首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report new chemical and isotopic data from 26 volcanic and geothermal gases, vapor condensates, and thermal water samples, collected along the Nicaraguan volcanic front. The samples were analyzed for chemical abundances and stable isotope compositions, with a focus on nitrogen abundances and isotope ratios. These data are used to evaluate samples for volatile contributions from magma, air, air-saturated water, and the crust. Samples devoid of crustal contamination (based upon He isotope composition) but slightly contaminated by air or air-saturated water are corrected using N2/Ar ratios in order to obtain primary magmatic values, composed of contributions from upper mantle and subducted hemipelagic sediment on the down-going plate. Using a mantle endmember with δ15N = −5‰ and N2/He = 100 and a subducted sediment component with δ15N = +7‰ and N2/He = 10,500, the average sediment contribution to Nicaraguan volcanic and geothermal gases was determined to be 71%. Most of the gases were dominated by sediment-derived nitrogen, but gas from Volcán Mombacho, the southernmost sampling location, had a mantle signature (46% from subducted sediment, or 54% from the mantle) and an affinity with mantle-dominated gases discharging from Costa Rica localities to the south. High CO2/N2 exc. ratios (N2 exc. is the N2 abundance corrected for contributions from air) in the south are similar to those in Costa Rica, and reflect the predominant mantle wedge input, whereas low ratios in the north indicate contribution by altered oceanic crust and/or preferential release of nitrogen over carbon from the subducting slab. Sediment-derived nitrogen fluxes at the Nicaraguan volcanic front, estimated by three methods, are 7.8 × 108 mol N/a from 3He flux, 6.9 × 108 mol/a from SO2 flux, and 2.1 × 108 and 1.3 × 109 mol/a from CO2 fluxes calculated from 3He and SO2, respectively. These flux results are higher than previous estimates for Central America, reflecting the high sediment-derived volatile contribution and the high nitrogen content of geothermal and volcanic gases in Nicaragua. The fluxes are also similar to but higher than estimated hemipelagic nitrogen inputs at the trench, suggesting addition of N from altered oceanic basement is needed to satisfy these flux estimates. The similarity of the calculated input of N via the trench to our calculated outputs suggests that little or none of the subducted nitrogen is being recycled into the deeper mantle, and that it is, instead, returned to the surface via arc volcanism.  相似文献   

2.
The Xiong’er Group is an important geologic unit in the southern margin of the North China Craton. It is dominated by the volcanic rocks, dated at 1763 ± 15 Ma, that have SiO2 contents ranging from 52.10 wt% to 73.51 wt%. These volcanic rocks are sub-alkaline and can be classified into three subgroups: basaltic andesites, andesites and rhyolites. They unexceptionally show enrichment of light rare earth elements (LREE) and share similar trace element patterns. Depletions in Nb, Ta, Sr, P and Ti relative to the adjacent elements are evident for all the samples. The volcanic rocks are evolved with low MgO contents (0.29–5.88 wt%) and accordingly low Mg# values of 11–53. The Nd isotopes are enriched and show a weak variation with ?Nd(t) = −7.12 to −9.63. Zircon Hf isotopes are also enriched with ?Hf(t) = −12.02 ± 0.45. The volcanic rocks of the Xiong’er Group are interpreted to represent fractional crystallization of a common mantle source. The volcanic rocks might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by the oceanic subduction in the Late Archean. This brings a correlation with the subduction-modified lithospheric mantle in an extensional setting during breakup of the Columbia supercontinent in the late Paleoproterozoic, rather than in an arc setting. The elevated SiO2 contents and evolved radiogenic isotope features indicate the possible incorporation into their source of lower crustal materials that have similar Nd isotopic characteristics to the subcontinental lithospheric mantle. The existence of extensive Xiong’er volcanic rocks (60,000 km2) indicates an early large-scale subduction-related metasomatism in the area and probably suggest a flat subduction model for the plate-margin magmatism in the Late Archean.  相似文献   

