首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《Applied Geochemistry》2005,20(11):2017-2037
The Tertiary Thrace Basin located in NW Turkey comprises 9 km of clastic-sedimentary column ranging in age from Early Eocene to Recent in age. Fifteen natural gas and 10 associated condensate samples collected from the 11 different gas fields along the NW–SE extending zone of the northern portion of the basin were evaluated on the basis of their chemical and individual C isotopic compositions. For the purpose of the study, the genesis of CH4, thermogenic C2+ gases, and associated condensates were evaluated separately.Methane appears to have 3 origins: Group-1 CH4 is bacteriogenic (Calculated δ13CC1–C = −61.48‰; Silivri Field) and found in Oligocene reservoirs and mixed with the thermogenic Group-2 CH4. They probably formed in the Upper Oligocene coal and shales deposited in a marshy-swamp environment of fluvio-deltaic settings. Group-2 (δ13CC1–C = −35.80‰; Hamitabat Field) and Group-3 (δ13C1–C = −49.10‰; Değirmenköy Field) methanes are thermogenic and share the same origin with the Group-2 and Group-3 C2+ gases. The Group-2 C2+ gases include 63% of the gas fields. They are produced from both Eocene (overwhelmingly) and Oligocene reservoirs. These gases were almost certainly generated from isotopically heavy terrestrial kerogen (δ13C = −21‰) present in the Eocene deltaic Hamitabat shales. The Group-3 C2+ gases, produced from one field, were generated from isotopically light marine kerogen (δ13C = −29‰). Lower Oligoce ne Mezardere shales deposited in pro-deltaic settings are believed to be the source of these gases.The bulk and individual n-alkane isotopic relationships between the rock extracts, gases, condensates and oils from the basin differentiated two Groups of condensates, which can be genetically linked to the Group-2 and -3 thermogenic C2+ gases. However, it is crucial to note that condensates do not necessarily correlate to their associated gases.Maturity assessments on the Group-1 and -2 thermogenic gases based on their estimated initial kerogen isotope values (δ13C = −21‰; −29‰) and on the biomarkers present in the associated condensates reveal that all the hydrocarbons including gases, condensates and oils are the products of primary cracking at the early mature st age (Req = 0.55–0.81%). It is demonstrated that the open-system source conditions required for such an early-mature hydrocarbon expulsion exist and are supported by fault systems of the basin.  相似文献   

2.
Hydrous pyrolysis (HP) experiments were used to investigate the petroleum composition and quality of petroleum generated from a Brazilian lacustrine source rock containing Type I kerogen with increasing thermal maturity. The tested sample was of Aptian age from the Araripe Basin (NE-Brazil). The temperatures (280–360 °C) and times (12–132 h) employed in the experiments simulated petroleum generation and expulsion (i.e., oil window) prior to secondary gas generation from the cracking of oil. Results show that similar to other oil prone source rocks, kerogen initially decomposes in part to a polar rich bitumen, which decomposes in part to hydrocarbon rich oil. These two overall reactions overlap with one another and have been recognized in oil shale retorting and natural petroleum generation. During bitumen decomposition to oil, some of the bitumen is converted to pyrobitumen, which results in an increase in the apparent kerogen (i.e., insoluble carbon) content with increasing maturation.The petroleum composition and its quality (i.e., API gravity, gas/oil ratio, C15+ fractions, alkane distribution, and sulfur content) are affected by thermal maturation within the oil window. API gravity, C15+ fractions and gas/oil ratios generated by HP are similar to those of natural petroleum considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. API gravity of the HP expelled oils shows a complex relationship with increasing thermal maturation that is most influenced by the expulsion of asphaltenes. C15+ fractions (i.e., saturates, aromatics, resins and asphaltenes) show that expelled oils and bitumen are compositionally separate organic phases with no overlap in composition. Gas/oil ratios (GOR) initially decrease from 508–131 m3/m3 during bitumen generation and remain essentially constant (81–84 m3/m3) to the end of oil generation. This constancy in GOR is different from the continuous increase through the oil window observed in anhydrous pyrolysis experiments. Alkane distributions of the HP expelled oils are similar to those of natural crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. Isoprenoid and n-alkane ratios (i.e., pristane/n-C17 and phytane/n-C18) decrease with increasing thermal maturity as observed in natural crude oils. Pristane/phytane ratios remain constant with increasing thermal maturity through the oil window, with ratios being slightly higher in the expelled oils relative to those in the bitumen. Generated hydrocarbon gases are similar to natural gases associated with crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous, with the exception of elevated ethane contents. The general overall agreement in composition of natural and hydrous pyrolysis petroleum of lacustrine source rocks observed in this study supports the utility of HP to better characterize petroleum systems and the effects of maturation and expulsion on petroleum composition and quality.  相似文献   

