首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of Zn isotope fractionation in sulfides   总被引:2,自引:0,他引:2  
Isotope fractionation of Zn between aqueous sulfide, chloride, and carbonate species (Zn2+, Zn(HS)2, , , ZnS(HS), ZnCl+, ZnCl2, , and ZnCO3) was investigated using ab initio methods. Only little fractionation is found between the sulfide species, whereas carbonates are up to 1‰ heavier than the parent solution. At pH > 3 and under atmospheric-like CO2 pressures, isotope fractionation of Zn sulfides precipitated from sulfidic solutions is affected by aqueous sulfide species and the δ66Zn of sulfides reflect these in the parent solutions. Under high PCO2 conditions, carbonate species become abundant. In high PCO2 conditions of hydrothermal solutions, Zn precipitated as sulfides is isotopically nearly unfractionated with respect to a low-pH parent fluid. In contrast, negative δ66Zn down to at least −0.6‰ can be expected in sulfides precipitated from solutions with pH > 9. Zinc isotopes in sulfides and rocks therefore represent a potential indicator of mid to high pH in ancient hydrothermal fluids.  相似文献   

2.
Although the stable oxygen isotope fractionation between dissolved sulfate ion and H2O (hereafter ) is of physico-chemical and biogeochemical significance, no experimental value has been established until present. The primary reason being that uncatalyzed oxygen exchange between and H2O is extremely slow, taking 105 years at room temperature. For lack of a better approach, values of 16‰ and 31‰ at 25 °C have been assumed in the past, based on theoretical ‘gas-phase’ calculations and extrapolation of laboratory results obtained at temperatures >75 °C that actually pertain to the bisulfate system. Here I use novel quantum-chemistry calculations, which take into account detailed solute-water interactions to establish a new value for of 23‰ at 25 °C. The results of the corresponding calculations for the bisulfate ion are in agreement with observations. The new theoretical values show that sediment -data, which reflect oxygen isotope equilibration between sulfate and ambient water during microbial sulfate reduction, are consistent with the abiotic equilibrium between and water.  相似文献   

3.
We present multiple sulfur isotope measurements of sulfur compounds associated with the oxidation of H2S and S0 by the anoxygenic phototrophic S-oxidizing bacterium Chlorobium tepidum. Discrimination between 34S and 32S was +1.8 ± 0.5‰ during the oxidation of H2S to S0, and −1.9 ± 0.8‰ during the oxidation of S0 to , consistent with previous studies. The accompanying Δ33S and Δ36S values of sulfide, elemental sulfur, and sulfate formed during these experiments were very small, less than 0.1‰ for Δ33S and 0.9‰ for Δ36S, supporting mass conservation principles. Examination of these isotope effects within a framework of the metabolic pathways for S oxidation suggests that the observed effects are due to the flow of sulfur through the metabolisms, rather than abiotic equilibrium isotope exchange alone, as previously suggested. The metabolic network comparison also indicates that these metabolisms work to express some isotope effects (between sulfide, polysulfides, and elemental sulfur in the periplasm) and suppress others (kinetic isotope effects related to pathways for oxidation of sulfide to sulfate via the same enzymes involved in sulfate reduction acting in reverse). Additionally, utilizing fractionation factors for phototrophic S oxidation calculated from our experiments and for other oxidation processes calculated from the literature (chemotrophic and inorganic S oxidation), we constructed a set of ecosystem-scale sulfur isotope box models to examine the isotopic consequences of including sulfide oxidation pathways in a model system. These models demonstrate how the small δ34S effects associated with S oxidation combined with large δ34S effects associated with sulfate reduction (by SRP) and sulfur disproportionation (by SDP) can produce large (and measurable) effects in the Δ33S of sulfur reservoirs. Specifically, redistribution of material along the pathways for sulfide oxidation diminishes the net isotope effect of SRP and SDP, and can mask the isotopic signal for sulfur disproportionation if significant recycling of S intermediates occurs. We show that the different sulfide oxidation processes produce different isotopic fields for identical proportions of oxidation, and discuss the ecological implications of these results to interpreting minor S isotope patterns in modern systems and in the geologic record.  相似文献   