3.
A suite of 34 volcanic gas condensates and particulates from Kilauea (Hawaii), Mt. Etna and Vulcano (Italy), Mt. Merapi (Indonesia), White Island and Mt. Nguaruhoe (New Zealand) were analysed for both Tl isotope compositions and Tl/Pb ratios. When considered together with published Tl-Pb abundance data, the measurements provide globally representative best estimates of Tl/Pb = 0.46 ± 0.25 and ε205Tl = −1.7 ± 2.0 for the emissions of subaerial volcanism to the atmosphere and oceans (ε205Tl is the deviation of the 205Tl/203Tl isotope ratio from NIST SRM 997 isotope standard in parts per 10,000). Compared to igneous rocks of the crust and mantle, volcanic gases were found to have (i) Tl/Pb ratios that are typically about an order of magnitude higher, and (ii) significantly more variable Tl isotope compositions but a mean ε205Tl value that is indistinguishable from estimates for the Earth’s mantle and continental crust. The first observation can be explained by the more volatile nature of Tl compared to Pb during the production of volcanic gases, whilst the second reflects the contrasting and approximately balanced isotope fractionation effects that are generated by partial evaporation of Tl during magma degassing and partial Tl condensation as a result of the cooling and differentiation of volcanic gases.Mass balance calculations, based on results from this and other recent Tl isotope studies, were carried out to investigate whether temporal changes in the volcanic Tl fluxes could be responsible for the dramatic shift in the ε205Tl value of the oceans at ∼55 Ma, which has been inferred from Tl isotope time series data for ferromanganese crusts. The calculations demonstrate that even large changes in the marine Tl input fluxes from volcanism and other sources are unable to significantly alter the Tl isotope composition of the oceans. Based on modelling, it is shown that the large inferred change in the ε205Tl value of seawater is best explained if the oceans of the early Cenozoic featured significantly larger Tl output fluxes to oxic pelagic sediments, whilst the sink fluxes to altered ocean crust remained approximately constant.  相似文献   

4.
The Eastern Lau Spreading Center (ELSC) is the southernmost part of the back-arc spreading axis in the Lau Basin, west of the Tonga trench and the active Tofua volcanic arc. Over its 397-km length it exhibits large and systematic changes in spreading rate, magmatic/tectonic processes, and proximity to the volcanic arc. In 2005, we collected 81 samples of vent water from six hydrothermal fields along the ELSC. The chemistry of these waters varies both within and between vent fields, in response to changes in substrate composition, temperature and pressure, pH, water/rock ratio, and input from magmatic gases and subducted sediment. Hot-spring temperatures range from 229° to 363 °C at the five northernmost fields, with a general decrease to the south that is reversed at the Mariner field. The southernmost field, Vai Lili, emitted water at up to 334 °C in 1989 but had a maximum venting temperature of only 121 °C in 2005, due to waning activity and admixture of bottom seawater into the subseafloor plumbing system. Chloride varies both within fields and from one field to another, from a low of 528 mmol/kg to a high of 656 mmol/kg, and may be enriched by phase separation and/or leaching of Cl from the rock. Concentrations of the soluble elements K, Rb, Cs, and B likewise increase southward as the volcanic substrate becomes more silica-rich, especially on the Valu Fa Ridge. Iodine and δ7Li increase southward, and δ11B decreases as B increases, apparently in response to increased input from subducted sediment as the arc is approached. Species that decrease southward as temperature falls are Si, H2S, Li, Na/Cl, Fe, Mn, and 87Sr/86Sr, whereas pH, alkalinity, Ca, and Sr increase. Oxygen isotopes indicate a higher water/rock ratio in the three systems on Valu Fa Ridge, consistent with higher porosity in more felsic volcanic rocks. Vent waters at the Mariner vent field on the Valu Fa Ridge are significantly hotter, more acid and metal-rich, less saline, and richer in dissolved gases and other volatiles, including H2S, CO2, and F, than the other vent fields, consistent with input of magmatic gases. The large variations in geologic and geophysical parameters produced by back-arc spreading along the ELSC, which exceed those along mid-ocean ridge spreading axes, produce similar large variations in the composition of vent waters, and thus provide new insights into the processes that control the chemistry of submarine hot springs.  相似文献   

5.
Volcanic areas play a key role in the input of elements into the ocean and in the regulation of the geological carbon cycle. The aim of this study is to investigate the budget of silicate weathering in an active volcanic area. We compared the fluxes of the two major weathering regimes occurring at low temperature in soils and at high temperature in the active volcanic arc of Kamchatka, respectively. The volcanic activity, by inducing geothermal circulation and releasing gases to the surface, produces extreme conditions in which intense water-rock interactions occur and may have a strong impact on the weathering budgets. Our results show that the chemical composition of the Kamchatka river water is controlled by surface low-temperature weathering, atmospheric input and, in some limited cases, strongly imprinted by high-temperature water-rock reactions. We have determined the contribution of each source and calculated the rates of CO2 consumption and chemical weathering resulting from low and high-temperature water/rock interactions. The weathering rates (between 7 and 13.7 t/km2/yr for cations only) and atmospheric CO2 consumption rates (∼0.33-0.46 × 106 mol/km2/yr for Kamchatka River) due to rock weathering in soils (low-temperature) are entirely consistent with the previously published global weathering laws relating weathering rates of basalts with runoff and temperature. In the Kamchatka River, CO2 consumption derived from hydrothermal activity represents about 11% of the total HCO3 flux exported by the river. The high-temperature weathering process explains 25% of the total cationic weathering rate in the Kamchatka River. Although in the rivers non-affected by hydrothermal activity, the main weathering agent is carbonic acid (reflected in the abundance of in rivers), in the region most impacted by hydrothermalism, the protons responsible for minerals dissolution are provided not only by carbonic acid, but also by sulphuric and hydrochloric acid. A clear increase of weathering rates in rivers impacted by sulphuric acid can be observed. In the Kamchatka River, 19% of cations are released by hydrothermal acids or the oxidative weathering of sulphur minerals.Our results emphasise the important impact of both low and high-temperature weathering of volcanic rocks on global weathering fluxes to the ocean. Our results also show that besides carbonic acid derived from atmospheric CO2, hydrochloric acid and especially sulphuric acid are important weathering agents. Clearly, sulphuric acid, with hydrothermal activity, are key parameters that cause first-order increases of the chemical weathering rates in volcanic areas. In these areas, accurate determination of weathering budgets in volcanic area will require to better quantify sulphuric acid impact.  相似文献   