3.
The stable carbon isotopic compositions of light hydrocarbon gases adsorbed in near-surface soil and sediments from the Saurashtra basin were characterized for their origin and maturity. Saurashtra is considered geologically prospective for oil and gas reserves; however, a major part of the basin is covered by the Deccan Traps, hindering the exploration of Mesozoic hydrocarbon targets. Surface geochemical prospecting, based on micro-seepage of hydrocarbons from subsurface accumulations, could be advantageous in such areas. In light of this, 150 soil samples were collected from the northwestern part of Saurashtra, around the Jamnagar area, where a thick sedimentary sequence of about 2–3 km exists under 1–1.5 km of Deccan basalt. The concentration of acid desorbed alkane gases from soil samples was found to vary (in ppb) as: methane (C1) = 3–518; ethane (C2) = 0–430; propane (C3) = 0–331; i-butane (iC4) = 0–297; n-butane (nC4) = 2–116; i-pentane (iC5) = 0–31 and n-pentane (nC5) = 0–23, respectively.Fifteen samples with high concentrations of alkane gases were measured for their δ13C1; δ13C2 and δ13C3 compositions using gas chromatography–combustion-isotope ratio mass spectrometry (GC–C-IRMS). The values for methane varied from ? 27 to ? 45.4‰, ethane from ? 20.9 to ? 27.6‰, and propane from ? 20.4 to ? 29.1‰ versus the Vienna PeeDee Belemnite (VPDB). The carbon isotope ratio distribution pattern represents isotopic characteristics pertaining to hydrocarbon gases derived from thermogenic sources. Comparisons of carbon isotopic signatures and compositional variations with the standard carbon isotopic models suggest that hydrocarbon gases found in the shallow depths of the study area are not of bacterial origin but are formed thermally from deeply buried organic matter, likely to be mainly a terrestrial source rock with a partial contribution from a marine source. These gases may have migrated to the near-surface environment, where they represent an admixture of thermally generated hydrocarbon gases from mixed sources and maturity. The maturity scale (δ13C versus Log Ro %) applied to the surface sediment samples of the Jamnagar area indicated the source material to be capable of generating oil and gas. The detection of thermogenic alkane gases in near-surface sediments offers the possibility of hydrocarbons at depth in Saurashtra.  相似文献   

4.
Detailed knowledge of the extent of post-genetic modifications affecting shallow submarine hydrocarbons fueled from the deep subsurface is fundamental for evaluating source and reservoir properties. We investigated gases from a submarine high-flux seepage site in the anoxic Eastern Black Sea in order to elucidate molecular and isotopic alterations of low-molecular-weight hydrocarbons (LMWHC) associated with upward migration through the sediment and precipitation of shallow gas hydrates. For this, near-surface sediment pressure cores and free gas venting from the seafloor were collected using autoclave technology at the Batumi seep area at 845 m water depth within the gas hydrate stability zone.Vent gas, gas from pressure core degassing, and from hydrate dissociation were strongly dominated by methane (> 99.85 mol.% of ∑[C1–C4, CO2]). Molecular ratios of LMWHC (C1/[C2 + C3] > 1000) and stable isotopic compositions of methane (δ13C = ? 53.5‰ V-PDB; D/H around ? 175‰ SMOW) indicated predominant microbial methane formation. C1/C2+ ratios and stable isotopic compositions of LMWHC distinguished three gas types prevailing in the seepage area. Vent gas discharged into bottom waters was depleted in methane by > 0.03 mol.% (∑[C1–C4, CO2]) relative to the other gas types and the virtual lack of 14C–CH4 indicated a negligible input of methane from degradation of fresh organic matter. Of all gas types analyzed, vent gas was least affected by molecular fractionation, thus, its origin from the deep subsurface rather than from decomposing hydrates in near-surface sediments is likely.As a result of the anaerobic oxidation of methane, LMWHC in pressure cores in top sediments included smaller methane fractions [0.03 mol.% ∑(C1–C4, CO2)] than gas released from pressure cores of more deeply buried sediments, where the fraction of methane was maximal due to its preferential incorporation in hydrate lattices. No indications for stable carbon isotopic fractionations of methane during hydrate crystallization from vent gas were found. Enrichments of 14C–CH4 (1.4 pMC) in short cores relative to lower abundances (max. 0.6 pMC) in gas from long cores and gas hydrates substantiates recent methanogenesis utilizing modern organic matter deposited in top sediments of this high-flux hydrocarbon seep area.  相似文献   

