首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycerol dialkyl glycerol tetraethers (GDGTs) and bulk organic geochemical parameters were examined for a short core from the Bohai Sea, a Yellow River-dominated continental margin. A three end member mixing model using branched/isoprenoid tetraethers (BIT) index, δ13C and C/N shows that the average fractions of soil, marine and plant organic matter (OM) during the period of 1933–2011 are 67.7% (38–92%), 26.1% (0–58%) and 6.2% (0–23%), respectively. Abrupt changes of sedimentary OM compositions around 1953, 1976 and 1996 are synchronous with the Yellow River mouth relocations. The BIT index values (0.33–0.80) present a stronger correlation with crenarchaeol abundance (R2 = 0.88) than branched GDGTs abundance (R2 = 0.27), suggesting that variations of marine Thaumarchaeota abundance rather than soil OM inputs is the first order factor controlling the BIT index values, although this proxy has been widely used for soil OM. The comparison between the BIT index, nutrient status and historical Yellow River sediment load indicates that the high sensitivity of the BIT index to the Yellow River channel shifts cannot be explained by a nutrient stimulation mechanism, but instead is likely caused by the restriction of Thaumarchaeota growth in highly turbid water due to the enormous sediment inputs from Yellow River. Our study demonstrates that local conditions should be considered when applying the BIT index as an environmental proxy.  相似文献   

2.
The Palinuro volcanic complex and the Panarea hydrothermal field, both located in the Tyrrhenian Sea (Italy), are associated with island arc magmatism and characterized by polymetallic sulfide mineralization. Dissolved sulfide concentrations, pH, and Eh measured in porewaters at both sites reveal a variable hydrothermal influence on porewater chemistry.Multiple sulfur isotopic measurements for disseminated sulfides (CRS: chromium reducible sulfur) extracted from sediments at Palinuro yielded a broad range in δ34S range between ?29.8 and + 10.2‰ and Δ33S values between + 0.015 and + 0.134‰. In contrast, sediments at Panarea exhibit a much smaller range in δ34SCRS with less negative values between ?11.3 and ?1.8‰. The sulfur isotope signatures are interpreted to reflect a mixture between hydrothermal and biogenic sulfide, with a more substantial biogenic contribution at Panarea.Multiple sulfur isotope measurements were performed on sulfides and elemental sulfur from drill core material from the Palinuro massive sulfide complex. δ34S and Δ33S values for pyrite between ?32.8 and ?1.1‰ and between ?0.012 to + 0.042‰, respectively, as well as for elemental sulfur with δ34S and Δ33S values between ?26.7 and ?2.1‰ and between + 0.035 and + 0.109‰, respectively, point to a microbial origin for much of the sulfide and elemental sulfur studied. Moreover, data suggest a coupling of bacterial sulfate reduction, sulfide oxidation and sulfur disproportionation. In addition, δ34S values for barite between + 25.0 and + 63.6‰ are also in agreement with high microbial turnover of sulfate at Palinuro.Although a magmatic SO2 contribution towards the formation of the Palinuro massive sulfide complex is very likely, the activity of different sulfur utilizing microorganisms played a fundamental role during its formation. Thus, porewater and multiple sulfur isotope data reveal differences in the hydrothermal activity at Palinuro and Panarea drill sites and underline the importance of microbial communities for the origin of massive sulfide mineralizations in the hydrothermal subsurface.  相似文献   

3.
We determined biomarker concentrations and distributions for surface sediments from 54 sites in the Pearl River Estuary, China. We focus on a suite of four biomarker-based indicators for relative terrestrial to marine organic matter (OM) source: the branched-isoprenoid tetraether (BIT) index, the ratio of high/low molecular weight n-alcohols [(ΣC26–34/(ΣC16+18 + ΣC26–34)], an analogous ratio for n-fatty acids and the ΣC29-steroids/(ΣC29-steroids + brassicasterol) ratio. All four exhibit the same terrestrial to marine transition seen in previous bulk δ13C studies, but with an abrupt decrease in the relative terrestrial contribution across the delta front to pro-delta transition. Concentrations of terrestrially-derived biomarkers show no systematic decrease across the transition. Instead, the decrease in the proportion of terrestrial OM is due to a decrease in the sedimentation rate and associated terrestrial OM burial across the delta toe. This suggests that diagenetic controls on the fate of terrestrial OM, such as increased biodegradation where sedimentation rate is low, are subordinate to sedimentological processes. Biomarker-derived temperature values are cooler than expected for the lower Pearl River catchment, suggesting that the dominant component of the terrestrial OM is derived from the cooler upland regions of the catchment. The dominance of input from more distal terrain with greater topographic relief is evidence for the importance of geomorphological control on terrigenous OM transport. Collectively, the results demonstrate the importance of sedimentological processes in the supply, deposition and transport of terrestrial OM.  相似文献   