6.
Rhenium (Re) is one of the least abundant elements in Earth, averaging 0.28 ppb in the primitive mantle. The unique occurrence of rheniite ReS2 (74.5 wt% of Re) in Kudryavy volcano precipitates raises questions about recycling of Re-rich reservoirs within the Kurile-Kamchatka volcanic Island arc setting. The sources of this unique Re enrichment have been inferred from studies of Re-Os isotope systematic and trace elements in volcanic gases, sulphide precipitates and host volcanic rocks. The fumarolic gas condensates are enriched in hydrophile trace elements relative to fluid-immobile elements and exhibit high Ba/Nb (133-204), Rb/Y (16-406) and Th/Zr (0.01-0.25) ratios. They are characterised by high Re (7-210 ppb) and Os abundances (0.4-0.9 ppb), with 187Os/188Os ratios in a range 0.122-0.152. This Os isotopic compositional range is similar to that of the peridotite xenoliths from the metasomatised mantle wedge above the subducted Pacific plate, the radiogenic isotopic signature of which is probably due to radiogenic addition from a slab-derived fluid.Re- and Os-rich sulphide and oxide minerals precipitate from volcanic gases within fumarolic fields. Molybdenite (MoS2), powellite (CaMoO4) and cannizzarite (Pb4Bi6S13) contain 1.5-1.7 wt%, 10 ppm, and 65-252 ppb of Re, respectively. Both molybdenite and rheniite contain normal Os concentrations, with total Os abundances in a range from 0.6 to 3.1 ppm for molybdenite, and 2.3-24.3 ppb for the rheniite samples. Repeated analyses of osmium isotope ratios for two rheniite samples form a best-fit line with an initial 187Os/188Os ratio of 0.32 ± 0.15 and an age of 79 ± 11 yr, which is the youngest age ever measured in natural samples. The high Re contents in molybdenite and rheniite led to high radiogenic 187Os values, even in the limited period of time, with 187Os/188Os ratios up to 3.3 for molybdenite and up to 4.4 for rheniite.The Os isotopic compositions of andesite-basaltic rocks from the Kudryavy volcano (187Os/188Os up to 0.326) are more radiogenic than those of residual peridotites and fumarolic gas condensates that are mainly constituted from magmatic vapor. Such radiogenic values can be attributed either to the addition of a radiogenic Os-rich subduction component to the depleted mantle, or to the assimilation of older dacitic caldera walls (187Os/188Os = 0.6) during arc magma ascent and emplacement. The latter hypothesis is supported by the correlation between 187Os/188Os ratio and indicators of fractionation such as MgO or Ni, and by low contents of potentially hydrophile trace elements such as Ba, Rb and Th relative to fluid-immobile elements such as Nb, Zr and Y. The high Re flux in the Kudryavy volcano (estimated at ∼46 kg/yr) can be explained by remobilisation of Re by Cl-rich water from an underplated mantle wedge and subducted organic-rich sediments of the Pacific plate.  相似文献   