4.
In order to reconstruct paleo-environmental conditions for the saline playa lakes of the Rio Grande Rift, we investigated sediment sulfate sources using sulfur isotope compositions of dissolved ions in modern surface water, groundwater, and precipitated in the form of gypsum sediments deposited during the Pleistocene and Holocene in the Tularosa and Estancia Basins. The major sulfate sources are Lower and Middle Permian marine evaporites (δ34S of 10.9-14.4‰), but the diverse physiography of the Tularosa Basin led to a complex drainage system which contributed sulfates from various sources depending on the climate at the time of sedimentation. As inferred from sulfur isotope mass balance constraints, weathering of sulfides of magmatic/hydrothermal and sedimentary origin associated with climate oscillations during Last Glacial Maximum contributed about 35-50% of the sulfates and led to deposition of gypsum with δ34S values of −1.2‰ to 2.2‰ which are substantially lower than Permian evaporates. In the Estancia Basin, microbial sulfate reduction appears to overprint sulfur isotopic signatures that might elucidate past groundwater flows. A Rayleigh distillation model indicates that about 3-18% of sulfates from an inorganic groundwater pool (δ34S of 12.6-13.8‰) have been metabolized by bacteria and preserved as partially to fully reduced sulfur-bearing minerals species (elemental sulfur, monosulfides, disulfides) with distinctly negative δ34S values (−42.3‰ to −20.3‰) compared to co-existing gypsum (−3.8‰ to 22.4‰). For the Tularosa Basin microbial sulfate reduction had negligible effect on δ34S value of the gypsiferous sediments most likely because of higher annual temperatures (15-33 °C) and lower organic carbon content (median 0.09%) in those sediments leading to more efficient oxidation of H2S and/or smaller rates of sulfate reduction compared to the saline playas of the Estancia Basin (5-28 °C; median 0.46% of organic carbon).The White Sands region of the Tularosa Basin is frequently posited as a hydrothermal analogue for Mars. High temperatures of groundwater (33.3 °C) and high δ18O(H2O) values (1.1‰) in White Sands, however, are controlled predominantly by seasonal evaporation rather than the modern influx of hydrothermal fluids. Nevertheless, it is possible that some of the geochemical processes in White Sands, such as sulfide weathering during climate oscillations and upwelling of highly mineralized waters, might be considered as valid terrestrial analogues for the sulfate cycle in places such as Meridiani Planum on Mars.  相似文献   

5.
Sphalerite oxidation is a common process under acid-mine drainage (AMD) conditions and results in the release of , Zn and potentially toxic trace metals, which can pollute rivers and oceans. However, there are only a few studies on the mechanisms of aerobic sphalerite oxidation. Oxygen and S isotope investigations of the produced may contribute to the understanding of sphalerite oxidation mechanisms so helping to interpret field data from AMD sites. Therefore, batch oxidation experiments with an Fe-rich sphalerite were performed under aerobic abiotic conditions at different initial pH values (2 and 6) for different lengths of time (2–100 days). The O and S isotope composition of the produced indicated changing oxidation pathways during the experiments. During the first 20 days of the experiments at both initial pH values, molecular O2 was the exclusive O source of . Furthermore, the lack of S isotope enrichment processes between and sphalerite indicated that O2 was the electron acceptor from sphalerite S. As the oxidation proceeded, a sufficient amount of released Fe(II) was oxidized to Fe(III) by O2. Therefore, electrons could be transferred from sphalerite S sites to adsorbed hydrous Fe(III) and O from the hydration sphere of Fe was incorporated into the produced as indicated by decreasing δ18OSO4 values which became more similar to the δ18OH2O values. The enrichment of 32S in relative to the sphalerite may also result from sphalerite oxidation by Fe(III).The incorporation of O2 into during the oxidation of sphalerite was associated with an O isotope enrichment factor εSO4–O2 of ca. −22‰. The O isotope enrichment factor εSO4–H2O was determined to be ?4.1‰. A comparison with O and S studies of other sulfides suggests that there is no general oxidation mechanism for acid-soluble sulfides.  相似文献   

