals with later crystallization filling in the hollow centers, implying disequilibrium crystallization at a moderate cooling rate (3-7 °C/h). The calculated REE pattern of a melt in equilibrium with normally zoned pyroxene is parallel to those of glass and the Y-980459 whole-rock as well as other depleted olivine-phyric shergottites, suggesting that Y-980459 was derived from a depleted mantle reservoir.Considering the CSD patterns of Y-980459 olivines, we propose that the olivine megacrysts are cumulus crystals which probably formed in a feeder conduit by continuous melt replenishment, and the parent melt composition was indistinguishable from the Y-980459 whole-rock with 0-2 wt% of H2O and 0-5 wt% of CO2. The final magma pulse entrained these cumulus olivines and then crystallized groundmass olivines and pyroxenes. Although Y-980459 contains small amounts of cumulus olivine (<∼6 vol%), we conclude that the Y-980459 whole-rock composition closely approximates a Martian primary melt composition.  相似文献   

4.
Multiple lines of evidence show that the Rb-Sr, Sm-Nd, and Ar-Ar isotopic systems individually give robust crystallization ages for basaltic (or diabasic) shergottite Northwest Africa (NWA) 1460. In contrast to other shergottites, NWA 1460 exhibits minimal evidence of excess 40Ar, thus allowing an unambiguous determination of its Ar-Ar age. The concordant Rb-Sr, Sm-Nd, and Ar-Ar results for NWA 1460 define its crystallization age to be 346 ± 17 Ma (2σ). In combination with petrographic and trace element data for this specimen and paired meteorite NWA 480, these results strongly refute the suggestion by others that the shergottites are ∼4.1 Ga old. Current crystallization and cosmic-ray exposure (CRE) age data permit identification of a maximum of nine ejection events for Martian meteorites (numbering more than 50 unpaired specimens as of 2008) and plausibly as few as five such events. Although recent high resolution imaging of the Martian surface has identified limited areas of sparsely cratered terrains, the meteorite data suggest that either these areas are representative of larger areas from which the meteorites might come, or that the cratering chronology needs recalibration. Time-averaged 87Rb/86Sr = 0.16 for the mantle source of the parent magma of NWA 1460/480 over the ∼4.56 Ga age of the planet is consistent with previously estimated values for bulk silicate Mars in the range 0.13-0.16, and similar to values of ∼0.18 for the “lherzolitic” shergottites. Initial εNd for NWA 1460/480 at 350 ± 16 Ma ago was +10.6 ± 0.5, which implies a time-averaged 147Sm/144Nd of 0.217 in the Martian mantle prior to mafic melt extraction, similar to values of 0.211-0.216 for the “lherzolitic” shergottites. These time-averaged values do not imply a simple two-stage mantle/melt evolution, but must result from multiple episodes of melt extractions from the source regions. Much higher “late-stage” εNd values for the depleted shergottites imply similar processes carried to a greater degree. Thus, NWA 1460/480, the “lherzolitic” shergottites and perhaps EET 79001 give the best (albeit imperfect) estimate of the Sr- and Nd-isotopic characteristics of bulk silicate Mars.  相似文献   

5.
Super-chondritic 142Nd signatures are ubiquitous in terrestrial, Martian and lunar samples, and indicate that the terrestrial planets may have accreted from material with Sm/Nd ratio higher than chondritic. This contradicts the long-held view that chondrites represent a reference composition for the 147Sm-143Nd system. Using coupled 146Sm-142Nd and 147Sm-143Nd systematics in planetary samples, we have proposed a new set of values for the 147Sm/144Nd and 143Nd/144Nd ratios of the bulk silicate Earth (Caro et al., 2008). Here, we revise the Bulk Silicate Earth estimates for the 87Rb-87Sr and 176Lu-176Hf systems using coupled Sr-Nd-Hf systematics in terrestrial rocks. These estimates are consistent with Hf-Nd systematics in lunar samples. The implications of a slightly non-chondritic silicate Earth with respect to the geochemical evolution of the mantle-crust system are then examined. We show that the Archean mantle has evolved with a composition indistinguishable from that of the primitive mantle until about 2 Gyr. Positive ε143Nd and ε176Hf values ubiquitous in the Archean mantle are thus accounted for by the non-chondritic Sm/Nd and Lu/Hf composition of the primitive mantle rather than by massive early crustal formation, which solves the paradox that early Archean domains only have a limited extension in the present-day continents. The Sm-Nd and Lu-Hf evolution of the depleted mantle for the past 3.5 Gyr can be entirely explained by continuous extraction of the continents from a well-mixed mantle. Thus, in contrast to the chondritic Earth model, Sm-Nd mass balance relationships can be satisfied without the need to call upon hidden reservoirs or layered mantle convection. This new Sm-Nd mass balance yields a scenario of mantle evolution consistent with trace element and noble gas systematics. The high 3He/4He mantle component is associated with 143Nd/144Nd compositions indistinguishable from the bulk silicate Earth, suggesting that the less degassed mantle sources did not experience significant fractionation for moderately incompatible elements.  相似文献   

