首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Up until now, it has been assumed that oil in the Palaeozoic reservoirs of the Tazhong Uplift was derived from Upper Ordovician source rocks. Oils recently produced from the Middle and Lower Cambrian in wells ZS1 and ZS5 provide clues concerning the source rocks of the oils in the Tazhong Uplift, Tarim Basin, China. For this study, molecular composition, bulk and individual n-alkane δ13C and individual alkyl-dibenzothiophene δ34S values were determined for the potential source rocks and for oils from Cambrian and Ordovician reservoirs to determine the sources of the oils and to address whether δ13C and δ34S values can be used effectively for oil–source rock correlation purposes. The ZS1 and ZS5 Cambrian oils, and six other oils from Ordovician reservoirs, were not significantly altered by TSR. The ZS1 oils and most of the other oils, have a “V” shape in the distribution of C27–C29 steranes, bulk and individual n-alkane δ13C values predominantly between −31‰ to −35‰ VPDB, and bulk and individual alkyldibenzothiophene δ34S values between 15‰ to 23‰ VCDT. These characteristics are similar to those for some Cambrian source rocks with kerogen δ13C values between −34.1‰ and −35.3‰ and δ34S values between 10.4‰ and 21.6‰. The oil produced from the Lower Ordovician in well YM2 has similar features to the ZS1 Cambrian oils. These new lines of evidence indicate that most of the oils in the Tazhong Uplift, contrary to previous interpretations, were probably derived from the Cambrian source rocks, and not from the Upper Ordovician. Conversely, the δ13C and δ34S values of ZS1C Cambrian oils have been shown to shift to more positive values due to thermochemical sulfate reduction (TSR). Thus, δ13C and δ34S values can be used as effective tools to demonstrate oil–source rock correlation, but only because there has been little or no TSR in this part of the section.  相似文献   

2.
A large amount of deep oil has been discovered in the Tazhong Uplift, Tarim Basin whereas the oil source is still controversial. An integrated geochemical approach was utilized to unravel the characteristics, origin and alteration of the deep oils. This study showed that the Lower Cambrian oil from well ZS1C (
1x) was featured by small or trace amounts of biomarkers, unusually high concentration of dibenzothiophenes (DBTs), high δ34S of DBTs and high δ13C value of n-alkanes. These suggest a close genetic relationship with the Cambrian source rocks and TSR alteration. On the contrary, the Middle Cambrian oils from well ZS1 (
2a) were characterized by low δ13C of n-alkanes and relatively high δ34S of individual sulfur compounds and a general “V” shape of steranes, indicating a good genetic affinity with the Middle–Upper Ordovician source rocks. The middle Cambrian salt rock separating the oils was suggested to be one of the factors responsible for the differentiation. It was suggested that most of the deep oils in the Tazhong Uplift were mixed source based on biomarkers and carbon isotope, which contain TSR altered oil in varied degree. The percentage of the oils contributed by the Cambrian–Lower Ordovician was in the range of 19–100% (average 57%) controlled by several geological and geochemical events. Significant variations in the δ34S values for individual compounds in the oils were observed suggesting a combination of different extent of TSR and thermal maturation alterations. The unusually high DBTs concentrations in the Tazhong-4 oilfield suggested as a result of mixing with the ZS1C oil (
1x) and Lower Ordovician oils based on δ34S values of DBT. This study will enhance our understanding of both deep and shallow oil sources in the Tazhong Uplift and clarify the formation mechanisms of the unusually high DBTs oils in the region.  相似文献   