7.
After more than a decade of multidisciplinary studies of the Central American subduction zone mainly in the framework of two large research programmes, the US MARGINS program and the German Collaborative Research Center SFB 574, we here review and interpret the data pertinent to quantify the cycling of mineral-bound volatiles (H2O, CO2, Cl, S) through this subduction system. For input-flux calculations, we divide the Middle America Trench into four segments differing in convergence rate and slab lithological profiles, use the latest evidence for mantle serpentinization of the Cocos slab approaching the trench, and for the first time explicitly include subduction erosion of forearc basement. Resulting input fluxes are 40–62 (53) Tg/Ma/m H2O, 7.8–11.4 (9.3) Tg/Ma/m CO2, 1.3–1.9 (1.6) Tg/Ma/m Cl, and 1.3–2.1 (1.6) Tg/Ma/m S (bracketed are mean values for entire trench length). Output by cold seeps on the forearc amounts to 0.625–1.25 Tg/Ma/m H2O partly derived from the slab sediments as determined by geochemical analyses of fluids and carbonates. The major volatile output occurs at the Central American volcanic arc that is divided into ten arc segments by dextral strike-slip tectonics. Based on volcanic edifice and widespread tephra volumes as well as calculated parental magma masses needed to form observed evolved compositions, we determine long-term (105 years) average magma and K2O fluxes for each of the ten segments as 32–242 (106) Tg/Ma/m magma and 0.28–2.91 (1.38) Tg/Ma/m K2O (bracketed are mean values for entire Central American volcanic arc length). Volatile/K2O concentration ratios derived from melt inclusion analyses and petrologic modelling then allow to calculate volatile fluxes as 1.02–14.3 (6.2) Tg/Ma/m H2O, 0.02–0.45 (0.17) Tg/Ma/m CO2, and 0.07–0.34 (0.22) Tg/Ma/m Cl. The same approach yields long-term sulfur fluxes of 0.12–1.08 (0.54) Tg/Ma/m while present-day open-vent SO2-flux monitoring yields 0.06–2.37 (0.83) Tg/Ma/m S. Input–output comparisons show that the arc water fluxes only account for up to 40 % of the input even if we include an “invisible” plutonic component constrained by crustal growth. With 20–30 % of the H2O input transferred into the deeper mantle as suggested by petrologic modeling, there remains a deficiency of, say, 30–40 % in the water budget. At least some of this water is transferred into two upper-plate regions of low seismic velocity and electrical resistivity whose sizes vary along arc: one region widely envelopes the melt ascent paths from slab top to arc and the other extends obliquely from the slab below the forearc to below the arc. Whether these reservoirs are transient or steady remains unknown.  相似文献   

8.
We present He, Ne, Ar, and C isotope analyses of hydrothermal brines and gases from fumaroles, hot springs, mofettes and hydrothermal exploration drillings on the major islands of the Lesser Antilles Arc. The origin of hydrothermal brines, which have been analyzed also for O and H isotopes, is essentially meteoric-hydrothermal. Air-corrected isotope compositions of helium (2.2 Rc/Ra < 3He/4He < 8.6 Rc/Ra) and carbon (−20 < δ13CPDB < +0.5) are variable and require a variety of crustal and magmatic sources. The diversity of δ13CPDB and 3He/CO2 ratios within individual volcanic centres suggests that crustal sources (e.g., limestone) contaminate magmatic CO2 en route from high-level magma reservoirs (depth < 15 km) to the surface. A similar contamination may be found for magmatic helium on distal springs. The 3He/4He signature of summit fumaroles, thought to reflect the 3He/4He signature of high-level magmas, shows a remarkable systematic variation along the arc. In addition, there is a correlation throughout the arc between published Sr, Pb, and Nd isotope signatures of lavas and the 3He/4He signatures of summit fumaroles. On the northern islands (Nevis, Montserrat, Guadeloupe, and Dominica) summit fumaroles have the N-MORB signature (3He/4He = 8 ± 1 R/Ra), and the isotope signature of lavas is not dissimilar from comparable intra-oceanic arc tholeiites elsewhere. Variable enrichments in radiogenic Sr and Pb have been reported for lavas of individual volcanic centres of the Southern Islands (Martinique, St.Lucia, and Grenada), and summit fumaroles on these centres match these variations by variable radiogenic He-enrichments, i.e., lower 3He/4He ratios. This correlation suggests that radiogenic Sr and Pb enrichments of lavas and low 3He/4He signatures on summit fumaroles have a common origin, i.e., a terrigenous contaminant derived from the Orinoco depositionary fan. Crustal assimilation is thought to decouple the He isotope system from any other radiogenic isotope system and, therefore, we argue that the observed correlation of He, Sr, Pb, and Nd isotope systems is related to a terrigenous contaminant derived from subducted sediments. Support for this scenario also comes from the matching of low 3He/4He ratios and tectonic features of the forearc thought to favor the subduction of forearc sediments.The present study offers a first clue that, under suitable conditions, crustal helium from oceanic sediments might be subducted to the depth of arc magma sources and, possibly, even recycled into the deeper mantle.  相似文献   

9.
In this paper, we constrain the input and output fluxes of H2O, Cl and S into the southern-central Chilean subduction zone (31°S–46°S). We determine the input flux by calculating the amounts of water, chlorine and sulfur that are carried into the subduction zone in subducted sediments, igneous crust and hydrated lithospheric mantle. The applied models take into account that latitudinal variations in the subducting Nazca plate impact the crustal porosity and the degree of upper mantle serpentinization and thus water storage in the crust and mantle. In another step, we constrain the output fluxes of the subduction zone both to the subcontinental lithospheric mantle and to the atmosphere–geosphere–ocean by the combined use of gas flux determinations at the volcanic arc, volume calculations of volcanic rocks and the combination of mineralogical and geothermal models of the subduction zone. The calculations indicate that about 68 Tg/m/Ma of water enters the subduction zone, as averaged over its total length of 1,480 km. The volcanic output on the other hand accounts for 2 Tg/m/Ma or 3 % of that input. We presume that a large fraction of the volatiles that are captured within the subducting sediments (which accounts for roughly one-third of the input) are cycled back into the ocean through the forearc. This assumption is however questioned by the present lack of evidence for major venting systems of the submarine forearc. The largest part of the water that is carried into the subduction zone in the crust and hydrated mantle (accounting for two-thirds of the input) appears to be transported beyond the volcanic arc.  相似文献   