6.
Excesses of 182W have previously been measured in samples from the Moon and Mars, and can be derived from high Hf/W regions in their interiors during their early histories. Although planetary mantles will have superchondritic Hf/W after core formation, the extent to which high Hf/W regions could be generated by magmatic fractionation has not been evaluated. In order to address the latter possibility, we have carried out experiments from 100 MPa to 10.0 GPa, 1150 to 1850°C, at oxygen fugacities near the IW (iron-wüstite) buffer, and measured partition coefficients for W and Hf for plagioclase-liquid, olivine-liquid, orthopyroxene-liquid, clinopyroxene-liquid, garnet-liquid, and metal-liquid pairs. Clinopyroxene and garnet are both capable of fractionating Hf from W during magmatic crystallization or mantle melting, and minor variations in the measured D’s can be attributed to crystal chemical effects. Excesses of 182W and 142Nd in lunar samples can be explained by fractionation of Hf from W, and Sm from Nd (by ilmenite and clinopyroxene) during crystallization of the latest stages of a lunar magma ocean. Correlations of εW with εNd in martian samples could be a result of early silicate fractionation in the martian mantle (clinopyroxene and/or garnet).  相似文献   

7.
Lunar rocks are inferred to tap the different fossil cumulate layers formed during crystallisation of a lunar magma ocean (LMO). A coherent dataset, including Zr isotope data and high precision HFSE (W, Nb, Ta, Zr, Hf) and REE (Nd, Sm, Lu) data, all obtained by isotope dilution, can now provide new insights into the processes active during LMO crystallisation and during the petrogenesis of lunar magmas. Measured 92Zr and 91Zr abundances agree with the terrestrial value within 0.2 ε-units. Incompatible-trace-element enriched rocks from the Procellarum KREEP Terrane (PKT) display Nb/Ta and Zr/Hf above the bulk lunar value (ca. 17), and mare basalts display lower ratios, generally confirming the presence of complementary enriched and depleted mantle reservoirs on the Moon. The full compositional spectrum of lunar basalts, however, also requires interaction with ilmenite-rich layers in the lunar mantle. Notably, the high-Ti mare basalts analysed display the lowest Nb/Ta and Zr/Hf of all lunar rocks, and also higher Sm/Nd at similar Lu/Hf than low-Ti basalts. The high-Ti basalts also exhibit higher and strongly correlated Ta/W (up to 25) and Hf/W (up to 140), at similar W contents, which is difficult to reconcile with ortho- and clinopyroxene-controlled melting. Altogether, these patterns can be explained via assimilation of up to ca. 20% of ilmenite- and clinopyroxene-rich LMO cumulates by more depleted melts from the lower lunar mantle. Direct melting of ilmenite-rich cumulates or the possible presence of residual metals in the lunar mantle both cannot easily account for the observed Ta/W and Hf/W patterns. Cumulate assimilation is also a viable mechanism that can partially buffer the Lu/Hf of mare basalts at relatively low values while generating variable Sm/Nd. Thus, the dichotomy between low Lu/Hf of lunar basalts and high time integrated source Lu/Hf as inferred from Hf isotope compositions can potentially be explained. The proposed assimilation model also has important implications for the short-lived nuclide chronology of the Earth-Moon system. The new Hf/W and Ta/W data, together with a compilation of existing W-Th-U data for lunar rocks, indicate that the terrestrial and lunar mantles are indistinguishable in their Hf/W. Virtually identical εW and Hf/W in the terrestrial and lunar mantle suggest a strong link between final core-mantle equilibration on Earth and the Moon forming giant impact. Previously, linear arrays of lunar samples in 182W vs. Hf/W and 142Nd vs. Sm/Nd spaces have been interpreted as isochrons, arguing for LMO crystallisation as late as 250 Myrs after solar system formation. Based on the proposed assimilation model, the 182W and 142Nd in many lunar magmas can be shown to be decoupled from their ambient Hf/W and Sm/Nd source compositions. As a consequence, the 182W vs. Hf/W and 142Nd vs. Sm/Nd arrays would constitute mixing lines rather than isochrons. Hence, the lunar 182Hf-182W and 146Sm-142Nd data would be fully consistent with an “early” crystallisation age of the LMO, even as early as 50 Myrs after solar system formation when the Moon was probably formed.  相似文献   