3.
Molecular data from a large set of source rock, crude oil and oil-containing reservoir rock samples from the Tarim Basin demonstrate multiple sources for the marine oils in the studied areas of this basin. Based on gammacerane/C31 hopane and C28/(C27 + C28 + C29) sterane ratios, three of the fifteen crude oils from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the other crude oils from the Tazhong Uplift and all 39 crude oils from the Tahe oilfield in the Tabei Uplift correlate with Middle-Upper Ordovician source rocks. These two ratios further demonstrate that most of the free oils and nearly all of the adsorbed and inclusion oils in oil-containing reservoir rocks from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the free and inclusion oils in oil-containing carbonates from the Tahe oilfield correlate mainly with Middle-Upper Ordovician source rocks. This result suggests that crude oils in the Tazhong Uplift are partly derived from the Cambrian-Lower Ordovician source rocks while those in the Ordovician carbonate reservoirs of Tahe oilfield are overwhelmingly derived from the Middle-Upper Ordovician source rocks.The scatter of C23 tricyclic terpane/(C23 tricyclic terpane + C30 17α,21β(H)-hopane) and C21/(C21 + ΣC29) sterane ratios for the free and inclusion oils from oil-containing carbonates in the Tahe oilfield possibly reflects the subtle organofacies variations in the source rocks, implying that the Ordovician reservoirs in this oilfield are near the major source kitchen. In contrast, the close and positive relationship between these two ratios for oil components in the oil-containing reservoir rocks from the Tazhong Uplift implies that they are far from the major source kitchen.  相似文献   

4.
The free, adsorbed and inclusion oils were recovered by sequential extraction from eleven oil and tar containing reservoir rocks in the Tazhong Uplift of Tarim Basin. The results of gas chromatography (GC) and GC–mass spectrometry analyses of these oil components and seven crude oils collected from this region reveal multiple oil charges derived from different source rocks for these oil reservoirs. The initially charged oils show strong predominance of even over odd n-alkanes in the range n-C12 to n-C20 and have ordinary maturities, while the later charged oils do not exhibit any predominance of n-alkanes and have high maturities. The adsorbed and inclusion oils of the reservoir rocks generally have high relative concentrations of gammacerane and C28 steranes, similar to the Cambrian-Lower Ordovician source rocks. In contrast, the free oils of these reservoir rocks generally have low relative concentrations of gammacerane and C28 steranes, similar to the Middle-Upper Ordovician source rocks. There are two interpretations of this result: (1) the initially charged oils are derived from the Cambrian-Lower Ordovician source rocks while the later charged oils are derived from the Middle-Upper Ordovician source rocks; and (2) both the initially and later charged oils are mainly derived from the Cambrian-Lower Ordovician source rocks but the later charged oils are contaminated by the oil components from the Silurian tar sandstones and the Middle-Upper Ordovician source rocks.  相似文献   

5.
<正>The oil source of the Tarim Basin has been controversial over a long time.This study characterizes the crude oil and investigates the oil sources in the Lunnan region,Tarim Basin by adopting compound specific isotopes of n-alkanes and biomarkers approaches.Although the crude oil has a good correlation with the Middle-Upper Ordovician(O_(2+3)) source rocks and a poor correlation with the Cambrian-Lower Ordovician((?)-O_1) based on biomarkers,theδ~(13)C data of n-alkanes of the Lunnan oils show an intermediate value between(?)-O_1 and O_(2+3) genetic affinity oils,which suggests that the Lunnan oils are actually of an extensively mixed source.A quantification of oil mixing was performed and the results show that the contribution of the Cambrian-Lower Ordovician source rocks ranges from 11%to 70%(averaging 36%),slightly less than that of the Tazhong uplift.It is suggested that the inconsistency between the biomarkers andδ~(13)C in determining the oil sources in the Lunnan Region results from multiple petroleum charge episodes with different chemical components in one or more episode(s) and different sources.The widespread marine mixed-source oil in the basin indicates that significant petroleum potential in deep horizons is possible.To unravel hydrocarbons accumulation mechanisms for the Lunnan oils is crucial to further petroleum exploration and exploitation in the region.  相似文献   