10.
Picrites from the neovolcanic zones in Iceland display a range in 187Os/188Os from 0.1297 to 0.1381 (γOs = + 2.1 to +8.7) and uniform 186Os/188Os of 0.1198375 ± 32 (2σ). The value for 186Os/188Os is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398 ± 16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in 186Os/188Os and 187Os/188Os from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high 3He/4He, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not.A positive correlation between 187Os/188Os and 3He/4He from 9.6 to 19 Ra in Iceland picrites is best modeled as mixtures of 1 Ga or older ancient recycled crust mixed with primitive mantle or incompletely degassed depleted mantle isolated since 1-1.5 Ga, which preserves the high 3He/4He of the depleted mantle at the time. These mixtures create a hybrid source region that subsequently mixes with the present-day convecting MORB mantle during ascent and melting. This multistage mixing scenario requires convective isolation in the deep mantle for hundreds of million years or more to maintain these compositionally distinct hybrid sources. The 3He/4He of lavas derived from the Iceland plume changed over time, from a maximum of 50 Ra at 60 Ma, to approximately 25-27 Ra at present. The changes are coupled with distinct compositional gaps between the different aged lavas when 3He/4He is plotted versus various geochemical parameters such as 143Nd/144Nd and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.The positive correlation between 187Os/188Os and 3He/4He demonstrates that the Iceland lava He isotopic compositions do not result from simple melt depletion histories and consequent removal of U and Th in their mantle sources. Instead their He isotopic compositions reflect mixtures of heterogeneous materials formed at different times with different U and Th concentrations. This hybridization is likely prevalent in all ocean island lavas derived from deep mantle sources.  相似文献   

11.
Fluids released from the subducting oceanic lithosphere are generally accepted to cause mantle wedge peridotite melting that produces arc magmas. These fluids have long been considered to be dominated by highly oxidized H2O and CO2 as inferred from erupted arc lavas. This inference is also consistent with the geochemistry of peridotite xenoliths in some arc basalts. However, the exact nature of these fluids in the mantle wedge melting region is unknown. Here, we report observations of abundant CH4 + C + H2 fluid inclusions in olivine of a fresh orogenic harzburgite in the Early Paleozoic Qilian suture zone in Northwest China. The petrotectonic association suggests that this harzburgite body represents a remnant of a Paleozoic mantle wedge exhumed subsequently in response to the tectonic collision. The mineralogy, mineral compositions and bulk-rock trace element systematics of the harzburgite corroborate further that the harzburgite represents a high-degree melting residue in a mantle wedge environment. Furthermore, existing and new C, He, Ne and Ar isotopes of these fluid inclusions are consistent with their being of shallow (i.e., crustal vs. deep mantle) origin, likely released from serpentinized peridotites and sediments of the subducting oceanic lithosphere. These observations, if common to subduction systems, provide additional perspectives on mantle wedge melting and subduction-zone magmatism. That is, mantle wedge melting may in some cases be triggered by redox reactions; the highly reduced (∼ΔFMQ-5, i.e., 5 log units below the fayalite-magnetite-quartz oxygen fugacity buffer) CH4-rich fluids released from the subducting slab interact with the relatively oxidized (∼ΔFMQ-1) mantle wedge peridotite, producing H2O and CO2 that then lowers the solidus and incites partial melting for arc magmatism. The significance of slab-component contribution to the geochemistry of arc magmatism would depend on elemental selection and solubility in highly reduced fluids, for which experimental data are needed. We do not advocate the above to be the primary mechanism of arc magmatism, but we do suggest that the observed highly reduced fluids are present in mantle wedge peridotites and their potential roles in arc magmatism need attention.  相似文献   

12.
Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m−2 d−1, was found in conspicuous zones of plant damage or kill that cover 30,000–50,000 m2 in area. Total diffuse CO2 emission was estimated at 21–44 t d−1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d−1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar δ13C values (∼−6‰), 3He/4He ratios (5.9–7.2 RA), and CO2/3He ratios (1–2 × 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 × 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas–water–rock interactions play a major role in the location, magnitude and chemistry of the emissions.  相似文献   