6.
Sedimentary S cycling is usually conceptualized and interpreted within the context of steadily accreting (1-D) transport-reaction regimes. Unsteady processes, however, are common in many sedimentary systems and can result in dramatically different S reaction balances and diagenetic products than steady conditions. Globally important common examples include tropical deltaic topset and inner shelf muds such as those extending from the Amazon River ∼1600 km along the Guianas coast of South America. These deposits are characterized by episodic reworking of the surface seabed over vertical depths of ∼0.1-3 m. Reworked surface sediments act as unsteady, suboxic batch reactors, unconformably overlying relict anoxic, often methanic deposits, and have diagenetic properties largely decoupled from net accumulation of sediment. Despite well-oxygenated water and an abundant reactive organic matter supply, physical disturbance inhibits macrofauna, and benthic communities are dominated by microbial biomass across immense areas. In the surficial suboxic layer, molecular biological analyses, tracer experiments, sediment C/S/Fe compositions, and δ34S, δ18O of pore water indicate close coupling of anaerobic C, S, and Fe cycles. δ18O- can increase by 2-3‰ during anaerobic recycling without net change in δ34S-, demonstrating reduction coupled to complete anaerobic reoxidation to and a δ18O- reduction + reoxidation fractionation factor?12‰ (summed magnitudes). S reoxidation must be coupled to Fe-oxide reduction, contributing to high dissolved Fe2+ (∼1 mM) and Fe mobilization-export. The reworking of Amazon-Guianas shelf muds alone may isotopically alter δ18O- equivalent in mass to?25% of the annual riverine delivery of to the global ocean. Unsteady conditions result in preservation of unusually heavy δ34S isotopic compositions of residual Cr reducible S, ranging from 0‰ to >30‰ in physically reworked deposits. In contrast, bioturbated facies adjacent to physically reworked regions accumulate isotopically light S (δ34S to −20‰) in otherwise similar decomposition regimes. The isotopic patterns of both physically and biologically reworked regions can be simulated with simple diagenetic models. Heavy S isotopic signatures are largely a consequence of unsteady diffusion and progressive anaerobic burndown into underlying deposits, whereas isotopically depleted bioturbated deposits predominantly reflect biogenic diffusive scaling and isotopic distillation/diffusive pumping associated with reoxidation in burrow walls immediately adjacent to reduced zones. The S isotopic transition from unsteady physically controlled regions of the Amazon delta moving laterally into bioturbated facies mimics the transition of S isotopic patterns temporally in the geologic record during the rise of bioturbation. No special role for S disproportionation is required to explain these differences. The potential role of unsteady, suboxic diagenesis and dynamic reworking of sediments has been largely ignored in models of the evolution of surficial elemental cycling and interpretations of the geologic record.  相似文献   