8.
Here we search for evidence of the existence of a sub-chondritic 142Nd/144Nd reservoir that balances the Nd isotope chemistry of the Earth relative to chondrites. If present, it may reside in the source region of deeply sourced mantle plume material. We suggest that lavas from Hawai’i with coupled elevations in 186Os/188Os and 187Os/188Os, from Iceland that represent mixing of upper mantle and lower mantle components, and from Gough with sub-chondritic 143Nd/144Nd and high 207Pb/206Pb, are favorable samples that could reflect mantle sources that have interacted with an Early-Enriched Reservoir (EER) with sub-chondritic 142Nd/144Nd.High-precision Nd isotope analyses of basalts from Hawai’i, Iceland and Gough demonstrate no discernable 142Nd/144Nd deviation from terrestrial standards. These data are consistent with previous high-precision Nd isotope analysis of recent mantle-derived samples and demonstrate that no mantle-derived material to date provides evidence for the existence of an EER in the mantle.We then evaluate mass balance in the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd. The Nd isotope systematics of EERs are modeled for different sizes and timing of formation relative to ε143Nd estimates of the reservoirs in the μ142Nd = 0 Earth, where μ142Nd is ((measured 142Nd/144Nd/terrestrial standard 142Nd/144Nd)−1 * 10−6) and the μ142Nd = 0 Earth is the proportion of the silicate Earth with 142Nd/144Nd indistinguishable from the terrestrial standard. The models indicate that it is not possible to balance the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd unless the μ142Nd = 0 Earth has a ε143Nd within error of the present-day Depleted Mid-ocean ridge basalt Mantle source (DMM). The 4567 Myr age 142Nd-143Nd isochron for the Earth intersects μ142Nd = 0 at ε143Nd of +8 ± 2 providing a minimum ε143Nd for the μ142Nd = 0 Earth. The high ε143Nd of the μ142Nd = 0 Earth is confirmed by the Nd isotope systematics of Archean mantle-derived rocks that consistently have positive ε143Nd.If the EER formed early after solar system formation (0-70 Ma) continental crust and DMM can be complementary reservoirs with respect to Nd isotopes, with no requirement for significant additional reservoirs. If the EER formed after 70 Ma then the μ142Nd = 0 Earth must have a bulk ε143Nd more radiogenic than DMM and additional high ε143Nd material is required to balance the Nd isotope systematics of the Earth.  相似文献   

9.
We report on the petrography and geochemistry of the newly discovered olivine-phyric shergottite Larkman Nunatak (LAR) 06319. The meteorite is porphyritic, consisting of megacrysts of olivine (?2.5 mm in length, Fo77-52) and prismatic zoned pyroxene crystals with Wo3En71 in the cores to Wo8-30En23-45 at the rims. The groundmass is composed of finer grained olivine (<0.25 mm, Fo62-46), Fe-rich augite and pigeonite, maskelynite and minor quantities of chromite, ulvöspinel, magnetite, ilmenite, phosphates, sulfides and glass. Oxygen fugacity estimates, derived from the olivine-pyroxene-spinel geo-barometer, indicate that LAR 06319 formed under more oxidizing conditions (QFM -1.7) than for depleted shergottites. The whole-rock composition of LAR 06319 is also enriched in incompatible trace elements relative to depleted shergottites, with a trace-element pattern that is nearly identical to that of olivine-phyric shergottite NWA 1068. The oxygen isotope composition of LAR 06319 (Δ17O = 0.29 ±0.03) confirms its martian origin.Olivine megacrysts in LAR 06319 are phenocrystic, with the most Mg-rich megacryst olivine being close to equilibrium with the bulk rock. A notable feature of LAR 06319 is that its olivine megacryst grains contain abundant melt inclusions hosted within the forsterite cores. These early-trapped melt inclusions have similar trace element abundances and patterns to that of the whole-rock, providing powerful evidence for closed-system magmatic behavior for LAR 06319. Calculation of the parental melt trace element composition indicates a whole-rock composition for LAR 06319 that was controlled by pigeonite and augite during the earliest stages of crystallization and by apatite in the latest stages. Crystal size distribution and spatial distribution pattern analyses of olivine indicate at least two different crystal populations. This is most simply interpreted as crystallization of megacryst olivine in magma conduits, followed by eruption and subsequent crystallization of groundmass olivine.LAR 06319 shows close affinity in mineral and whole-rock chemistry to olivine-phyric shergottite, NWA 1068 and the basaltic shergottite NWA 4468. The remarkable features of these meteorites are that they have relatively similar quantities of mafic minerals compared with olivine-phyric shergottites (e.g., Y-980459, Dho 019), but flat and elevated rare earth element patterns more consistent with the LREE-enriched basaltic shergottites (e.g., Shergotty, Los Angeles). This relationship can be interpreted as arising from partial melting of an enriched mantle source and subsequent crystal-liquid fractionation to form the enriched olivine-phyric and basaltic shergottites, or by assimilation of incompatible-element enriched martian crust. The similarity in the composition of early-trapped melt inclusions and the whole-rock for LAR 06319 indicates that any crustal assimilation must have occurred prior to crystallization of megacryst olivine, restricting such processes to the deeper portions of the crust. Thus, we favor LAR06319 forming from partial melting of an “enriched” and oxidized mantle reservoir, with fractional crystallization of the parent melt upon leaving the mantle.  相似文献   