4.
Reactions between reduced inorganic sulfur and organic compounds are thought to be important for the preservation of organic matter (OM) in sediments, but the sulfurization process is poorly understood. Sulfur isotopes are potentially useful tracers of sulfurization reactions, which often occur in the presence of a strong porewater isotopic gradient driven by microbial sulfate reduction. Prior studies of bulk sedimentary OM indicate that sulfurized products are 34S-enriched relative to coexisting sulfide, and experiments have produced 34S-enriched organosulfur compounds. However, analytical limitations have prevented the relationship from being tested at the molecular level in natural environments. Here we apply a new method, coupled gas chromatography – inductively coupled plasma mass spectrometry, to measure the compound-specific sulfur isotopic compositions of volatile organosulfur compounds over a 6 m core of anoxic Cariaco Basin sediments. In contrast to current conceptual models, nearly all extractable organosulfur compounds were substantially depleted in 34S relative to coexisting kerogen and porewater sulfide. We hypothesize that this 34S depletion is due to a normal kinetic isotope effect during the initial formation of a carbon–sulfur bond and that the source of sulfur in this relatively irreversible reaction is most likely the bisulfide anion in sedimentary porewater. The 34S-depleted products of irreversible bisulfide addition alone cannot explain the isotopic composition of total extractable or residual OM. Therefore, at least two different sulfurization pathways must operate in the Cariaco Basin, generating isotopically distinct products. Compound-specific sulfur isotope analysis thus provides new insights into the timescales and mechanisms of OM sulfurization.  相似文献   

5.
Surface sediments from the Gulf of Cádiz (GoC) were analyzed by alkaline CuO oxidation, in order to estimate the contribution of terrigenous organic matter (TOM) to the inner continental shelf of the southwest Iberian Peninsula. The parallel analysis of sediment samples from the two most important rivers draining to this coastal area (i.e. Guadiana River and Tinto–Odiel fluvial system) provided fundamental information regarding local terrestrial sources. Relatively constant intensive lignin parameters (S:V = 1.0 ± 0.1 and C:V = 0.22 ± 0.04) and high values of the lignin phenol vegetation index (LPVI = 155 ± 43) indicated that non-woody angiosperm tissues constitute the dominant component of vascular plant material reaching the shelf sediments. The NW to SE decreasing isotopic (13C) and molecular (Λ8) signatures found among the sediments, coinciding with the Guadiana delivery plume, suggest that this river is the main terrestrial source in the inner GoC shelf. Slightly elevated values of degradation indicative ratios ([Ad:Al]V = 0.41 ± 0.10; [Ad:Al])S = 0.34 ± 0.07; [3,5-Bd:V] = 0.14 ± 0.05; P:[V + S] = 0.24 ± 0.09) suggested the alteration state of the shelf sediments. The two fold higher ratios of the river sediments (Guadiana: [Ad:Al]V = 0.82 ± 0.08; [Ad:Al]S = 0.84 ± 0.03; Tinto–Odiel: [Ad:Al]V = 0.86 ± 0.12; [Ad:Al]S = 0.83 ± 0.013) and the increasing degradation trend observed outward in the shelf, lead us to consider preferential sorption processes, instead of in situ diagenesis, to affect the degradation signature of the shelf sediments. Preferentially solubilized degraded OM is more likely to be sorbed and stabilized prior to transport to the marine system, showing an apparently more advanced degradation state. The use of the 3,5-Bd:V ratio in conjunction with (Ad:Al)V revealed a composition continuum of the sedimentary OM ranging from fresh plant materials to highly altered soil humic constituents. Elemental and molecular analyses show a land to sea gradient by a NW to SE decrease of the terrestrial influence, accounting for larger terrestrial inputs (TOM: 71–98%) in those sediments near the Guadiana mouth, and predominantly autochthonous composition (TOM: 42–50%) in those located offshore. This work utilizes lignin derived biomarkers to determine the contribution of terrigenous OM delivered to this poorly described coastal area from regional rivers. Within a context of increasing international efforts to better understand the global C cycling, this study illustrates the relevance of using the alkaline CuO oxidation approach to evaluate C budgets and continental influence in river dominated ocean margins.  相似文献   