13.
We investigated rates of chemical weathering of volcanic and ophiolitic rocks on Luzon Island, the Philippines. Luzon has a tropical climate and is volcanically and tectonically very active, all factors that should enhance chemical weathering. Seventy-five rivers and streams (10 draining ophiolites, 65 draining volcanic bedrock) and two volcanic hot springs were sampled and analyzed for major elements, alkalinity and 87Sr/86Sr. Cationic fluxes from the volcanic basins are dominated by Ca2+ and Mg2+ and dissolved silica concentrations are high (500-1900 μM). Silica concentrations in streams draining ophiolites are lower (400-900 μM), and the cationic charge is mostly Mg2+. The areally weighted average CO2 export flux from our study area is 3.89 ± 0.21 × 106 mol/km2/yr, or 5.99 ± 0.64 × 106 mol/km2/yr from ophiolites and 3.58 ± 0.23 × 106 mol/km2/yr from volcanic areas (uncertainty given as ±1 standard error, s.e.). This is ∼6-10 times higher than the current best estimate of areally averaged global CO2 export by basalt chemical weathering and ∼2-3 times higher than the current best estimate of CO2 export by basalt chemical weathering in the tropics. Extrapolating our findings to all tropical arcs, we estimate that around one tenth of all atmospheric carbon exported via silicate weathering to the oceans annually is processed in these environments, which amount to ∼1% of the global exorheic drainage area. Chemical weathering of volcanic terranes in the tropics appears to make a disproportionately large impact on the long-term carbon cycle.  相似文献   

14.
Compositions of melt inclusions in olivine (Fo90-64) from 11 localities in Guatemala, Nicaragua and Cost Rica along the Central American Volcanic Arc are used to constrain combined systematics of major and trace elements and volatile components (H2O, S, Cl, F) in parental melts and to estimate volcanic fluxes of volatile elements. The melt inclusions cover the entire range of compositions reported for whole rocks from Central America. They point to large heterogeneity of magma sources on local and regional scales, related to variable contributions of diverse crustal (from the subducting and overriding plates) and mantle (from the wedge and incoming plate) components involved in magma genesis. Water in parental melts correlates inversely with Ti, Y and Na and positively with Ba/La and B/La (with the exception of Irazú Volcano), which indicates mantle melting fluxed by Ba-, B- and H2O-rich, possibly, serpentinite-derived fluid beneath most parts of the arc. Different components with melt-like characteristics (high LREE, La/Nb and probably also Cl, S and F and low Ba/La) control the geochemical peculiarities of Guatemalan and Costa Rican magmas. The composition of parental magmas together with published data on volcanic volumes and total SO2 flux from satellite measurements are used to constrain fluxes of volatile components and to estimate total magmatic flux in Central America. We found that volcanic flux accounts for only 13% of total magmatic and volatile fluxes. The remaining 87% of magmas remained in the lithosphere to form cumulates (∼39%) and intrusives (∼48%). The intrusive fraction of magmatic flux may be significantly larger beneath Nicaragua compared to Costa Rica. Interestingly, total fluxes of magmas and volatiles in Central America are quite similar to the global average estimates. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
We present new He-Ne data for geothermal fluids and He-Ne-Ar data for basalts from throughout the Icelandic neovolcanic zones and older parts of the Icelandic crust. Geothermal fluids, subglacial glasses, and mafic phenocrysts are characterized by a wide range in helium isotope ratios (3He/4He) encompassing typical MORB-like ratios through values as high as 36.8 RA (where RA = air 3He/4He). Although neon in geothermal fluids is dominated by an atmospheric component, samples from the northwest peninsula show a small excess of nucleogenic 21Ne, likely produced in-situ and released to circulating fluids. In contrast, geothermal fluids from the neovolcanic zones show evidence of a contribution of mantle-derived neon, as indicated by 20Ne enrichments up to 3% compared to air. The neon isotope composition of subglacial glasses reveals that mantle neon is derived from both depleted MORB-mantle and a primordial, ‘solar’ mantle component. However, binary mixing between these two endmembers can account for the He-Ne isotope characteristics of the basalts only if the 3He/22Ne ratio of the primordial mantle endmember is lower than in the MORB component. Indeed, the helium to neon elemental ratios (4He/21Ne∗ and 3He/22Nes where 21Ne∗ = nucleogenic 21Ne and 22Nes = ‘solar’-derived 22Ne) of the majority of Icelandic subglacial glasses are lower than theoretical values for Earth’s mantle, as observed previously for other OIB samples. Helium may be depleted relative to neon in high-3He/4He ratio parental melts due to either more compatible behavior during low-degree partial melting or more extensive diffusive loss relative to the heavier noble gases. However, Icelandic glasses show higher 4He/40Ar∗ (40Ar∗ = radiogenic Ar) values for a given 4He/21Ne∗ value compared to the majority of other OIB samples: this observation is consistent with extensive open-system equilibrium degassing, likely promoted by lower confining pressures during subglacial eruptions of Icelandic lavas. Taken together, the He-Ne-Ar systematics of Icelandic subglacial glasses are imprinted with the overlapping effects of helium depletion in the high-3He/4He ratio parental melt, binary mixing of two distinct mantle components, degassing fractionation and interaction with atmospheric noble gases. However, it is still possible to discern differences in the noble gas characteristics of the Icelandic mantle source beneath the neovolcanic zones, with MORB-like He-Ne isotope features prevalent in the Northern Rift Zone and a sharp transition to more primitive ‘solar-like’ characteristics in central and southern Iceland.  相似文献   