5.
Three sets of pyrolysis experiments were performed on extracted coal (Ro% 0.39), coal (initial bitumen 13.5 mg/g coal) and bitumen enriched coal (total bitumen 80.9 mg/g coal) at two heating rates of 2 °C/h and 20 °C/h in confined systems (gold capsules). For all three experiments, the yields of bitumen, Σn-C8+, aromatic components and ΣC2–5 at first increase and then decrease with increasing EASY%Ro and reach the highest values within the EASY%Ro ranges of 0.67–1.08, 1.07–1.19, 1.46–1.79 and 1.46–1.68, respectively. In contrast, C1/ΣC1–5 ratio at first decreases and then increases with EASY%Ro and reaches a minimum value in EASY%Ro range of 0.86–1.08, closely corresponding to the maximum values of the yields of bitumen and Σn-C8+. Methane yields increase consistently with EASY%Ro. Nearly half of the maximum yield of methane from kerogen was generated at EASY%Ro > 2.2. The differences in methane yields among the three experiments at the same thermal stress are relatively minor at EASY%Ro < 2.2, but are greater with thermal stress at EASY%Ro > 2.2. This demonstrates that the kerogen always retained relatively more hydrogen and hydrocarbon generative potential at the postmature stage of bitumen rich coal than the extracted coal or coal.The maximum yield of ethane is 20–25% higher in the bitumen rich coal experiment than the extracted coal or coal, while the maximum yields of C3, C4 and C5 in the former are double to triple those in the latter. This result demonstrates that the added bitumen in bitumen rich coal substantially increased the generation of these wet gases. However, the averaged values of activation energies (with the same frequency factors) for both the generation and cracking of individual wet gases are similar and do not show consistent trends among the three experiments. For all three experiments, activation energies for the generation and cracking of wet gases are significantly lower than those in previously published oil pyrolysis experiments with same frequency factors (Pan et al., 2012; Organic Geochemistry 45, 29–47). Methane δ13C values at the maximum temperature or EASY%Ro are close to those of initial wet gases, especially C3, implying that the major part of methane shared a common initial precursor with wet gases, i.e., free and bound liquid alkanes.  相似文献   

6.
Calcite veins with fluid and solid bitumen inclusions have been discovered in the south-western shoulder of the Dead Sea rift within the Masada-Zohar block, where hydrocarbons exist in small commercial gas fields and non-commercial fields of heavy and light oils. The gas–liquid inclusions in calcite are dominated either by methane or CO2, and aqueous inclusions sometimes bear minor dissolved hydrocarbons. The enclosed flake-like solid bitumen matter is a residue of degraded oil, which may be interpreted as “dead carbon”. About 2/3 of this matter is soot-like amorphous carbon and 1/3 consists of n-C8C18 carboxylic acids and traces of n-alkanes, light dicarboxylic acids, and higher molecular weight (>C20) branched and/or cyclic carboxylic acids. Both bitumen and the host calcites show genetic relationship with mature Maastrichtian chalky source rocks (MCSRs) evident in isotopic compositions (δ13C, δ34S, and δ18O) and in REE + Y patterns. The bitumen precursor may have been heavy sulfur-rich oil which was generated during the burial compaction of the MCSR strata within the subsided blocks of the Dead Sea graben. The δ18O and δ13C values and REE + Y signatures in calcites indicate mixing of deep buried fluids equilibrated with post-mature sediments and meteoric waters. The temperatures of fluid generation according to Mg–Li-geothermometer data range from 55 °С to 90 °С corresponding to the 2.5–4.0 km depths, and largely overlap with the oil window range (60–90 °С) in the Dead Sea rift (Hunt, 1996; Gvirtzman and Stanislavsky, 2000; Buryakovsky et al., 2005). The bitumen-rich vein calcites originated in the course of Late Cenozoic rifting and related deformation, when tectonic stress triggers damaged small hydrocarbon reservoirs in the area, produced pathways, and caused hydrocarbon-bearing fluids to rise to the subsurface; the fluids filled open fractures and crystallized to calcite with entrapped bitumen. The reported results are in good agreement with the existing views of maturation, migration, and accumulation of hydrocarbons, as well as basin fluid transport processes in the Dead Sea area.  相似文献   