10.
Combined 147Sm-143Nd and 176Lu-176Hf chronology of the martian meteorite Larkman Nunatak (LAR) 06319 indicates an igneous crystallization age of 193 ± 20 Ma (2σ weighted mean). The individual 147Sm-143Nd and 176Lu-176Hf internal isochron ages are 183 ± 12 Ma and 197 ± 29 Ma, respectively, and are concordant with two previously determined 147Sm-143Nd and 87Rb-87Sr internal isochron ages of 190 ± 26 Ma and 207 ± 14 Ma, respectively (Shih et al., 2009). With respect to the 147Sm-143Nd isotope systematics, maskelynite lies above the isochron defined by primary igneous phases and is therefore not in isotopic equilibrium with the other phases in the rock. Non-isochronous maskelynite is interpreted to result from shock-induced reaction between plagioclase and partial melts of pyroxene and phosphate during transformation to maskelynite, which resulted in it having unsupported 143Nd relative to its measured 147Sm/144Nd ratio. The rare earth element (REE) and high field strength element (HFSE) compositions of major constituent minerals can be modeled as the result of progressive crystallization of a single magma with no addition of secondary components. The concordant ages, combined with igneous textures, mineralogy, and trace element systematics indicate that the weighted average of the radiometric ages records the true crystallization age of this rock. The young igneous age for LAR 06319 and other shergottites are in conflict with models that advocate for circa 4.1 Ga crystallization ages of shergottites from Pb isotope compositions, however, they are consistent with updated crater counting statistics indicating that young volcanic activity on Mars is more widespread than previously realized (Neukum et al., 2010).  相似文献   

11.
Samarium-neodymium isotopic analysis of the martian meteorite Dar al Gani 476 yields a crystallization age of 474 ± 11 Ma and an initial εNd143 value of +36.6 ± 0.8. Although the Rb-Sr isotopic system has been disturbed by terrestrial weathering, and therefore yields no age information, an initial 87Sr/86Sr ratio of 0.701249 ± 33 has been estimated using the Rb-Sr isotopic composition of the maskelynite mineral fraction and the Sm-Nd age. The Sr and Nd isotopic systematics of Dar al Gani 476, like those of the basaltic shergottite QUE94201, are consistent with derivation from a source region that was strongly depleted in incompatible elements early in the history of the solar system. Nevertheless, Dar al Gani 476 is derived from a source region that has a slightly greater incompatible enrichment than the QUE94201 source region. This is not consistent with the fact that the parental magma of Dar al Gani 476 is significantly more mafic than the parental magma of QUE94201, and underscores a decoupling between the major element and trace element-isotopic systematics observed in the martian meteorite suite.Combining the εNd142Nd143 isotopic systematics of the martian meteorites yields a model age for planetary differentiation of 4.513+0.033−0.027 Ga. Using this age, the parent/daughter ratios of martian mantle sources are calculated assuming a two-stage evolutionary history. The calculated sources have very large ranges of parent/daughter ratios (87Rb/86Sr = 0.037-0.374; 147Sm/144Nd = 0.182-0.285; 176Lu/177Hf = 0.028-0.048). These ranges exceed the ranges estimated for terrestrial basalt source regions, but are very similar to those estimated for the sources of lunar mare basalts. In fact, the range of parent/daughter ratios calculated for the martian meteorite sources can be produced by mixing between end-members with compositions similar to lunar mare basalt sources. Two of the sources have compositions that are similar to olivine and pyroxene-rich mafic cumulates with variable proportions of a Rb-enriched phase, such as amphibole, whereas the third source has the composition of liquid trapped in the cumulate pile (i.e. similar to KREEP) after ∼99% crystallization. Correlation between the proportion of trapped liquid in the meteorite source regions and estimates of fO2, suggest that the KREEP-like component may be hydrous. The success of these models in reproducing the martian meteorite source compositions suggests that the variations in trace element and isotopic compositions observed in the martian meteorites primarily reflect melting of the crystallization products of an ancient magma ocean, and that assimilation of evolved crust by mantle derived magmas is not required. Furthermore, the decoupling of major element and trace element-isotopic systematics in the martian meteorite suite may reflect the fact that trace element and isotopic systematics are inherited from the magma source regions, whereas the major element abundances are limited by eutectic melting processes at the time of magma formation. Differences in major element abundances of parental magma, therefore, result primarily from fractional crystallization after leaving their source regions.  相似文献   