6.
塔中奥陶系原油的地球化学特征及其来源   总被引:2,自引:0,他引:2  
塔中奥陶系的油气资源十分丰富,是塔里木盆地油气勘探的重点层系之一,但油源仍是困扰地质勘探家的重要问题。通过系统分析塔中奥陶系原油的地球化学特征,进行了原油族群划分和油源判识。原油以轻质油为主,轻烃分析表明,原油没有发生大量裂解,原油的生成温度介于115~129℃,表明其主体成分形成于生油窗阶段。运用特征性生物标志物系统分析表明,原油可分为三个族群,分别来源于中—上奥陶统源岩、寒武系源岩及混合来源。在“三芴”组成上,原油均以较低的氧芴含量和较高的硫芴含量为特征。原油中饱和烃的碳同位素比值均轻于-31.2‰,平均值为-32.8‰,芳烃的碳同位素比值均轻于-30.4‰,平均值为-31.7‰,这些特征明显与塔东2井和塔深1井的寒武系原油不同。分析认为,碳同位素明显偏重的原油应来源于寒武系源岩,但碳同位素较轻的原油可能来源于中—上奥陶统源岩,也可能来源于寒武系源岩。  相似文献   

7.
塔中421井和塔中402井石炭系油层2个原油样和8个油砂样连续抽提组分甾烷、萜烷分布特征和正构烷烃单体碳同位素组成具有明显的差异,具有不同的来源。塔中421井上石炭统3个油砂样自由态组分、束缚态组分和油气包裹体具有伽马蜡烷和C28甾烷相对含量高、正构烷烃单体碳同位素组成重的特征,划分为Ⅰ类原油,对比认为主要来源于寒武系-下奥陶统烃源岩。塔中421井和塔中402井上石炭统的2个油样具有伽马蜡烷和C28甾烷相对含量低、并且正构烷烃单体碳同位素组成轻的特征,划分为Ⅱ类原油,其来源尚不明确。塔中402井石炭系上、中和下统的5个油砂样各类组分具有介于Ⅰ、Ⅱ类原油之间的特征,为Ⅰ和Ⅱ类原油的混合物。5个油砂样从自由态组分、束缚态组分至油气包裹体Ⅰ类原油含量依次增高,Ⅱ类原油含量依次降低。2口井8个油砂样从自由态组分、束缚态组分至油气包裹体C23三环萜烷/(C23三环萜烷+C30藿烷)和C21/(C21+∑C29)甾烷比值都依次降低,反映了油气充注过程中,原油成熟度不断升高。塔中4井区储层油砂不同吸附态烃类分子与碳同位素的研究结果反映塔中4油田具有多种油气来源,经历长期油气充注过程,寒武系-下奥陶统烃源岩在地史上对该区具有成烃贡献。  相似文献   

8.
       混源油的定量判识是当前石油地质地球化学研究的热点与难点。以塔里木盆地塔河油田奥陶系中聚集的混源油为典型研究实例,通过地质地球化学与数理统计学相结合的方法,探索了定量研究混源油的方法,取得良好效果。原油地球化学研究结果表明,塔河油田原油普遍混源,并表现出多期充注特征,早期充注原油遭受了生物降解,因此目前原油中的轻烃、链状烃、规则甾烷等生物标志物主要反映的是后期充注原油的特征,不能很好地指示早期充注原油。据此,选择受生物降解影响相对较小的三环萜烷和藿烷定量数据,采用多元数理统计学交替最小二乘算法进行了原油成因研究,综合分析后认为现今混源油中可划分出4个端元,其中端元1和2可能主要代表了中上奥陶统烃源岩的贡献,而端元3和4则可能主要代表了寒武系烃源岩的贡献。塔河主体区以寒武系原油聚集为主,而外围地区则以中上奥陶统原油聚集为主,并且在整个塔河油田,总体上以寒武系原油的贡献比例相对最高。这一综合对比研究表明,多元数理统计学方法在混源油的比例计算、端元分析等方面具有重要作用,是对传统地球地球化方法研究的有效补充,值得推广应用,此外,研究认识还为区域油气勘探提供了新的参考信息。  相似文献   