6.
Branched glycerol dialkyl glycerol tetraethers (GDGTs) are membrane lipids of unknown bacteria that are ubiquitous in soil and peat. Two indices based on the distribution of these lipids in soils, the Cyclization of Branched Tetraethers (CBT) and the Methylation of Branched Tetraethers (MBT) indices have been shown to correlate with soil pH, and mean annual air temperature (MAT) and soil pH, respectively, and can be used to reconstruct MAT in palaeoenvironments. To verify the extent to which branched GDGTs in marine sediments reflect the distribution pattern on land and whether these proxies are applicable for palaeoclimate reconstruction in high latitude environments with a MAT of <0 °C, we compared the branched GDGT distribution in Svalbard soils and nearby fjord sediments. Although branched GDGT concentrations in the soil are relatively low (0.02–0.95 μg/g dry weight (dw)) because of the cold climate and the short growing season, reconstructed MATs based on the MBT/CBT proxy are ca. ?4 °C, close to the measured MAT (ca. ?6 °C). Concentrations of branched GDGTs (0.01–0.20 μg/g dw) in fjord sediments increased towards the open ocean and the distribution was strikingly different from that in soil, i.e. dominated by GDGTs with one cyclopentane moiety. This resulted in MBT/CBT-reconstructed MAT values of 11–19 °C, well above measured MAT. The results suggest that at least part of the branched GDGTs in marine sediments in settings with a low soil organic matter (OM) input may be produced in situ. In these cases, the application of the MBT/CBT palaeothermometer will generate unrealistic MAT reconstructions. The MBT/CBT proxy should therefore only be used at sites with a substantial input of soil OM relative to the amount of marine OM, i.e. at sites close to the mouth of rivers with a catchment area where sufficient soil formation takes place and the soil thus contains substantial amounts of branched GDGTs.  相似文献   

7.
The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5–1.8 × 109 cells g−1 dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs cell−1. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.  相似文献   

8.
Moss covered, high latitude wetlands hold large amounts of terrestrial organic matter (OM), which may be vulnerable to expected climate warming. Molecular analysis of fluvially transported material from these regions can distinguish between different sources of terrestrial OM. Sphagnum moss may represent one of the major sources. This study aimed to quantitatively establish a molecular proxy for identifying Sphagnum-derived OM from high latitude peatlands in the sub-Arctic coastal ocean. We collected and analyzed Sphagnum species throughout northern Sweden and Finland. Results show that the C25/(C25 + C29) n-alkane ratio is most suitable for terrestrial OM source apportionment in these coastal regions since, compared to other n-alkane Sphagnum proxies, it shows (i) the least variation between species, (ii) the most constant values for different latitudinal regimes and (iii) the largest dynamic range to the higher plant end member in two-source mixing models. Application of the proxy to surface sediments and suspended particulate matter in the sub-Arctic northern Baltic Sea shows that 68–103% of the terrestrial OM fraction is derived from Sphagnum-rich peatland. We recommend that future studies on terrestrial OM fluxes into (sub-)Arctic regions should apply the C25/(C25 + C29) proxy to improve insight into the contribution of Sphagnum-derived terrestrial OM from climate-vulnerable, high latitude wetlands.  相似文献   