12.
We present new ultra-high precision 142Nd/144Nd measurements of early Archaean rocks using the new generation thermal ionization mass spectrometer Triton. Repeated measurements of the Ames Nd standard demonstrate that the 142Nd/144Nd ratio can be determined with external precision of 2 ppm (2σ), allowing confident resolution of anomalies as small as 5 ppm. A major analytical improvement lies in the elimination of the double normalization procedure required to correct our former measurements from a secondary mass fractionation effect. Our new results indicate that metasediments, metabasalts, and orthogneisses from the 3.6 to 3.8 Ga West Greenland craton display positive 142Nd anomalies ranging from 8 to 15 ppm. Using a simple two-stage model with an initial ε143Nd value of 1.9 ± 0.6 ε-units, coupled 147Sm-143Nd and 146Sm-142Nd chronometry constrains mantle differentiation to 50-200 Ma after formation of the solar system. This chronological constraint is consistent with differentiation of the Earth’s mantle during the late stage of crystallization of a magma ocean. We have developed a two-box model describing 142Nd and 143Nd isotopic evolution of depleted mantle during the subsequent evolution of the crust-mantle system. Our results indicate that early terrestrial protocrust had a lifetime of ca. 0.7-1 Ga in order to produce the observed Nd isotope signature of Archaean rocks. In the context of this two box mantle-crust system, we model the evolution of isotopic and chemical heterogeneity of depleted mantle as a function of the mantle stirring time. Using the dispersion of 142Nd/144Nd and 143Nd/144Nd ratios observed in early Archaean rocks, we constrain the stirring time of early Earth’s mantle to 100-250 Ma, a factor of 5 shorter than the stirring time inferred from modern oceanic basalts.  相似文献   

13.
The Moon likely accreted from melt and vapor ejected during a cataclysmic collision between Proto-Earth and a Mars-sized impactor very early in solar system history. The identical W, O, K, and Cr isotope compositions between materials from the Earth and Moon require that the material from the two bodies were well-homogenized during the collision process. As such, the ancient isotopic signatures preserved in lunar samples provide constraints on the bulk composition of the Earth. Two recent studies to obtain high-precision 142Nd/144Nd ratios of lunar mare basalts yielded contrasting results. In one study, after correction of neutron fluence effects imparted to the Nd isotope compositions of the samples, the coupled 142Nd-143Nd systematics were interpreted to be consistent with a bulk Moon having a chondritic Sm/Nd ratio [Rankenburg K., Brandon A. D. and Neal C. R. (2006) Neodymium isotope evidence for a chondritic composition of the Moon. Science312, 1369-1372]. The other study found that their data on the same and similar lunar mare basalts were consistent with a bulk Moon having a superchondritic Sm/Nd ratio [Boyet M. and Carlson R. W. (2007) A highly depleted Moon or a non-magma origin for the lunar crust? Earth Planet. Sci. Lett.262, 505-516]. Delineating between these two potential scenarios has key ramifications for a comprehensive understanding of the formation and early evolution of the Moon and for constraining the types of materials available for accretion into large terrestrial planets such as Earth.To further examine this issue, the same six lunar mare basalt samples measured in Rankenburg et al. [Rankenburg K., Brandon A. D. and Neal C. R. (2006) Neodymium isotope evidence for a chondritic composition of the Moon. Science312, 1369-1372] were re-measured for high-precision Nd isotopes using a multidynamic routine with reproducible internal and external precisions to better than ±3 ppm (2σ) for 142Nd/144Nd ratios. The measurements were repeated in a distinct second analytical campaign to further test their reproducibility. Evaluation of accuracy and neutron fluence corrections indicates that the multidynamic Nd isotope measurements in this study and the 3 in Boyet and Carlson [Boyet M. and Carlson R. W. (2007) A highly depleted Moon or a non-magma origin for the lunar crust? Earth Planet. Sci. Lett.262, 505-516] are reproducible, while static measurements in the previous two studies show analytical artifacts and cannot be used at the resolution of 10 ppm to determine a bulk Moon with either chondritic or superchondritic Sm/Nd ratios. The multidynamic data are best explained by a bulk Moon with a superchondritic Sm/Nd ratio that is similar to the present-day average for depleted MORB. Hafnium isotope data were collected on the same aliquots measured for their 142Nd/144Nd isotope ratios in order to assess if the correlation line for 142Nd-143Nd systematics reflect mixing processes or times at which lunar mantle sources formed. Based on the combined 142Nd-143Nd-176Hf obtained we conclude that the 142Nd-143Nd correlation line measured in this study is best interpreted as an isochron with an age of 229+24−20Ma after the onset of nebular condensation. The uncertainties in the data permit the sources of these samples to have formed over a 44 Ma time interval. These new results for lunar mare basalts are thus consistent with a later Sm-Nd isotope closure time of their source regions than some recent studies have postulated, and a superchondritic bulk Sm/Nd ratio of the Moon and Earth. The superchondritic Sm/Nd signature was inherited from the materials that accreted to make up the Earth-Moon system. Although collisional erosion of crust from planetesimals is favored here to remove subchondritic Sm/Nd portions and drive the bulk of these bodies to superchondritic in composition, removal of explosive basalt material via gravitational escape from such bodies, or chondrule sorting in the inner solar system, may also explain the compositional features that deviate from average chondrites that make up the Earth-Moon system. This inferred superchondritic nature for the Earth similar to the modern convecting mantle means that there is no reason to invoke a missing, subchondritic reservoir to mass balance the Earth back to chondritic for Sm/Nd ratios. However, to account for the subchondritic Sm/Nd ratios of continental crust, a second superchondritic Sm/Nd mantle reservoir is required.  相似文献   