9.
Deeply buried heavy oils from the Tabei Uplift of the Tarim Basin have been investigated for their source origin, charge and accumulation time, biodegradation, mixing and thermal cracking using biomarkers, carbon isotopic compositions of individual alkanes, fluid inclusion homogenization temperatures and authigenic illite K–Ar radiometric ages. Oil-source correlation suggests that these oils mainly originated from Middle–Upper Ordovician source rocks. Burial history, coupled with fluid inclusion temperatures and K–Ar radiometric ages, suggests that these oils were generated and accumulated in the Late Permian. Biodegradation is the main control on the formation of these heavy oils when they were elevated to shallow depths during the late Hercynian orogeny. A pronounced unresolved complex mixture (UCM) in the gas chromatograms together with the presence of both 25-norhopanes and demethylated tricyclic terpanes in the oils are obvious evidence of biodegradation. The mixing of biodegraded oil with non-biodegraded oil components was indicated by the coexistence of n-alkanes with demethylated terpanes. Such mixing is most likely from the same phase of generation, but with accumulation at slightly different burial depths, as evidenced by overall similar oil maturities regardless of biodegradation level and/or amount of n-alkanes. Although these Ordovician carbonate reservoirs are currently buried to over 6000 m with reservoir temperatures above 160 °C, no significant secondary hydrocarbon generation from source rocks or thermal cracking of reservoired heavy oil occur in the study area. This is because the deep burial occurred only within the last 5 Ma of the Neogene, and there has not been enough heating time for additional reactions within the Middle–Upper Ordovician source rocks and reservoired heavy oils.  相似文献   

10.
Some Ordovician and Triassic oils in Block 9 are characterized by light oils,which have distinctly differentiated from heavy oils in other blocks in the Tahe Oilfield,Tarim Basin.Based on the whole oil gas chroma- tograms,this paper estimates the effect of oil migration and fractionation and the amount of depletion(Q)in terms of the n-alkanes depletion model.The results showed that the amount of depletion in the Ordovician reservoir is highest in the east of this block,e.g.the depletion is 97% in Well T904.The amount of Q gets lower to the west,e.g.the depletion is 53.4%in Well T115 and there is no sign of depletion in Well S69.It is suggested that the direction of gas washing is from the east to the west.The compositions and isotopic characteristics of associated gas in Ordovician oils indicated that the gas might be derived from Cambrian source rocks of the Caohu Depression which lies to the east of Block 9.In contrast,no obvious depletion of n-alkanes in Triassic oils was found,suggesting that the migration pathway of natural gas has been limited to the Ordovician karst fracture system formed in the Early Hercynian Orogeny.Different depletions of the Ordovician and Triassic oils can reveal fault activities in this region.  相似文献   

11.
The present study aims to establish the factors controlling the stable carbon isotopic compositions (δ13C) of individual aromatic hydrocarbons analysed by compound specific isotope analysis (CSIA) in crude oils from western Australian petroleum basins of varying age and facies type. This paper reports δ13C values of individual aromatic hydrocarbons, like alkylbenzenes, alkylnaphthalenes, alkylphenanthrenes and methylated biphenyls. The main aims are to confirm the origin (source) and age of these oils based on CSIA of selected aromatic compounds and to understand why the Sofer plot is ineffective in establishing the source of western Australian petroleum systems. The bulk δ13C of saturated and aromatic hydrocarbon fractions of crude oils have been previously used to differentiate sources, however, many Australian crude oils are not classified correctly using this method. The oils were classified as marine by the δ13C values of individual aromatic compounds and as terrigenous based on the bulk δ13C data (Sofer plot).The oils where the δ13C values of 1,6-DMN and 1,2,5-TMN isomers are most negative are indicative of a marine source, whereas oils with a less negative values for the 1,6-DMN and 1,2,5-TMN isomers are derived from marine source rocks that contain a significant terrigenous component. Similarly, oils with the least negative δ13C values for the 1-MP and 1,9-DMP isomers reflect varying inputs of terrigenous organic matter to the their marine source rocks. Plots of P/DBT and Pr/Ph concentration ratios versus δ13C values of DMP, 1,6-DMN, 1,2,5-TMN, 1-MP and 1,9-MP are constructed to establish the relative amount of terrigenous organic matter contributing to the source rock of a series of marine oils. The ratios of P/DBT and Pr/Ph plotted against the δ13C values of the aromatic isomers (such as 1,6-DMN, 1,2,5-TMN, 1-MP and 1,9-MP) provide a novel and convenient way to discriminate crude oils derived from different source rocks that contain varying amounts of marine and terrigenous organic matter.  相似文献   