7.
8.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

9.
The organic geochemical methods of hydrocarbon prospecting involve the characterization of sedimentary organic matter in terms of its abundance, source and thermal maturity, which are essential prerequisites for a hydrocarbon source rock. In the present study, evaluation of organic matter in the outcrop shale samples from the Semri and Kaimur Groups of Vindhyan basin was carried out using Rock Eval pyrolysis. Also, the adsorbed low molecular weight hydrocarbons, methane, ethane, propane and butane, were investigated in the near surface soils to infer the generation of hydrocarbons in the Vindhyan basin. The Total Organic Carbon (TOC) content in shales ranges between 0.04% and 1.43%. The S1 (thermally liberated free hydrocarbons) values range between 0.01–0.09 mgHC/gRock (milligram hydrocarbon per gram of rock sample), whereas the S2 (hydrocarbons from cracking of kerogen) show the values between 0.01 and 0.14 mgHC/gRock. Based on the Tmax (temperature at highest yield of S2) and the hydrogen index (HI) correlations, the organic matter is characterized by Type III kerogen. The adsorbed soil gas, CH4 (C1), C2H6 (C2), C3H8 (C3) and nC4H10, (nC4), concentrations measured in the soil samples from the eastern part of Vindhyan basin (Son Valley) vary from 0 to 186 ppb, 0 to 4 ppb, 0 to 5 ppb, and 0 to 1 ppb, respectively. The stable carbon isotope values for the desorbed methane (δ13C1) and ethane (δ13C2) range between −45.7‰ to −25.2‰ and −35.3‰ to −20.19‰ (VPDB), respectively suggesting a thermogenic source for these hydrocarbons. High concentrations of thermogenic hydrocarbons are characteristic of areas around Sagar, Narsinghpur, Katni and Satna in the Son Valley. The light hydrocarbon concentrations (C1–C4) in near surface soils of the western Vindhyan basin around Chambal Valley have been reported to vary between 1–2547 ppb, 1–558 ppb, 1–181 ppb, 1–37 ppb and 1–32 ppb, respectively with high concentrations around Baran-Jhalawar-Bhanpur-Garot regions (Kumar et al., 2006). The light gaseous hydrocarbon anomalies are coincident with the wrench faults (Kota – Dholpur, Ratlam – Shivpuri, Kannod – Damoh, Son Banspur – Rewa wrench) in the Vindhyan basin, which may provide conducive pathways for the migration of the hydrocarbons towards the near surface soils.  相似文献   

10.
《Applied Geochemistry》2005,20(1):23-39
Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (Tmi) near zero (0 °C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (Th)  = 325 ± 5 °C. The boiling zone shows Th = ±300 °C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO2. Positive clathrate melting temperatures (fusion) with Th = 150 °C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 °C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO2 (80–98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir.The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions (δ18O–δD) of the geothermal brine indicate mixing between meteoric water and a minor magmatic component. The enrichment in δ18O is due to the rock–water interaction at relatively high temperatures. δ13C stable isotope data show a magmatic source with a minor meteoric contribution for CO2. The initial isotopic value δ34SRES = −2.3‰, which implies a magmatic source. More negative values are observed for shallow pyrite and range from δ34S (FeS2) = −4‰ to −4.9‰, indicating boiling. The same fractionation tendencies are observed for fluids in the reservoir from results for δ18O.  相似文献   