7.
The effect of sulfur dissolved as sulfide (S2−) in silicate melts on the activity coefficients of NiO and some other oxides of divalent cations (Ca, Cr, Mn, Fe and Co) has been determined from olivine/melt partitioning experiments at 1400 °C in six melt compositions in the system CaO-MgO-Al2O3-SiO2 (CMAS), and in derivatives of these compositions at 1370 °C, obtained from the six CMAS compositions by substituting Fe for Mg (FeCMAS). Amounts of S2− were varied from zero to sulfide saturation, reaching 4100 μg g−1 S in the most sulfur-rich silicate melt. The sulfide solubilities compare reasonably well with those predicted from the parameterization of the sulfide capacity of silicate melts at 1400 °C of O’Neill and Mavrogenes (2002), although in detail systematic deviations indicate that a more sophisticated model may improve the prediction of sulfide capacities.The results show a barely discernible effect of S2− in the silicate melt on Fe, Co and Ni partition coefficients, and also surprisingly, a tiny but resolvable effect on Ca partitioning, but no detectable effect on Cr, Mn or some other lithophile incompatible elements (Sc, Ti, V, Y, Zr and Hf). Decreasing Mg# of olivine (reflecting increasing FeO in the system) has a significant influence on the partitioning of several of the divalent cations, particularly Ca and Ni. We find a remarkably systematic correlation between and the ionic radius of M2+, where M = Ca, Cr, Mn, Fe, Co or Ni, which is attributable to a simple relationship between size mismatch and excess free energies of mixing in Mg-rich olivine solid solutions.Neither the effect of S2− nor of Mg#ol is large enough by an order of magnitude to account for the reported variations of obtained from electron microprobe analyses of olivine/glass pairs from mid-ocean ridge basalts (MORBs). Comparing these MORB glass analyses with the Ni-MgO systematics of MORB from other studies in the literature, which were obtained using a variety of analytical techniques, shows that these electron microprobe analyses are anomalous. We suggest that the reported variation of with S content in MORB is an analytical artifact.Mass balance of melt and olivine compositions with the starting compositions shows that dissolved S2− depresses the olivine liquidus of haplobasaltic silicate melts by 5.8 × 10−3 (±1.3 × 10−3) K per μg g−1 of S2−, which is negligible in most contexts. We also present data for the partitioning of some incompatible trace elements (Sc, Ti, Y, Zr and Hf) between olivine and melt. The data for Sc and Y confirm previous results showing that and decrease with increasing SiO2 content of the melt. Values of average 0.01 with most falling in the range 0.005-0.015. Zr and Hf are considerably more incompatible than Ti in olivine, with and about 10−3. The ratio / is well constrained at 0.611 ± 0.016.  相似文献   

8.
Sulfur isotope composition (δ34S) profiles in sediment pore waters often show an offset between sulfate and sulfide much greater in magnitude than S isotope fractionations observed in pure cultures. A number of workers have invoked an additional reaction, microbial disproportionation of sulfur intermediates, to explain the offset between experimental and natural systems. Here, we present an alternative explanation based on modeling of pore water sulfate and sulfide concentrations and stable isotope data from the Cariaco Basin (ODP Leg 165, Site 1002B). The use of unique diffusion coefficients for and , based on their unequal molecular masses, resulted in an increase in the computed fractionation by almost 10‰, when compared to the common assumption of equal diffusion coefficients for the two species. These small differences in diffusion coefficients yield calculated isotopic offsets between coeval sediment pore water sulfate and sulfide without disproportionation (up to 53.4‰) that exceed the largest fractionations observed in experimental cultures. Furthermore, the diffusion of sulfide within sediment pore waters leads to values that are even greater than those predicted by our model for sulfate reduction with unique diffusion coefficients. These diffusive effects on the sulfur isotope composition of pore water sulfate and sulfide can impact our interpretations of geologic records of sulfate and sulfide minerals, and should be considered in future studies.  相似文献   