16.
Bulk-rock chlorine content and isotopic composition (δ37Cl) were determined in oceanic serpentinites, high-pressure metaperidotites and metasediments in order to gain constraints on the global chlorine cycle associated with hydrothermal alteration and subduction of oceanic lithosphere. The distribution of insoluble chlorine in oceanic serpentinites was also investigated by electron microprobe. The hydrothermally-altered ultramafic samples were dredged along the South West Indian Ridge and the Mid-Atlantic Ridge. The high-pressure metamorphic samples were collected in the Western Alps: metaperidotites in the Erro-Tobbio unit and metasediments in the Schistes Lustrés nappe.Oceanic serpentinites show relatively large variations of bulk-rock Cl contents and δ37Cl values with mean values of 1105 ± 596 ppm and −0.7 ± 0.4‰, respectively (n = 8; 1σ). Serpentines formed after olivine (meshes) show lower Cl content than those formed after orthopyroxene (bastites). In bastites of two different samples, Cl is positively correlated with Al2O3 and negatively correlated with SiO2. These relationships are interpreted as reflecting preferential Cl-incorporation into the bastite structure distorted by Al (substituted for Si) rather than different alteration conditions between olivine and orthopyroxene minerals. High-pressure metaperidotites display relatively homogeneous Cl contents and δ37Cl values with mean values of 467 ± 88 ppm and −1.4 ± 0.1‰, respectively (n = 7; 1σ). A macroscopic high-pressure olivine-bearing vein, formed from partial devolatilization of serpentinites at ∼2.5 GPa and 500-600 °C, shows a Cl content and a δ37Cl value of 603 ppm and −1.6‰, respectively. Metasediments (n = 2) show low whole-rock Cl contents (<15 ppm Cl) that did not allow Cl isotope analyses to be obtained.The range of negative δ37Cl values observed in oceanic serpentinites is likely to result from water-rock interaction with fluids that have negative δ37Cl values. The homogeneity of δ37Cl values from the high-pressure olivine-bearing vein and the metaperidotite samples implies that progressive loss of Cl inherited from oceanic alteration throughout subduction did not significantly fractionate Cl isotopes. Chlorine recycled in subduction zones via metaperidotites should thus show a range of δ37Cl values similar to the range found in oceanic serpentinized peridotites.  相似文献   

17.
In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios (3He/4He = 4-6 Ra, 40Ar/36Ar = 20,000-30,000, δ13C = −4.5‰ to −6.9‰ and δ15N = −1.2‰ to −8.8‰) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high 36Ar content of the diamonds (>1 × 10−9 cm3/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at ∼0.6 × 10−12 cm3/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid.  相似文献   