14.
Growing evidence from the accessible geological record reveals that crust-mantle differentiation on Earth started as early as 4.4 Ga. In order to assess the extent of early Archean mantle depletion, we obtained 176Lu-176Hf, 147Sm-143Nd, and high field strength element (HFSE) concentration data for the least altered, well characterized boninite-like metabasalts and associated metasedimentary rocks from the Isua supracrustal belt (southern West Greenland). The metasediments exhibit initial εHf(3720) values from −0.7 to +1.5 and initial εNd(3720) values from +1.6 to +2.1. Initial εHf(3720) values of the least altered boninite-like metabasalts span a range from +3.5 to +12.9 and initial εNd(3720) values from −0.3 to +3.2. These initial Hf-isotope ratios display coherent trends with SiO2, Al2O3/TiO2 and other relatively immobile elements, indicating contamination via assimilation of enriched components, most likely sediments derived from the earliest crust in the region. This model is also consistent with previously reported initial γOs(3720) values for some of the samples. In addition to the positive εHf(3720) values, the least disturbed samples exhibit positive εNd(3720) values and a co-variation of εHf(3720) and εΝd(3720) values. Based on these observations, it is argued, that the most depleted samples with initial εHf(3720) values of up to +12.9 and high 176Lu/177Hf of ∼0.05 to ∼0.09 tap a highly depleted mantle source with a long term depletion history in the garnet stability field. High precision high field strength element (HFSE) data obtained for the Isua samples confirm the contamination trend. Even the most primitive samples display negative Nb-Ta anomalies and elevated Nb/Ta, indicating a subduction zone setting and overprint of the depleted mantle sources by felsic melts generated by partial melting of eclogite. Collectively, the data for boninite-like metabasalts support the presence of strongly depleted mantle reservoirs as previously inferred from Hf isotope data for Hadean zircons and combined 142Nd-143Nd isotope data for early Archean rocks.  相似文献   

15.
Acid leaching of the primitive C-chondrite Murchison and O-chondrite QUE 97008 reveal nucleosynthetic anomalies in Cr, Sr, Ba, Nd, Sm and Hf. The anomalies in all but Cr and Sm are best explained by variable additions of pure s-process nuclides to a background nebular composition slightly enriched in r-process isotopes compared to average Solar System material. Leaching leaves a residue in Murchison that is strongly enriched in s-process nuclides with depletions of over 0.1% in 135Ba and seven parts in 10,000 in 84Sr. If there are p-process anomalies in these two elements, they are lost in the variability caused by different r-, s-process contributions to the normalizing isotopes. The concentration and isotope systematics are consistent with the Ba and Sr isotopic composition in the Murchison residue being strongly influenced by s-process-rich presolar SiC. In general, the nucleosynthetic isotope anomalies are 2- to 5-fold smaller in QUE 97008 than in Murchison. The different magnitudes of isotope anomalies are similar to the difference in matrix abundance between CM and O chondrites consistent with the suggestion that the carriers of nucleosynthetically anomalous material preferentially reside in the matrix and that some of this material has been distributed throughout the O-chondrite minerals as a result of thermal metamorphism.Neodymium, Sm and Hf display variable s-, r-process nuclide abundances as in Ba and Sr, but the anomalies are much smaller (e.g. ε148Nd, ε148Sm = −5.7, 2.1, respectively, in Murchison and −0.43, 0.16, respectively in QUE 97008 residues). After correcting Nd and Sm for s-, r-process variability, Sm in whole rock chondrites shows variable relative abundances of the p-process isotope 144Sm that correlate weakly with 142Nd suggesting that the direct p-process contribution to 142Nd is small (∼7-9%). Nucleosynthetic variability in Nd explains the range in 142Nd/144Nd seen between C and O, E-chondrites, but not the difference between chondrites and all modern Earth rocks, leaving decay of 146Sm and a superchondritic Sm/Nd ratio as the likely explanation for Earth’s high 142Nd/144Nd.  相似文献   