12.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

13.
《Applied Geochemistry》2005,20(3):455-464
In order to characterize the H isotopic compositions of individual lipid compounds from different terrestrial depositional environments, the δD values of C-bound H in individual n-alkanes from typical terrestrial source rocks of the Liaohe Basin and the Turpan Basin, China, were measured using gas chromatography–thermal conversion–isotope ratio mass spectrometry (GC–TC–IRMS). The analytical results indicate that the δD values of individual n-alkanes in the extracts of terrestrial source rocks have a large variation, ranging from −140‰ to −250‰, and are obviously lighter than the δD of marine-sourced n-alkanes. Moreover, a trend of depletion in 2H(D) was observed for individual n-alkanes from different terrestrial depositional environments, from saline lacustrine to freshwater paralic lacustrine, and to swamp. For example, the δD values of n-alkanes from a stratified saline lacustrine environment vary from −140‰ to −200‰, δD for n-alkanes from swamp facies range from −200‰ to −250‰, while those from freshwater paralic lacustrine–lacustrine environments fall between the δD values of the end members. The shift toward lighter δD from saltwater to freshwater environments indicates that the source water δD is the major controlling factor for the H isotopic composition of individual compounds. In addition, H exchange between formation water and sedimentary organic matter may possibly be important in regard to the δD of individual n-alkanes. Therefore, other lines of geochemical evidence must be considered when depositional paleoenvironments of source rocks are reconstructed based on the H isotopic composition of individual n-alkanes.  相似文献   

14.
Unusually high dibenzothiophene (DBT) concentrations are present in the oils from the Tazhong-4 Oilfield in the Tazhong Uplift, Tarim Basin. Positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in combination with conventional geochemical approaches to unravel the enrichment mechanisms. Significant amounts of S1 species with relatively low DBE values (0–8), i.e., sulfur ethers, mercaptans, thiophenes and benzothiophenes, were detected in three Lower Ordovician oils with high thermal maturity, which were suggested to be the products of thermochemical sulfate reduction (TSR) in the reservoir. The occurrence of TSR was also supported by the coexistence of thiadiamondoids and abundant H2S in the gases associated with the oils. Obviously low concentrations of the DBE = 9 S1 species (mainly equivalent to C0–C35 DBTs) compared to its homologues were observed for the three oils which were probably altered by TSR, indicating that no positive relationship existed between TSR and DBTs in this study. The sulfur compounds in the Tazhong-4 oils are quite similar to those in the majority of Lower Ordovician oils characterized by high concentrations of DBTs and dominant DBE = 9 S1 species with only small amounts of sulfur compounds with low thermal stability (DBE = 0–8), suggesting only a small proportion of sulfur compounds were derived from TSR. It is thermal maturity rather than TSR that has caused the unusually high DBT concentrations in most of the Lower Ordovician oils. We suggest that the unusually high DBT oils in the Tazhong-4 Oilfield are caused by oil mixing from the later charged Lower Ordovician (or perhaps even deeper), with high DBT abundances from the earlier less mature oils, which was supported by our oil mixing experiments and previous relevant investigations as well as abundant authigenic pyrite of hydrothermal origin. We believe that TSR should have occurred in the Tazhong Uplift based on our FT-ICR MS results. However, normal sulfur compounds were detected in most oils and no increase of δ13C2H6–δ13C4H10 was observed for the gas hydrocarbons, suggesting only a slight alteration of the oils by TSR currently and/or recently. We suspect that the abnormal sulfur compounds in the Lower Ordovician oils might also be a result of deep oil mixing, which might imply a deeper petroliferous horizon, i.e., Cambrian, with a high petroleum potential. This study is important to further deep petroleum exploration in the area.  相似文献   