18.
We have carried out a Pb double-spike and Lu-Hf isotope study of clinopyroxenes from spinel-facies mantle xenoliths entrained in Cenozoic intraplate continental volcanism of the French Massif Central (FMC). U-Th-Pb and Lu-Hf isotope systematics verify the existence of different lithospheric domains beneath the northern and southern FMC. Northern FMC clinopyroxenes have extreme Lu/Hf ratios and ultra-radiogenic Hf (εHf = +39.6 to +2586) that reflect ∼15-25% partial melting in Variscan times (depleted mantle model ages ∼360 Ma). Zr, Hf and Th abundances in these clinopyroxenes are low and unaffected by hydrous/carbonatitic metasomatism that overprinted LILE and light REE abundances and caused decoupling of Lu/Hf-Sm/Nd ratios and Nd-Hf isotopes (εNd = +2.1 to +91.2). Pb isotopes of northern FMC clinopyroxenes are radiogenic (206Pb/204Pb > 19), and typically more so than the host intraplate volcanic rocks. 238U/204Pb ratios range from 17 to 68, and most samples have distinctively low 232Th/238U (<1) and 232Th/204Pb (3-22). Clinopyroxenes from southern FMC lherzolites are generally marked by overall incompatible trace element enrichment including Zr, Hf and Th abundances, and have Pb isotopes that are similar to or less radiogenic than the host volcanic rocks. Hf isotope ratios are less radiogenic (εHf = +5.4 to +41.5) than northern FMC mantle and have been overprinted by silicate-melt-dominated metasomatism that affected this part of FMC mantle. Major element and Lu concentrations of clinopyroxenes from southern FMC harzburgites are broadly similar to northern FMC clinopyroxenes and suggest they experienced similar degrees of melt extraction as northern FMC mantle. 238U/204Pb (53-111) and 232Th/204Pb ratios (157-355) of enriched clinopyroxenes from the southern FMC are extreme and significantly higher than the intraplate volcanic rocks. In summary, mantle peridotites from different parts of the FMC record depletion at ∼360 Ma during Variscan subduction, followed by differing styles of enrichment. Northern FMC mantle was overprinted by a fluid/carbonatitic metasomatic agent that carried elements like U, Pb, Sr and light REE. In contrast, much of the southern FMC mantle was metasomatised by a small-degree partial silicate melt resulting in enrichment of all incompatible trace elements. The extreme mantle 238U/204Pb (northern and southern FMC), 232Th/238U (northern FMC) and 232Th/204Pb ratios (southern FMC), coupled with unremarkable present-day Pb isotope ratios, constrain the timing of enrichment. Mantle metasomatism is a young feature related to melting of the upwelling mantle responsible for Cenozoic FMC volcanism, rather than subduction-related metasomatism intimately associated with mantle depletion during the Variscan orogeny. The varying metasomatic styles relate to pre-existing variations in the thickness of the continental lithospheric lid, which controlled the extent to which upwelling mantle could ascend and melt. In the northern FMC, a thicker and more refractory lithospheric lid (?80 km) only allowed incipient degrees of melting resulting in fluid/carbonatitic metasomatism of the overlying sub-continental lithospheric mantle. The thinner lithospheric lid of the southern FMC (?70 km) allowed larger degrees of melting and resulted in silicate-melt-dominated metasomatism, and also focused the location of the volcanic fields of the FMC above this region.  相似文献   

19.
A combined study including apatite geochemistry, zircon U-Pb, Lu-Hf isotopes and whole-rock geochemistry including Nd isotopes was carried out for the late Mesozoic volcanic rocks from the Luzong Basin, in the lower Yangtze River region, South China. Whole-rock geochemistry indicates the enrichments of large ion lithophile elements (LILE) and light rare earth elements (LREE) as well as depletions of Nb, Ta and Ti. The extremely low Cl contents in apatites strongly contrast with the rather high-K contents in whole rocks. Potential loss of Cl during syn- and post-magmatic processes having been ruled out, Cl-K decoupling is attributed to be a feature inherited from the primary magma, which indicates the involvement of highly dehydrated sediments and altered oceanic crust in the mantle source. A calculation based on apatite and whole-rock geochemistry further illustrates that the source was composed of four end-members in the perspective of Cl/K, Cl/Nb and F/K ratios. The Hf-Nd isotopes are decoupled for the basaltic trachytes from the lower volcanic sequences in the Luzong Basin, with rather low εHf(t) values (mean = − 10.3) and inconsistent Hf-Nd model ages (Hf ~ 1.8 Ga, Nd ~ 1.3 Ga), which indicate the “zircon effect” that in turn requires the incorporation of continental detritus in the source via subduction. However, Hf and Nd isotopes are nearly coupled for the rocks from the upper volcanic sequences in the Luzong Basin. Late-Mesoproterozoic two-stage Hf and Nd model ages (ca. 1.2 Ga) of rocks from the upper volcanic sequences in the Luzong Basin are similar to those of the Neoproterozoic igneous rocks from the Jiangnan orogen, suggesting their relationship with the same subduction event. Based on the combined apatite geochemistry and Hf-Nd isotopes, this work suggests that the source of Luzong volcanic rocks might incorporate Neoproterozoic subducted slab fragments and detrital sediments that had been blocked in the deep lithospheric mantle below the Luzong area since the Neoproterozoic assembly between the Yangtze and Cathaysia blocks. The partial melting may be triggered by the back-arc lithospheric extension related to the subduction of Paleo-Pacific plate in the late Mesozoic.  相似文献   

20.
This paper reports the analyses of unusual oils that accumulate in the Uzon Caldera, situated in the central volcanic region of Kamchatka, Russia. Gas chromatography–mass spectrometry (GC–MS) was used to determine the primary constituents, and the 13C and 14C compositions provided information about the potential source and age of the oils. The 14C ages determined are 1030 ± 40 a BP (measured) or 940 ± 40 a BP (conventional). The δ13C value is −30.6‰ versus the PDB standard, a value consistent with a biological origin. The nearly contemporary age of the C content indicates a geologically recent origin from biogenic detritus and not by synthesis from mantle C. The biogenic origin is supported by the presence of sterane and hopane biomarkers and the δ13C value of the bulk oil. The overall compositions of the oils indicate that they are derived from rapid hydrothermal alteration of algal/bacterial mat detritus buried by volcanic ashfall deposits of the Uzon Caldera. The oils represent the youngest hydrothermal petroleum reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号