9.
《Organic Geochemistry》2011,42(12):1489-1501
Mineral–organic associations act as mediators of litter-derived N flow to the mineral soil, but the time scales and pathways involved are not well known. To close that gap, we took advantage of decade old 15N litter labeling experiments conducted in two European forests. We fractionated surface soils by density with limited disaggregating treatment and investigated organic matter (OM) characteristics using δ13C, δ15N and the C/N ratio. Mineral properties were studied by X-ray diffraction and selective dissolution of pedogenic oxides.Three types of associations were isolated: plant debris with few trapped minerals (<1.65 g/cm3), aggregates dominated by phyllosilicates (1.65–2.4 g/cm3), and single mineral grains and pedogenic oxides with little OM (>2.4 g/cm3). A small proportion of 15N tracer was rapidly attached to single mineral grains, while most of it moved from plant debris to aggregates of low density and progressively to aggregates of higher density that contain a more microbially processed OM. After a decade, 60% of the 15N tracer found in the investigated horizon was retained in aggregates, while plant debris still contained 40% of the tracer.We present a conceptual model of OM and N flow through soil mineral–organic associations, which accounts for changes in density, dynamics and chemistry of the isolated structures. It suggests that microbial reworking of OM entrapped within aggregates (1.65–2.4 g/cm3) causes the gradient of aggregate packing and, further on, controls the flow of litter-derived N through aggregates. For associations with denser material (>2.4 g/cm3), mineralogy determines the density of the association, the type of patchy OM attached to mineral surfaces and controls the extent of litter-derived N incorporation.  相似文献   

10.
Temporal changes in paleoproductivity of Lake Biwa (Japan) over the past 32 kyr have been studied by analyzing bulk organic carbon and photosynthetic pigments (chlorins) in the BIW95-5 core. Primary productivity was estimated on the assumption of C/Norg values of 8 for autochthonous organic matter (OM) and 25 for allochthonous OM and using an equation developed for the marine environment. The estimate indicates that primary productivity ranges from 50 to 90 g C m?2 yr?1 in the Holocene, while it is ~60 g C m?2 yr?1 on average in the last glacial. Pheophytin a and pheophorbide a are the major chlorins. A downcore profile of chlorin concentration normalized to autochthonous organic carbon (OC) shows a decreasing trend. Chlorin productivity was corrected by removal of the effect of post-burial chlorin degradation. The temporal profile of chlorin productivity thereby obtained resembles that from autochthonous OC.The difference in primary productivity between the Holocene and the glacial for the lake is markedly smaller than that for Lake Baikal situated in the boreal zone. This difference between the two lakes is probably caused by the difference in their climatic conditions, such as temperature and precipitation. Precipitation at Lake Biwa is relatively large during the glacial and the Holocene because of the continuous influence of the East Asian monsoon. Lake Baikal precipitation is generally small as a result of control by the continental (Siberia) climate regime. In addition, a significant difference in productivity between the glacial and the Holocene for Lake Baikal may be essentially controlled by the hydrodynamic systems in the lake.Lake Biwa terrigenous OM input events occurred at least five times over the period 11–32 kyr BP, suggesting enhanced monsoon activity. Molecular examination of the layer with a large input of terrigenous OM during the Younger Dryas indicates that concentrations of terrigenous biomarkers such as n-C27–C31 alkanes, lignin phenols, cutin acids, ω-hydroxy acids and C29 sterols are high, suggesting that soil OM with peat-like material entered the lake as a result of flooding. An enhanced sedimentation rate in the last 3000 years might have been partially caused by agricultural activity around the lake.  相似文献   

11.
We report the presence of coenzyme factor 430 (F430), a prosthetic group of methyl coenzyme M reductase for archaeal methanogenesis, in the deep sub-seafloor biosphere. At 106.7 m depth in sediment collected off Shimokita Peninsula, northwestern Pacific, its concentration was estimated to be at least 40 fmol g sediment−1 (i.e. 36 pg g−1 wet sediment). This is about three orders of magnitude lower than typical concentrations of archaeal intact polar lipids in similar sub-seafloor sediments. On the basis of the concentration of F430 in methanogens and conversion to biomass composed of typical sub-seafloor microbial cells, we estimated that ca. 2 × 106 cells g−1 could be methanogens in the deeply buried marine sediment.  相似文献   

12.
Three sediment cores (50 cm depth) were collected at three different sites from a tidal flat estuary at Passagem Channel (Vitória, Espírito Santo State-Brazil) to evaluate the influence of recent urbanization processes on the deposition of organic matter (OM) in a complex polluted tropical estuary. In addition to geochronology (by excess 210Pb), the sources of natural and anthropogenic OM to the sediments were evaluated by total organic C (TOC – 14.29 ± 8.73, 30.43 ± 14.71 and 48.70 mg g−1 ± 25.46, respectively, for P1, P2 and P3), C/N molar ratio and lipid biomarkers (sterols and terpenoids). Taraxerol (3.10 ± 4.85, 9.71 ± 3.85 and 16.10 mg gTOC−1 ± 32.48 for P1, P2 and P3, respectively) and sitosterol (1.71 ± 2.72, 2.94 ± 6.41 and 4.07 mg gTOC−1 ± 4.41 for P1, P2 and P3, respectively) were the most abundant compounds in all cores, suggesting a major contribution of terrestrially-derived OM to the study region. Coprostanol levels and selected sterol index indicated significant contamination by fecal material. The organic geochemical indicators suggest that changes of OM reflect occupation and urbanization alteration processes around the Passagem Channel over the last 70 a, mainly the conversion of mangrove forest into urban areas, bridge building and Treatment Plant Station installation.  相似文献   