15.
Hydrogen isotopic composition of n-alkanes was measured in sediments from an excavated profile of the Early Cretaceous Yixian Formation in Liaoning Province, NE China, aiming to assess the significance of the δD value of n-alkanes in ancient lacustrine sediments as the indicator for determining the source inputs of organic matters and paleoclimatic conditions. The δD values of n-alkanes are in the range of − 250‰ to − 85‰ and display an obvious three-stage variation pattern through the profile, which is consistent with the distribution of the dominated n-alkanes and the profile of their δ13C values. The δD and δ13C values of n-alkanes suggest that short-chain n-alkanes are primarily derived from photosynthetic bacteria and algae; n-C29 and n-C31 are mainly originated from terrestrial higher plants; n-C28 and n-C30 may be derived from the same precursor but via the different biological mechanism of hydrogen isotopic fractionation; while the source inputs of medium-chain n-alkanes are more complicated, with n-C23 being derived from some specific algae or biosynthesized by various aquatic organisms. The paleoclimatic conditions are reconstructed via two approaches. The reconstructed hydrogen isotopic values of lake water and meteoric water (expressed as δDLW and δDMW, respectively) were at the intervals of − 51.8‰ to 17.0‰ and − 118.1‰ to − 43.5‰, respectively, indicating a general climate transition from semi-arid to arid. The calculated ΔδDLW-MW values vary from 37.0‰ to 89.1‰ and display a similar but a significant large-scale variation trend with the ΔδDC23  long (− 28.8‰ to 85.0‰; long represents long-chain n-alkanes) and ΔδDmid-long (− 15.4‰ to 43.4‰; mid represents medium-chain n-alkanes) values. The discrepancy may be attributed to the source input overlap for n-alkanes and the uncertainties of εwater/lipid values. The coupling of ΔδDC23  long, ΔδDmid-long and ΔδDLW-MW values with the paleoclimatic evidence indicates that the δD values of n-alkanes could be more sensitive to the change of paleoclimatic conditions.  相似文献   

16.
Forty-six crude oil samples were selected from the Ordovician in the northwestern part of the Tahe oilfield for detailed molecular geochemical and isotopic analysis, including group compositions, carbonhydrogen isotopes and gas chroma-tograms of saturated hydrocarbons, as well as the characteristics of terpane, sterane and other biomarkers, indicating that crude oils are of the same origin from different districts in the Tahe oilfield and were derived from the same source kitchen (or oil source formation), i.e., mainly stemming from marine hydrocarbons. Detailed studies of oil physical properties of 25-honpane revealed that such oils have heavy or thick oil qualities due to biodegradation. Comprehensive assessment in terms of five maturity parameters shows that the oils from the Ordovician with Ro values varying from 0.80% to 1.59% are widely distributed in the northwest of the Tahe oilfield.  相似文献   