11.
12.
The Bulonggoer paleo-oil reservoir (BPR) on the northwest Junggar Basin is the first Devonian paleo-oil reservoir discovered in North Xinjiang, China. Solid bitumens occur within sandstone pores and as veins filling fractures. Samples of both types were analyzed using stable carbon isotope and reflectance measurements, as well as molecular biomarker parameters.The extremely positive δ13C values and biomarker indicators of depositional environment/lithology, such as pristane/phytane (Pr/Ph), C29/C30 hopane, diasteranes/regular steranes and dibenzothiophene/phenanthrene ratios, indicate a siliciclastic source for the BPR and their deposition in a highly reducing hypersaline environment. The presence of long chain n-alkanes and abundant tetracyclic diterpanes, C20–C21 tricyclic terpanes and perylene are indicators of higher plant organic matter input. Moreover, the bimodal distribution of C27 > C28 < C29 regular steranes and abundant methyltriaromatic steroids also support a contribution of microalgae as well as higher plants organic matter. The similar molecular composition and thermal maturity parameters indicate that the reservoir and veined solid bitumens were altered from a common paleo-petroleum, which originated from peak oil window matured source rocks.All solid bitumens from the BPR are characterized by relatively low bitumen reflectance values (Rb% < 0.7), suggesting that they were generated from low temperature processes rather than oil thermal cracking. Comparatively, the Rb% values for veined bitumens are higher than reservoir bitumens, indicating that the veined bitumens occurred earlier and experienced higher thermal conditions.  相似文献   

13.
The large (>180 Kt WO3 and at least 10–15 t Au) Vostok-2 deposit is situated in a metallogenic belt of W, Sn-W, Au, and Au-W deposits formed in late to post-collisional tectonic environment after cessation of active subduction. The deposit is related to an ilmenite-series high-K calc-alkaline plutonic suite that, by its petrologic signatures, is transitional between those at W-dominant and Au-dominant reduced intrusion-related deposits. Consistently, besides large W-Cu skarns of the reduced type, the deposit incorporates quartz stockworks with significant Au-W-Bi mineralization also formed in a reduced environment. The hydrothermal stages include prograde and retrograde, essentially pyroxene skarns, hydrosilicate (amphibole, chlorite, quartz) alteration, and phyllic (quartz, sericite, albite, apatite, and carbonate) alteration assemblages. These assemblages contain abundant scheelite associated with pyrrhotite, chalcopyrite and, at the phyllic stage, also with Bi minerals, As-Bi-Sb-Te-Pb-Zn sulfides and sulfosalts, as well as Au mineralization. The fluid evolution included hot, high-pressure (420–460 °C, 1.1–1.2 kbar), low-salinity (5.4–6.0 wt% NaCl-equiv.) aqueous fluids at the retrograde skarn stage, followed by lower temperature cyclic releases of high-carbonic, low salinity to non-carbonic moderate-salinity aqueous fluids. At the hydrosilicate stage, a high-carbonic, CH4-dominated, hot (350–380 °C) low salinity fluid was followed by cooler (300–350 °C) non-carbonic moderate-salinity (5.7–14.9 wt% NaCl-equiv.) fluid. At the phyllic stage, a high-carbonic, CO2-dominated, moderately-hot (330–355 °C, 0.9 kbar) low salinity fluid was followed by cooler (230–265 °C) non-carbonic moderate-salinity (6.6–12.0 wt% NaCl-equiv.) fluid. A homogenized magmatic source of water (δ18OH2O = +8.3 to +8.7‰), and a sedimentary source of sulfur (δ34S = −6.9 to −6.2‰) and carbon (δ13Cfluid = −20.1 to −14.9‰) at the hydrosilicate stage are suggested. A magmatic source of water (δ18O = +8.6 to +9.2‰) and a sedimentary source of sulfur (δ34S = −9.3 to −4.1‰) but a magmatic (mantle- to crustal-derived) source of carbon (δ13Cfluid = −6.9 to −5.2‰) are envisaged for fluids that formed the early mineral assemblage of the phyllic stage. Then, the role of sedimentary carbon again increased toward the intermediate (δ13Cfluid = −16.4 to −14.5‰) and late (δ13Cfluid = −16.3 to −14.7‰) phyllic mineral assemblages. The magmatic differentiation was responsible for the fluid enrichment in W, whereas Au and Bi could also have been sourced from mafic magma. The decreasing temperatures, together with elevated Ca content in non-boiling fluids, promoted scheelite deposition at the early hydrothermal stages. The most intense scheelite deposition at the phyllic stage was caused by CO2 removal due to boiling of CO2-rich fluids; further cooling of non-boiling fluids favoured joint deposition of scheelite, Bi and Au.  相似文献   