13.
A small, protected karstic feature exposed in a limestone quarry in Bermuda preserved abundant sedimentary and biogenic materials documenting a transgressive phase, still-stand, and regressive phase of a sea-level in excess of 21.3 m above present during Marine Isotope Stage (MIS) 11 (400 ka) as determined by U/Th dating and amino acid racemization. Cobbles and marine sediments deposited during the high-energy transgressive phase exhibit rim cements indicating a subsequent phreatic environment. This was succeeded stratigraphically by a still-stand deposition of fine calcareous lagoonal sediments containing bioclasts of red algae and benthic and planktonic foraminifera that was intensely burrowed by marine invertebrates, probably upogebiid shrimp, that could not be produced under any condition other than sustained marine submergence. Overlying this were pure carbonate beach sands of a low-energy regressive phase containing abundant remains of terrestrial and marine vertebrates and invertebrates. The considerable diversity of this fauna along with taphonomic evidence from seabird remains indicates deposition by high run-up waves over a minimum duration of months, if not years. The maximum duration has yet to be determined but probably did not exceed one or two thousand years. The most abundant snails in this fauna are two species indicative of brackish water and high-tide line showing that a Ghyben-Herzberg lens must have existed at > + 20 m. The nature of these sediments and fossil accumulation is incompatible with tsunami deposition and, given the absence of evidence for tectonic uplift of the Bermuda pedestal or platform, provide proof that sea-level during MIS 11 exceeded +20 m, a fact that has widespread ramifications for geologists, biogeographers, and human demographics along the world's coastlines.  相似文献   

14.
Although the methane in marine methane hydrates is mainly of microbial origin, information about the distribution of methanogens in subseafloor sediments is limited. To address this issue, we analyzed sediment core samples from two sites in the Nankai Trough, off the Pacific coast of central Japan, including those bearing methane hydrates from depths > 100 m below the seafloor (mbsf), for isopranyl ether-linked polar lipids (i.e. with polar head groups of phosphate, sugar, or both) as biomarkers of archaea, including methanogens. In most samples, including the deepest (381 mbsf), archaeol, and sn-2- and sn-3-hydroxyarchaeols were detected as their hydrolyzed derivatives. Concentrations of these three archaeal lipids correlated strongly with each other, suggesting a common biological source. The δ13C values of phytane derived from the phytanyl groups in the archaeal lipids were distinctly higher than those of methane, indicating that methanogens rather than anaerobic methanotrophic archaea were the major biological source. Depth profiles of polar sn-2-hydroxyarchaeol concentration were consistent with those of the potential methane production activity previously estimated from incubation of core sediments from the same sites. This observation, together with results of previous studies showing the presence of sn-2-hydroxyarchaeol mainly in shallow young sediments, strongly suggests that this polar lipid is a valid biomarker for in situ methanogens in sediments. There was a strong correlation between the concentration of polar sn-2-hydroxyarchaeol and that of total organic carbon, suggesting that bulk organic matter concentration is a primary control on the distribution of methanogens in sediments.  相似文献   

15.
An unusual series of C22–C27 monounsaturated sterenes and C24–C30 tetracyclic terpanes (17,21-secohopanes) were detected in relatively high concentrations in an immature evaporitic marl sediment of the Jinxian Sag, Bohai Bay Basin, North China. The site of unsaturation in these novel sterenes is assigned tentatively to the D ring on the basis of mass spectral interpretation, which also distinguishes them from reported unsaturated sterenes. Other hydrocarbon biomarker or stable isotope characteristics are indicative of microbial (e.g. methyl hopanes), phytoplankton or higher plant (depleted δ13C values of isoprenoids and hopanes) inputs and an anoxic carbonate depositional environment (hexacyclic hopanes; tetracyclic terpanes). The hydrocarbon composition showed no obvious biodegradation and the relatively high concentration of unsaturated terpenoids (e.g. gammacerene) and low values of other established maturity parameters (Ts/Tm = 0.23; Ro = 0.44%; Tmax = 417 °C), are consistent with sediments of low maturity. The novel, low molecular weight sterenes and the tetracyclic terpanes may be early diagenetic products of microbial sources in a carbonate environment.  相似文献   