9.
Four or five sets of ab initio models, including Unrestricted Hartree Fock (UHF) and hybrid Density Functional Theory (DFT) are calculated for each species in a series of aqueous ferric aquo-chloro complexes: , , , FeCl3(H2O)3, FeCl3(H2O)2, , FeCl5H2O2−, , ) in order to determine the relative isotopic fractionation among the complexes, to compare the results of different models for the same complexes, to examine factors that influence the magnitude of the isotopic fractionation, and to compare bond-partner-driven fractionation with redox-driven fractionation.Relative to , all models show a nearly linear decrease in 56Fe/54Fe as the number of Cl ions per Fe3+ ion increases, with slopes of −0.8‰ to −1.0‰ per Cl at 20 °C. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 8.93‰ to 9.73‰ for , 8.04-9.12‰ for , 7.61-8.73‰ for , 7.14-8.25‰ for , and 3.09-4.41‰ for . The fractionation between and ranges from 1.5‰ to 2.6‰, depending on the model; this is comparable in magnitude to fractionation effects due to Fe3+/Fe2+ redox reactions. β values from the UHF models are consistently higher than those from the hybrid DFT models.Isotopic fractionation is shown to be sensitive to differences in ligand bond stiffness (above), coordination number, bond length, and the frequency of the asymmetric Fe-X stretching vibrational mode, as predicted by previous theoretical studies. Complexes with smaller coordination numbers have higher 1000 ln β (7.46‰, 5.25‰, and 3.48‰ for , ,, respectively, from the B3LYP/6-31G(d) model). Species with the same number of chlorides but fewer waters also show the effect of coordination number on 1000 ln β: (7.46‰ vs. 7.05‰ for FeCl3(H2O)2 vs. FeCl3(H2O)3 and 5.25‰ vs. 4.94‰ for vs. FeCl5H2O2− with the B3LYP/6-31G(d) model). As more Fe-Cl bonds substitute for Fe-OH2 bonds (with a resulting decrease in β), the lengths of the Fe-Cl bonds and the Fe-O bonds increase.Preliminary modeling of shows an Fe3+/Fe2+ fractionation of 3.2‰ for the B3LYP/6-31G(d) model, in agreement with previous studies. The addition of an explicit outer hydration sphere of 12 H2O molecules to models of improves agreement with measured vibrational frequencies and bond lengths; 1000 ln β increases by 0.8-1.0‰. An additional hydration sphere around increases 1000 ln β by only 0.1‰.Isotopic fractionations predicted for this simple system imply that ligands present in an aqueous iron environment are potentially important drivers of fractionation, and suggest that significant fractionation effects are likely in other aqueous systems containing sulfides or organic ligands. Fractionation effects due to both speciation and redox must be considered when interpreting iron isotope fractionations in the geological record.  相似文献   

10.
The quantification of silicon isotopic fractionation by biotic and abiotic processes contributes to the understanding of the Si continental cycle. In soils, light Si isotopes are selectively taken up by plants, and concentrate in secondary clay-sized minerals. Si can readily be retrieved from soil solution through the specific adsorption of monosilicic acid () by iron oxides. Here, we report on the Si-isotopic fractionation during adsorption on synthesized ferrihydrite and goethite in batch experiment series designed as function of time (0-504 h) and initial concentration (ic) of Si in solution (0.21-1.80 mM), at 20 °C, constant pH (5.5) and ionic strength (1 mM). At various contact times, the δ29Si vs. NBS28 compositions were determined in selected solutions (ic = 0.64 and 1.06 mM Si) by MC-ICP-MS in dry plasma mode with external Mg doping with an average precision of ±0.08‰ (±2σSEM). Per oxide mass, ferrihydrite (74-86% of initial Si loading) adsorbed more Si than goethite (37-69%) after 504 h of contact over the range of initial Si concentration 0.42-1.80 mM. Measured against its initial composition (δ29Si = +0.01 ± 0.04‰ (±2σSD)), the remaining solution was systematically enriched in 29Si, reaching maximum δ29Si values of +0.70 ± 0.07‰ for ferrihydrite and +0.50 ± 0.08‰ for goethite for ic 1.06 mM. The progressive 29Si enrichment of the solution fitted better a Rayleigh distillation path than a steady state model. The fractionation factor 29ε (±1σSD) was estimated at −0.54 ± 0.03‰ for ferrihydrite and −0.81 ± 0.12‰ for goethite. Our data imply that the sorption of onto synthetic iron oxides produced a distinct Si-isotopic fractionation for the two types of oxide but in the same order than that generated by Si uptake by plants and diatoms. They further suggest that the concentration of light Si isotopes in the clay fraction of soils is partly due to sorption onto secondary clay-sized iron oxides.  相似文献   