16.
Spinifex-textured.magnesian(MgO 25 wt.%) komatiites from Mesoarchean Banasandra greenstone belt of the Sargur Group in the Dharwar craton,India were analysed for major and trace elements and~(147,146)Sm-~(143,142)Nd systematics to constrain age,petrogenesis and to understand the evolution of Archean mantle.Major and trace element ratios such as CaO/Al_2O_3.Al_2O_3/TiO_2,Gd/Yb,La/Nb and Nb/Y suggest aluminium undepleted to enriched compositional range for these komatiites.The depth of melting is estimated to be varying from 120 to 240 km and trace-element modelling indicates that the mantle source would have undergone multiple episodes of melting prior to the generation of magmas parental to these komatiites.Ten samples of these komatiites together with the published results of four samples from the same belt yield ~(147)Sm-~(143)Nd isochron age of ca.3.14 Ga with an initial ε_(Nd)(f) value of+3.5.High precision measurements of ~(142)Nd/~(144)Nd ratios were carried out for six komatiite samples along with standards AMES and La Jolla.All results are within uncertainties of the terrestrial samples.The absence of~(142)Nd/~(144)Nd anomaly indicates that the source of these komatiites formed after the extinction of ~(146)Sm,i.e.4.3 Ga ago.In order to evolve to the high ε_(Nd)(t) value of +3.5 by 3.14 Ga the time-integrated ratio of~(147)Sm/~(144)Nd should be 0.2178 at the minimum.This is higher than the ratios estimated,so far,for mantle during that time.These results indicate at least two events of mantle differentiation starting with the chondritic composition of the mantle.The first event occurred very early at ~4.53 Ga to create a global early depleted reservoir with superchondritic Sm/Nd ratio.The source of Isua greenstone rocks with positive ~(142)Nd anomaly was depleted during a second differentiation within the life time of ~(146)Sm,i.e.prior to 4.46 Ga.The source mantle of the Banasandra komatiite was a result of a differentiation event that occurred after the extinction of the ~(146)Sm,i.e.at 4.3 Ga and prior to 3.14 Ga.Banasandra komatiites therefore provide evidence for preservation of heterogeneities generated during mantle differentiation at4.3 Ga.  相似文献   

17.
The covariant behavior of Lu-Hf and Sm-Nd isotopes during most magmatic processes has long been recognized, but the details of this behavior in the depleted mantle reservoir have not been adequately examined. We report new whole-rock Hf and Nd isotope data for 1) juvenile, mantle-derived rocks, mid-Archean to Mesozoic in age, and 2) early Archean gneisses from West Greenland. Hf and Nd isotopic compositions of the juvenile rocks are well correlated, with the best fit corresponding to the equation εHf = 1.40 εNd + 2.1, and is similar to the collective Hf-Nd correlation for terrestrial samples of εHf = 1.36 εNd + 3.0. The early Archean Greenland gneisses, in contrast, have an extreme range in εNd values (4.4 to +4.2; Bennett et al., 1993) that is not mirrored by the Hf isotopic system. The εHf values for these rocks are consistently positive and have much less variation (0 to +3.4) than their εNd counterparts.The information from the Hf isotopic compositions of the West Greenland gneisses portrays an early Archean mantle that is relatively isotopically homogeneous at 3.8 to 3.6 Ga and moderately depleted in incompatible elements. There is no evidence that any of these gneisses have been derived from an enriched reservoir. The Hf isotopic data are in stark contrast to the Nd isotopic record and strongly imply that the picture of extreme initial isotopic heterogeneity indicated by Nd isotopes is not a real feature of the West Greenland gneisses but is rather an artifact produced by disturbances in the Sm-Nd isotope system of these rocks.Although Hf and Nd isotopic data do not uniquely constrain either the nature of the earliest crust or the timing of crustal growth, the most probable candidate for the enriched reservoir complementary to the depleted mantle in the pre-4.0 Ga Earth is a mafic, oceanic-type crust. In order to explain the predominantly positive εHf and εNd values for the early Archean rocks, this crust must have had a short residence time at the surface of the Earth before returning to the mantle where it was isolated from mixing with the depleted mantle for several hundred million years. The following period from 3.5 to 2.7 Ga may mark a transition during which this early formed mafic crust was mixed progressively back into the depleted mantle reservoir. While a present-day volume of continental crust at 4.0 Ga cannot be excluded on isotopic grounds, we find such a scenario unlikely based on the lack of direct isotopic and physical evidence for its existence. An important aspect of crustal growth and evolution, therefore, may be the transformation of the enriched reservoir from being predominantly mafic in the early Earth to becoming progressively more sialic through time.  相似文献   