16.
《Applied Geochemistry》2005,20(5):989-1016
Groundwater from the Quaternary loess aquifer of La Pampa, central Argentina, has significant problems with high concentrations of As (up to 5300 μg L−1) as well as other potentially toxic trace elements such as F, B, Mo, U, Se and V. Total As concentrations in 45 loess samples collected from the aquifer have a range of 3–18 mg kg−1 with a mean of 8 mg kg−1. These values are comparable to world-average sediment As concentrations. Five samples of rhyolitic ash from the area have As concentrations of 7–12 mg kg−1. Chemical analysis included loess sediments and extracted porewaters from two specially cored boreholes. Results reveal a large range of porewater As concentrations, being generally higher in the horizons with highest sediment As concentrations. The displaced porewaters have As concentrations ranging up to 7500 μg L−1 as well as exceptionally high concentrations of some other oxyanion species, including V up to 12 mg L−1. The highest concentrations are found in a borehole located in a topographic depression, which is a zone of likely groundwater discharge and enhanced residence time. Comparison of sediment and porewater data does not reveal unequivocally the sources of the As, but selective extract data (acid-ammonium oxalate and hydroxylamine hydrochloride) suggest that much of the As (and V) is associated with Fe oxides. Primary oxides such as magnetite and ilmenite may be partial sources but given the weathered nature of many of the sediments, secondary oxide minerals are probably more important. Extract compositions also suggest that Mn oxide may be an As source. The groundwaters of the region are oxidising, with dissolved O2, NO3 and SO4 normally present and As(V) usually the dominant dissolved As species. Under such conditions, the solubility of Fe and Mn oxides is low and As mobilisation is strongly controlled by sorption–desorption reactions. Desorption may be facilitated by the relatively high-pH conditions of the groundwaters in the region (7.0–8.8) and high concentrations of potential competitors (e.g. V, P, HCO3). PHREEQC modelling suggests that the presence of V at the concentrations observed in the Pampean porewaters can suppress the sorption of As to hydrous Fe(III) oxide (HFO) by up to an order of magnitude. Bicarbonate had a comparatively small competitive effect. Oxalate extract concentrations have been used to provide an upper estimate of the amount of labile As in the sediments. A near-linear correlation between oxalate-extractable and porewater As in one of the cored boreholes investigated has been used to estimate an approximate Kd value for the sediments of 0.94 L kg−1. This low value indicates that the sediments have an unusually low affinity for As.  相似文献   

17.
Intact polar membrane lipids (IPLs) are frequently used as markers for living microbial cells in sedimentary environments. The assumption with these studies is that IPLs are rapidly degraded upon cell lysis and therefore IPLs present in sediments are derived from in situ microbial production. We used a theoretical approach to assess whether IPLs in surface sediments can potentially represent fossilized IPLs derived from the upper part of the water column and whether IPLs can be preserved during sediment burial. Previous studies which examined the degradation kinetics of IPLs show that phospholipids, i.e. ester-linked lipids with a phosphor-containing head group, degrade more rapidly than glycosidic ether lipids, i.e. ether-linked lipids with a glycosidically bound sugar moiety. Based on these studies, we calculate that only a minor fraction of phospholipids but a major fraction of glycosidic ether lipids biosynthesized in the upper part of the water column can potentially reach deep-sea surface sediments. Using a simple model and power law kinetic degradation parameters reported in the literature, we also evaluated the degradation of IPLs during sediment burial. Our model predicts a log-log relationship between IPL concentrations and depth, consistent with what has been observed in studies of IPLs in subsurface sediments. Although our results do not exclude production of IPLs in subsurface sediment, they do suggest that IPLs present in the deep biosphere may contain a substantial fossil component potentially masking in situ IPL production.  相似文献   