14.
This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 °C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 °C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. δ13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the δ13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than kerogen less enriched in 13C. The typically assumed linear trend for δ13C of methane, ethane and propane versus their reciprocal carbon number for a single sourced natural gas is not observed in the experimental gases. Instead, the so-called “dogleg” trend, exemplified by relatively 13C depleted methane and enriched propane as compared to ethane, is observed for all the kerogen types and at both experimental conditions. Three of the natural gases from the same thrust unit had similar “dogleg” trends indicative of Menilite source rocks with Type III kerogen. These natural gases also contained varying amounts of a microbial gas component that was approximated using the Δδ13C for methane and propane determined from the experiments. These approximations gave microbial methane components that ranged from 13–84%. The high input of microbial gas was reflected in the higher gas:oil ratios for Outer Carpathian production (115–1568 Nm3/t) compared with those determined from the experiments (65–302 Nm3/t). Two natural gas samples in the far western part of the study area had more linear trends that suggest a different organic facies of the Menilite Shales or a completely different source. This situation emphasizes the importance of conducting hydrous pyrolysis on samples representing the complete stratigraphic and lateral extent of potential source rocks in determining specific genetic gas correlations.  相似文献   

15.
Previously studied thermosequences of wood (chestnut) and grass (rice straw) biochar were subjected to hydrogen pyrolysis (hypy) to evaluate the efficacy of the technique for determining pyrogenic carbon (CP) abundance. As expected, biochar from both wood and grass produced at higher temperature had higher CP amount. However, the trend was not linear, but more sigmoidal. CP/CT ratio values (CT = total organic carbon) for the wood thermosequence were ⩽0.03 at biochar production temperature (TCHAR)  300 °C. They increased dramatically until 600 °C and remained relatively constant and near unity at higher biochar production temperature. Grass biochar was similar in profile, but CP/CT values rose dramatically after 400 °C. The findings are consistent with the hypothesis that hypy residues contain polycyclic aromatic hydrocarbons (PAHs) with a degree of condensation above at least 7–14 fused rings, with labile organic matter and pyrogenic PAHs below this degree of condensation removed by hypy.Both wood and grass thermosequences displayed δ13CP values that decreased with increased TCHAR, indicating that recalcitrant carbon compounds (pyrogenic aromatic PAHs with a relatively high degree of condensation) were first formed from structural components with relatively high δ13C values (e.g. cellulose). Relatively constant δ13C values at TCHAR  500 °C suggested the dominant pyrolysis reaction was condensation of PAHs with no additional fractionation. Comparison of hypy with benzene polycarboxylic acid (BPCA), ‘ring current’ NMR and pyrolysis gas chromatography–mass spectrometry (GC–MS) results from the same suite of samples indicated a consistent overview of the structure of CP, but provided unique and complimentary information.  相似文献   

16.
New isotopic and chemical data on the sodium bicarbonate water and associated gases from the Razdolnoe Spa located in the coastal zone of Primorsky Kray of the Russian Far East, together with previous stable isotope data (δ18O, δD, δ13C), allow elucidation of the origin and evolution of the groundwater and gases from the spa. The water is characterized by low temperature (12 °C), TDS – 2.5–6.0 g/L, high contents of B (∼5 mg/L) and F (4.5 mg/L) and low contents of Cl and SO4. Water isotopic composition indicates its essentially meteoric origin which may comply with an older groundwater that was recharged under different (colder) climatic conditions. Major components of bubbling gases are CH4 (68 vol%), N2 (28%) and CO2 (4%). The obtained values δ13C and δD for CO2 and CH4 definitely indicate the marine microbial origin of methane. Thus the high methane content in the waters relates to the biochemical processes and presence of a dispersed organic matter in the host rocks. Based on the regional hydrogeology and the geological structure of the Razdolnoe Spa, Mesozoic fractured rocks containing Na–HCO3 mineral water and gases are reservoir rocks, a chemical composition of water and gases originates in different environmental conditions.  相似文献   