11.
Ammonium fixed in micas of metamorphic rocks is a sensitive indicator both of organic-inorganic interactions during diagenesis as well as of the devolatilization history and fluid/rock interaction during metamorphism. In this study, a collection of geochemically well-characterized biotite separates from a series of graphite-bearing Paleozoic greenschist- to upper amphibolite-facies metapelites, western Maine, USA, were analyzed for ammonium nitrogen () contents and isotopic composition (δ15NNH4) using the HF-digestion distillation technique followed by the EA-IRMS technique. Biotite separates, sampled from 9 individual metamorphic zones, contain 3000 to 100 ppm with a wide range in δ15N from +1.6‰ to +9.1‰. Average contents in biotite show a distinct decrease from about 2750 ppm for the lowest metamorphic grade (∼500 °C) down to 218 ppm for the highest metamorphic grade (∼685 °C). Decreasing abundances in are inversely correlated in a linear fashion with increasing K+ in biotite as a function of metamorphic grade and are interpreted as a devolatilization effect. Despite expected increasing δ15NNH4 values in biotite with nitrogen loss, a significant decrease from the Garnet Zones to the Staurolite Zones was found, followed by an increase to the Sillimanite Zones. This pattern for δ15NNH4 values in biotite inversely correlates with Mg/(Mg + Fe) ratios in biotite and is discussed in the framework of isotopic fractionation due to different exchange processes between or , reflecting devolatilization history and redox conditions during metamorphism.  相似文献   

12.
13.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

14.
The oxygen isotope fractionation between the structural carbonate of inorganically precipitated hydroxyapatite (HAP) and water was determined in the range 10-37 °C. Values of 1000 ln α() are linearly correlated with inverse temperature (K) according to the following equation: 1000 ln α() = 25.19 (±0.53)·T−1 − 56.47 (±1.81) (R2 = 0.998). This fractionation equation has a slightly steeper slope than those already established between calcite and water ( [O’Neil et al., 1969] and [Kim and O’Neil, 1997]) even though measured fractionations are of comparable amplitude in the temperature range of these experimental studies. It is consequently observed that the oxygen isotope fractionation between apatite carbonate and phosphate increases from about 7.5‰ up to 9.1‰ with decreasing temperature from 37 °C to 10 °C. A compilation of δ18O values of both phosphate and carbonate from modern mammal teeth and bones confirms that both variables are linearly correlated, despite a significant scattering up to 3.5‰, with a slope close to 1 and an intercept corresponding to a 1000 ln α() value of 8.1‰. This apparent fractionation factor is slightly higher or close to the fractionation factor expected to be in the range 7-8‰ at the body temperature of mammals.  相似文献   

15.
Several studies have shown that there is a strong relationship between the distribution of crenarchaeotal isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) and sea surface temperature (SST). Based on this, a ratio of certain GDGTs, called TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms), was developed as a SST proxy. In this study, we determined the distribution of crenarchaeotal isoprenoid GDGTs in 116 core-top sediments mostly from (sub)polar oceans and combined these data with previously published core-top data. Using this extended global core-top dataset (n = 426), we re-assessed the relationship of crenarchaeal isoprenoid GDGTs with SST. We excluded data from the Red Sea from the global core-top dataset to define new indices and calibration models, as the Red Sea with its elevated salinity appeared to behave differently compared to other parts of the oceans. We tested our new indices and calibration models on three different paleo datasets, representing different temperature ranges. Our results indicate that the crenarchaeol regio-isomer plays a more important role for temperature adaptation in (sub)tropical oceans than in (sub)polar oceans, suggesting that there may be differences in membrane adaptation of the resident crenarchaeotal communities at different temperatures. We, therefore, suggest to apply two different calibration models. For the whole calibration temperature range (−3 to 30 °C), a modified version of TEX86 with a logarithmic function which does not include the crenarchaeol regio-isomer, called , is shown to correlate best with SST: (r= 0.86, n=396, p <0.0001). Application of on sediments from the subpolar Southern Ocean results in realistic absolute SST estimates and a similar SST trend compared to a diatom SST record from the same core. , which is defined as the logarithmic function of TEX86, yields the best correlation with SST, when the data from the (sub)polar oceans are removed: (r= 00.87, n = 255, p < 0.0001). Furthermore, gives the best correlation for mescosm data with temperatures ranging between 10 and 46 °C. For Quaternary sediments from the tropical Arabian Sea, both and yield similar trends and SST estimates. However, the extrapolation of calibration on a sediment record from a greenhouse world ocean predicts more reliable absolute SST estimates and relative SST changes in agreement with estimates based on the δ18O of planktonic foraminifera. Based on the comparison of and derived SSTs using the core top data, we recommend applying above 15 °C and below 15 °C. In cases where paleorecords encompass temperatures both below and above 15 °C, we suggest to use .  相似文献   