18.
Isotopic analysis of two Archean komatiitic flows from Alexo, Ontario, gives a Pb-Pb isochron age of 2690 ± 15 Ma and a Sm-Nd isochron age of 2752 ± 87 Ma. These ages agree well with U-Pb zircon ages from underlying and overlying volcanics. The variations in element ratios that define the isochrons were not produced during crystallization of the lavas. The spread in U/Pb was caused by submarine alteration soon after eruption, and the spread in Sm/Nd resulted from (a) differences in the composition of the residue of melting, and (b) contamination of the upper komatiite flow through thermal erosion of the lower flow.The 147Sm/144Nd ratio of uncontaminated komatiite is 0.25 which reflects the depleted nature of its mantle source. The Th/U ratio of about 3.4 is probably also representative of depleted mantle. The initial ?Nd of +2.44 ± 0.51 indicates that the mantle depletion took place long before magma formation.  相似文献   

19.
This paper reports isotopic and geochemical studies of eclogites from the western ultrahigh pressure (UHP) and eastern high-pressure (HP) blocks of the Kokchetav subduction-collision zone. These HP and UHP eclogites exhumed in two stages: (1) The rocks of the western block metamorphosed within the field of diamond stability (e.g., Kumdy-Kol and Barchy); (2) In contrast, the metamorphic evolution of the eastern block reached the pressure peak within the stability field of coesite (e.g., Kulet, Chaglinka, Sulu-Tyube, Daulet, and Borovoe). The eclogites vary widely in the ratios of incompatible elements and in the isotope ratios of Nd (143Nd/144Nd = 0.51137-0.513180) and Sr (87Sr/86Sr = 0.703930.78447). The Sulu-Tyube eclogites display isotope-geochemical features close to N-MORB, while those from the other sites are compositionally similar to E-type MORB or island arc basalts (IAB). The model ages TNd(DM) of eclogites vary between 1.95 and 0.67 Ga. The Sulu-Tyube eclogite yields the youngest age; it has the values of εNd(T) (7.2) and 87Sr/86Sr (0.70393) close to the depleted mantle values. The crustal input to the protolith of the Kokchetav eclogites is evident on the εNd(T)-86Sr/87Sr and εNd(T)-T plots. The eclogites make up a trend from DM to country rocks. Some eclogites from the Kulet, Kumdy-Kol, and Barchy localities display signs of partial melting, such as high Sm/Nd (0.65-0.51) and low (La/Sm)N (0.34-0.58) values. The equilibrium temperatures of these eclogites are higher than 850 °C. The geochemical features of eclogites testify to the possibility of the eclogite protolith formation in the tectonic setting of passive continental rift margin subducted to depths over 120 km.  相似文献   

20.
The 182Hf-182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ∼1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al-26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ∼3 Myr after CAI formation and may have continued until ∼10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ∼20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained.The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to changing fO2 in differentiating planetary bodies. Calculated core formation ages for Mars range from 0 to 20 Myr after CAI formation and currently cannot distinguish between scenarios where Mars formed by runaway growth and where its formation was more protracted. Tungsten model ages for core formation in Earth range from ∼30 Myr to >100 Myr after CAIs and hence do not provide a unique age for the formation of Earth. However, the identical 182W/184W ratios of the lunar and terrestrial mantles provide powerful evidence that the Moon-forming giant impact and the final stage of Earth’s core formation occurred after extinction of 182Hf (i.e., more than ∼50 Myr after CAIs), unless the Hf/W ratios of the bulk silicate Moon and Earth are identical to within less than ∼10%. Furthermore, the identical 182W/184W of the lunar and terrestrial mantles is difficult to explain unless either the Moon consists predominantly of terrestrial material or the W in the proto-lunar magma disk isotopically equilibrated with the Earth’s mantle.Hafnium-tungsten chronometry also provides constraints on the duration of magma ocean solidification in terrestrial planets. Variations in the 182W/184W ratios of martian meteorites reflect an early differentiation of the martian mantle during the effective lifetime of 182Hf. In contrast, no 182W variations exist in the lunar mantle, demonstrating magma ocean solidification later than ∼60 Myr, in agreement with 147Sm-143Nd ages for ferroan anorthosites. The Moon-forming giant impact most likely erased any evidence of a prior differentiation of Earth’s mantle, consistent with a 146Sm-142Nd age of 50-200 Myr for the earliest differentiation of Earth’s mantle. However, the Hf-W chronology of the formation of Earth’s core and the Moon-forming impact is difficult to reconcile with the preservation of 146Sm-142Nd evidence for an early (<30 Myr after CAIs) differentiation of a chondritic Earth’s mantle. Instead, the combined 182W-142Nd evidence suggests that bulk Earth may have superchondritic Sm/Nd and Hf/W ratios, in which case formation of its core must have terminated more than ∼42 Myr after formation of CAIs, consistent with the Hf-W age for the formation of the Moon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号