17.
The Holocene successions of numerous shallow lakes located along the Coorong coastal plain in South Australia attest to the impact of rising sea level and changing climate on their depositional environment. Old Man Lake is one of the smallest perennial alkaline lakes in the region. Its succession comprises a basal lagoonal sand rich in humic organic matter (OM) overlain by a 3.7 m thick upward shoaling lacustrine mudstone. The latter features three discrete sapropel units deposited between 3270 and 4910 cal yr BP, a time of increasing aridity throughout southeastern Australia. A core taken from the lake’s eastern margin yielded sedimentological, mineralogical, geochronological and micropaleontological data. Coring at five other sites across the lake provided sections of the humic and sapropelic facies (n = 20) for total organic carbon and Rock–Eval analysis; isotopic characterization of their micritic carbonate (δ13Ccarb, δ18Ocarb) and co-existing OM (δ13Corg); and GC–MS and GC–irMS analysis of their free aliphatic hydrocarbons. For each ‘sapropel event’ high productivity of diatoms and green algae was the principal driver of the accumulation and preservation of OM in such high concentrations. The precursor algal blooms were likely triggered by the influx of fresh water following winter rainfall. The combination of kerogen hydrogen index and δ13Ccarbδ13Corg, previously employed to track secular changes in algal productivity and organic preservation, proved useful in identifying synchronous geographic differences in these processes across the lake. Highly branched isoprenoids (HBI: C25:1  C20:0) are prominent components of the aliphatic hydrocarbons in the sapropels, confirming the significant contribution of diatoms to their OM. The C isotopic signatures of the principal C25:1 HBI isomer and the co-occurring C23–C31 odd carbon numbered n-alkanes further document the non-uniformity of biomass preservation within and between the three sapropel units. The evidence from this study suggests that seasonal algal blooms and meromixis, although not necessarily an anoxic hypoliminion, were required for sapropel formation in the Holocene lakes of the Coorong region. Higher resolution sampling, dating and comparative analysis (microfossil, biomarker and isotopic) of these sapropels is required to clarify their potential significance as palaeoclimate proxies.  相似文献   

18.
The biodegradation of crude oil by microorganisms from well Luo-801, China, was examined in cultures grown under conditions that promoted either methanogenesis or sulfate reduction, at 35 °C and 55 °C. Headspace gas and oil compositions were characterized at 180 d and 540 d. Alkylphenanthrenes are relatively recalcitrant to bacterial attack and the biodegradation of these compounds appeared to be insignificant after 180 d under both conditions, but is evident after 540 d. The depletion of alkylphenanthrenes was monitored through evaluation of the ratio of alkylphenanthrenes to the most bioresistant, analyzed component (C28 20R triaromatic steroid hydrocarbon) and isomer susceptibility also was evaluated by relative abundance comparison within the compound class. The influence of growth temperature varied. Only slight differences in alkylphenanthrene concentrations were observed after 180 d whereas the greater degrees of biodegradation were observed at 35 °C in the methanogenic culture and at 55 °C in the sulfate reducing culture. Overall, higher biodegradation rates occur under sulfate reducing condition, which is consistent with the conclusion that methanogens are generally less able to compete for substrates than sulfate reducers. The biodegradation susceptibility of alkylphenanthrenes decreases with increasing degree of alkylation, i.e., phenanthrene (P) and methylphenanthrenes (MPs) were more easily biodegradable than C2-alkylphenanthrenes (C2-Ps) and C3-alkylphenanthrenes (C3-Ps). Biodegradation selectivity for specific homologues is not striking for the limited time duration of the experiments. However, 3-MP seems slightly more vulnerable than other methylphenanthrene isomers and 1,7-DMP has slightly higher ability to resist biodegradation than the other C2-P isomers. The commonly used thermal maturity parameters derived from methylphenanthrene isomer ratios are altered insignificantly by biodegradation and remain valid for geochemical assessment. This information should be useful for assessing the limits of in situ crude oil biodegradation.  相似文献   