16.
Dissolved inorganic nitrogen, largely in reduced form (), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH4(T) concentration and δ18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH4(T) and other solutes in some areas. The isotopic composition of dissolved NH4(T) is highly variable (δ15N = −6‰ to +30‰) and is positively correlated with pH values. In comparison to likely δ15N values of nitrogen source materials (+1‰ to +7‰), high δ15N values in hot springs with pH >5 are attributed to isotope fractionation associated with loss by volatilization. NH4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative δ15N values that are attributed to condensation. NH4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.  相似文献   

17.
Dissolution kinetics at the aqueous solution-calcite interface at 50 °C were investigated using in situ atomic force microscopy (AFM) to reveal the influence of magnesium concentration and solution saturation state on calcite dissolution kinetics and surface morphology. Under near-equilibrium conditions, dissolved Mg2+ displayed negligible inhibitory effects on calcite dissolution even at concentrations of . Upon the introduction of , the solution saturation state with respect to calcite, , acted as a “switch” for magnesium inhibition whereby no significant changes in step kinetics were observed at Ωcalcite<0.2, whereas a sudden inhibition from Mg2+ was activated at Ωcalcite?0.2. The presence of the Ω-switch in dissolution kinetics indicates the presence of critical undersaturation in accordance with thermodynamic principles. The etch pits formed in solutions with exhibited a unique distorted rhombic profile, different from those formed in Mg-free solutions and in de-ionized water. Such unique etch pit morphology may be associated with the anisotropy in net detachment rates of counter-propagating kink sites upon the addition of Mg2+.  相似文献   

18.
We performed a series of experiments at high pressures and temperatures to determine the partitioning of a wide range of trace elements between ilmenite (Ilm), armalcolite (Arm) and anhydrous lunar silicate melt, to constrain geochemical models of the formation of titanium-rich melts in the Moon. Experiments were performed in graphite-lined platinum capsules at pressures and temperatures ranging from 1.1 to 2.3 GPa and 1300-1400 °C using a synthetic Ti-enriched Apollo ‘black glass’ composition in the CaO-FeO-MgO-Al2O3-TiO2-SiO2 system. Ilmenite-melt and armalcolite-melt partition coefficients (D) show highly incompatible values for the rare earth elements (REE) with the light REE more incompatible compared to the heavy REE ( 0.0020 ± 0.0010 to 0.069 ± 0.010 for ilmenite; 0.0048 ± 0.0023 to 0.041 ± 0.008 for armalcolite). D values for the high field strength elements vary from highly incompatible for Th, U and to a lesser extent W (for ilmenite: 0.0013 ± 0.0008, 0.0035 ± 0.0015 and 0.039 ± 0.005, and for armalcolite 0.008 ± 0.003, 0.0048 ± 0.0022 and 0.062 ± 0.03), to mildly incompatible for Nb, Ta, Zr, and Hf (e.g. 0.28 ± 0.05 and : 0.76 ± 0.07). Both minerals fractionate the high field strength elements with DTa/DNb and DHf/DZr between 1.3 and 1.6 for ilmenite and 1.3 and 1.4 for armalcolite. Armalcolite is slightly more efficient at fractionating Hf from W during lunar magma ocean crystallisation, with DHf/DW = 12-13 compared to 6.7-7.5 for ilmenite. The transition metals vary from mildly incompatible to compatible, with the highest compatibilities for Cr in ilmenite (D ∼ 7.5) and V in armalcolite (D ∼ 8.1). D values show no clear variation with pressure in the small range covered.Crystal lattice strain modelling of D values for di-, tri- and tetravalent trace elements shows that in ilmenite, divalent elements prefer to substitute for Fe while armalcolite data suggest REE replacing Mg. Tetravalent cations appear to preferentially substitute for Ti in both minerals, with the exception of Th and U that likely substitute for the larger Fe or Mg cations. Crystal lattice strain modelling is also used to identify and correct for very small (∼0.3 wt.%) melt contamination of trace element concentration determinations in crystals.Our results are used to model the Lu-Hf-Ti concentrations of lunar high-Ti mare basalts. The combination of their subchondritic Lu/Hf ratios and high TiO2 contents requires preferential dissolution of ilmenite or armalcolite from late-stage, lunar magma ocean cumulates into low-Ti partial melts of deeper pyroxene-rich cumulates.  相似文献   