17.
塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探   总被引:3,自引:0,他引:3  
多次资评与勘探实践表明塔中隆起成藏条件优越,海相碳酸盐岩油气资源丰富,奥陶系油气藏集中赋存于上奥陶统礁滩体与下奥陶统风化壳储层中,缝洞系统控制了大型凝析气藏纵向多套叠置-横向准层状分布规律。多学科、动静态一体化研究表明,形成塔中海相碳酸盐岩大型凝析气田主力烃源岩为寒武-奥陶系两套碳酸盐岩,原油具有明显的混源特征,天然气主要来源于中-下寒武统高成熟度原油裂解气。奥陶系海相碳酸盐岩凝析气藏是古油藏在喜山期被寒武系来源的原油裂解气气侵的结果,经历了三期成藏过程,即中晚加里东期、晚海西期原油充注,喜山期注气。两套烃源岩长期供烃是形成塔中奥陶系海相碳酸盐岩大型凝析气田的物质基础,构造作用、岩溶作用是形成了塔中奥陶系多套优质碳酸盐岩储集体的主控因素,断裂、不整合面、缝洞发育带构建的网状油气输导体系是塔中海相碳酸盐岩复式聚集混源成藏的重要保障。塔中奥陶系海相碳酸盐岩具备10亿吨当量的油气资源潜力。  相似文献   

18.
万中华  李素梅 《现代地质》2011,25(3):599-607
南堡油田是渤海湾盆地近年发现的油气储量可观的新油田,为揭示该油田原油特征与成因,对43个原油样品、31块泥岩样品进行详细的地球化学研究与油源对比。依据特征生物标志物、单体烃碳同位素分析,将南堡油田原油分为3种类型:Ⅰ类,南堡1、2号构造带古近系+新近系原油;Ⅱ类,南堡3、4、5号构造带古近系+新近系原油;Ⅲ类,南堡凹陷已发现奥陶系潜山原油。Ⅰ类原油以较低的重排甾烷/规则甾烷,较高的甾烷/藿烷、4-甲基甾烷/C29规则甾烷、伽马蜡烷/C30藿烷值及正构烷烃单体烃碳同位素相对偏重等特征区别于Ⅱ类原油;Ⅲ类原油以较高成熟度、正构烷烃单体烃碳同位素总体偏重等特征不同于Ⅰ、Ⅱ类原油。油源对比结果表明,Ⅰ类原油为沙二+三段、东三段—沙一段烃源岩的混合贡献,Ⅱ类原油主要来源于东三段—沙一段烃源岩,Ⅲ类原油主要来源于沙二+三段烃源岩。首次明确提出南堡1、2号构造带古近系+新近系原油主要为沙二+三段烃源岩的成烃贡献,沙二+三段烃源岩为南堡油田主力烃源岩之一,这对南堡油田油气资源评价和勘探方向决策具有参考意义。  相似文献   

19.
The Halahatang Depression in the Tabei Uplift of the Tarim basin is an active exploration area because it has substantial reservoir potential and contains or is near to many commercial oil fields. Geochemical analysis indicates that Halahatang oils were derived from marine carbonate source rocks deposited under anoxic reducing conditions. The maturities for Halahatang oils are corresponding to the peak of the oil window and slightly higher than the neighboring Tahe oils. The Halahatang oils feature low Pr/Ph, C21/C23 tricyclic terpane and, C28/C29 sterane ratios, high C29/C30 hopane and C35/C34 hopane ratios, a “V” shape in the distribution of C27–C28–C29 steranes and light carbon isotope ratios, similar to the Tahe oils and correlate well with the Middle-Upper Ordovician source rock. However, some source-related biomarker parameters imply a more reducing source organofacies with more zooplanktonic contribution than that for the Tahe oils.  相似文献   

20.
塔里木盆地原油的成因研究   总被引:9,自引:0,他引:9  
段毅  惠荣耀 《甘肃地质》1997,6(1):67-73
对塔里木盆地原油和生油岩饱和烃进行GC-C-MS和GC-MS分析,利用单个正构烷烃碳同位素组成和三环萜烷分布特征进行油源对比,研究了塔里木盆地原油的油源问题;根据寒武—奥陶系富含菌藻有机质生油岩饱和烃色谱分析结果,对塔里木盆地海相原油含蜡较高的成因进行了探讨  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号