19.
We investigated the effect of ionizing radiation on organic matter (OM) in the carbonaceous uranium (U) mineralization at the Mulga Rock deposit, Western Australia. Samples were collected from mineralized layers between 53 and 58.5 m depths in the Ambassador prospect, containing <5300 ppm U. Uranium bears a close spatial relationship with OM, mostly finely interspersed in the attrinite matrix and via enrichments within liptinitic phytoclasts (mainly sporinite and liptodetrinite). Geochemical analyses were conducted to: (i) identify the natural sources of molecular markers, (ii) recognize relationships between molecular markers and U concentrations and (iii) detect radiolysis effects on molecular marker distributions. Carbon to nitrogen ratios between 82 and 153, and Rock–Eval pyrolysis yields of 316–577 mg hydrocarbon/g TOC (HI) and 70–102 mg CO2/g TOC (OI) indicate a predominantly lipid-rich terrigenous plant OM source deposited in a complex shallow swampy wetland or lacustrine environment. Saturated hydrocarbon and ketone fractions reveal molecular distributions co-varying with U concentration. In samples with <1700 ppm U concentrations, long-chain n-alkanes and alkanones (C27–C31) reveal an odd/even carbon preference indicative of extant lipids. Samples with ⩾1700 ppm concentrations contain intermediate-length n-alkanes and alkanones, bearing a keto-group in position 2–10, with no carbon number preference. Such changes in molecular distributions are inconsistent with diagenetic degradation of terrigenous OM in oxic depositional environments and cannot be associated with thermal breakdown due to the relatively low thermal maturity of the deposits (Rr = 0.26%). It is assumed that the intimate spatial association of high U concentrations resulted in breakdown via radiolytic cracking of recalcitrant polyaliphatic macromolecules (spores, pollen, cuticles, or algal cysts) yielding medium chain length n-alkanes (C13–C24). Reactions of n-alkenes with OH radicals from water hydrolysis produced alcohols that dehydrogenated to alkanones or through carbonylation formed alkanones. Rapid reactions with hydroxyl radicals likely decreased the isomerization of n-alkenes and decreased alkanone diversity, such that the alkan-2-one isomer is predominant. This specific distribution of components generated by natural radiolysis enables their application as “radiolytic molecular markers”. Breaking of C–C bonds through radiolytic cracking at temperatures much lower than the oil window (<50 °C) can have profound implications on initiation of petroleum formation, paleoenvironmental reconstructions, mineral exploration and in tracking radiolysis of OM.  相似文献   

20.
This study presents isotope geochemical analyses conducted on water column samples and core sediments collected from the Swan Lake Basin. Water analyses include the dissolved methane (CH4) content and the ratio of carbon-13 to carbon-12 (δ13C) in dissolved inorganic carbon (DIC). The core sediments – sandy muds containing inorganic calcite, organic matter, and opal phases ± ostracods – were examined by X-ray diffraction, dated by radiocarbon (14C), analyzed for wt% organic carbon, wt% organic nitrogen, wt% organic matter, wt% calcite, δ13C of bulk-sediment insoluble organic matter (kerogen), 18O:16O ratio (δ18O) and δ13C of bulk and ostracod calcite. Of particular significance is the large enrichment in carbon-13 (δ13C = +4.5 to +20.4‰ V-PDB) in the calcite of these sediments. The 13C-enriched calcite is primarily formed from DIC in the water column of the lake as a result of the following combined processes: (i) the incorporation of 13C enriched residual carbon dioxide (CO2) after partial reduction to CH4 in the sediments and its migration into the water column-DIC pool; (ii) the preferential assimilation of 12C by phytoplankton during photosynthesis; (iii) the removal of 13C-depleted CH4 by ebullition and of organic matter by sedimentation and burial. The 13C enrichment was low between 3624 and 2470 yr BP; high between 2470 and 1299 yr BP; and moderate since 1299 yr BP. Low 13C enrichment was formed under low water-column carbon levels while higher ones were formed under elevated rates of biomass and calcite deposition. These associations seem to imply that biological productivity is the main reason for carbon-13 enrichments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号