19.
Sulfur biogeochemical cycling and associated Fe-S mineralization processes exert a major influence over acidity dynamics, electron flow and contaminant mobility in wetlands, benthic sediments and groundwater systems. While S biogeochemical cycling has been studied intensively in many environmental settings, relatively little direct information exists on S cycling in formerly drained wetlands that have been remediated via tidal re-flooding. This study focuses on a tidal wetland that was drained in the 1970s (causing severe soil and water acidification), and subsequently remediated by controlled re-flooding in 2002. We examine reduction rates and Fe-S mineralization at the tidal fringe, 7 years after the commencement of re-flooding. The initial drainage of the wetland examined here caused in-situ pyrite (FeS2) oxidation, resulting in the drained soil layers being highly acidic and rich in -bearing Fe(III) minerals, including jarosite (KFe3(SO4)2(OH)6). Tidal re-flooding has neutralized much of the previous acidity, with the pore-water pH now mostly spanning pH 5-7. The fastest rates of in-situ reduction (up to ∼300 nmol cm−3 day−1) occur within the inter-tidal zone in the near-surface soil layers (to ∼60 cm below ground surface). The reduction rates correlate with pore-water dissolved organic C concentrations, thereby suggesting that electron donor supply was the predominant rate determining factor. Elemental S was a major short-term product of reduction, comprising up to 69% of reduced inorganic S in the near-surface soil layers. This enrichment in elemental S can be partly attributed to interactions between biogenic H2S and jarosite - a process that also contributed to enrichment in pore-water Fe2+ (up to 55 mM) and (up to 50 mM). The iron sulfide thiospinel, greigite (Fe3S4), was abundant in near-surface soil layers within the inter- to sub-tidal zone where tidal water level fluctuations created oscillatory redox conditions. There was evidence for relatively rapid pyrite re-formation within the re-flooded soil layers. However, the results indicate that pyrite re-formation has occurred mainly in the lower formerly drained soil layers, whereas the accumulation of elemental S and greigite has been confined towards the soil surface. The discovery that pyrite formation was spatially decoupled from that of elemental S and greigite challenges the concept that greigite is an essential precursor required for sedimentary pyrite formation. In fact, the results suggest that greigite and pyrite may represent distinct end-points of divergent Fe-S mineralization pathways. Overall, this study highlights novel aspects of Fe-S mineralization within tidal wetlands that have been drained and re-flooded, in contrast to normal, undisturbed tidal wetlands. As such, the long-term biogeochemical trajectory of drained and acidified wetlands that are remediated by tidal re-flooding cannot be predicted from the well-studied behaviour of normal tidal wetlands.  相似文献   

20.
Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate ‘clumped isotope’ analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of 13C-18O-containing isotopologues (‘clumped’ isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 °C are 10.72‰, 0.220‰, 0.137‰, 0.593‰ for, respectively, 18O/16O ratios (1000 lnα) and three indices that measure proportions of multiply-substituted isotopologues . We also predict that oxygen isotope fractionations follow the mass dependence exponent, λ of 0.5281 (where ). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of 13C-18O bonds (the measured change in Δ47 = 0.23‰) during phosphoric acid digestion of calcite at 25 °C.We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and so must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of 13C-18O doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of for different carbonate minerals. Combined with previous theoretical evaluations of 13C-18O clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号