18.
A large number of Paleoproterozoic borate deposits are hosted by the lower units of a volcanic-sedimentary sequence in Liaoning Province, northeastern China, and are a major source of boron in China. The ore-bearing wall rocks in the deposits are serpentinized ultrabasic rocks and carbonates, with layered leptynites, leptites, amphibolites, and migmatites adjacent to the ore. Both the borate ores and country rocks contain tourmaline, although the country rocks have much lower abundances of the mineral. Based on in situ boron isotope measurements using laser ablation–multi-collector–inductively coupled plasma–mass spectrometry (LA–MC–ICP–MS), boron isotope data show that: (1) δ11B values of borate ores range from + 6.8‰ to + 13.9‰ (mean + 10.8‰); (2) tourmalines from the borate ores have δ11B values from + 9.5‰ to + 12.7‰; and (3) the wall rocks within the borate ores yield slightly lower δ11B values ranging from + 5.7‰ to + 7.6‰, and those outside the deposits from − 9.9‰ to − 5.9‰. Positive δ11B values in borates as well as in tourmalines inside the mining area indicate that boron in these Paleoproterozoic borate deposits was derived from marine evaporites. δ34SV-CDT (where V-CDT is Vienna Canyon Diablo Troilite) values of borate ores, serpentinized marbles, and anhydrites range from + 16.1‰ to + 24.7‰, whereas δ13CV-PDB (where V-PDB is Vienna Pee Dee Belemnite) values of marbles range from + 3.2‰ to + 5.9‰. These isotopic characteristics are interpreted to reflect formation in a marine evaporative environment. LA–MC–ICP–MS zircon weighted207Pb/206Pb ages of leptite and serpentinized olivine basalt from the hanging wall of the borate deposits are 2139 ± 13 Ma and 2130 ± 19 Ma, respectively. Therefore, the (~ 2.2 Ga) borate deposits may have originated from marine evaporative boron-bearing sediments, which were interbedded within bimodal volcanic rocks during the early stages of development of the Liaoji rift.  相似文献   

19.
Glycerol ether lipid distributions have been developed as proxies for reconstructing past environmental change or, in their intact polar form, for fingerprinting the viable microbial community composition. However, due to their structural complexity, full characterization of glycerol ether lipids requires separate protocols for the analysis of the polar head groups and the alkyl chain moieties in core ether lipids. As a consequence, the valuable relationship between core ether lipid composition and specific polar head groups is often lost; this limits understanding of the diversity of ether lipids and their utility as biogeochemical proxies. Here, we report a novel reversed phase liquid chromatography–electrospray ionization-mass spectrometry (RP-ESI-MS) protocol that enables the simultaneous analysis of polar head groups (e.g. phosphocholine, phosphoglycerol, phosphoinositol, hexose and dihexose) and alkyl moieties (e.g. alkyl moieties modified with different numbers of cycloalkyl moieties, hydroxyl and alkyl groups and double bonds) in crude lipid extracts without further preparation. The protocol greatly enhances detection of archaeal intact polar lipids (IPLs) and core lipids (CLs) with double bond- and hydroxyl group-bearing alkyl moieties. With these improvements, widely used ratios that describe relative distributions of the core lipids, such as TEX86 and ring index, can now be directly determined in specific intact polar lipids (IPL-specific TEX86 and ring index). Since IPLs are the putative precursors of the environmentally persistent core lipids, their detailed examination using this protocol can potentially provide new insights into diagenetic and biological mechanisms inherent to these proxies. In a series of 12 samples from diverse settings, core and IPL-specific TEX86 values followed the order: 2G-GDGTs > core GDGTs > 1G-GDGTs > 1G-GDGT-PI and the ring indices followed: 1G-GDGTs  core GDGTs > 2G-GDGTs > 1G-GDGT-P1G > 2G-OH-GDGTs  1G-OH-GDGTs (1G, monoglycosyl; 2G, diglycosyl; P1G, phosphomonoglycosyl; GDGT, glycerol dialkyl glycerol tetraether).  相似文献   

20.
Germania Havn Sø is located at the outermost coast of northeastern Greenland. According to radiocarbon dating, the lake basin was deglaciated in the early Holocene, around 11,000 cal yr BP. At that time the lake was a marine bay, but the lake was isolated soon after deglaciation at ~ 10,600 cal yr BP. The marine fauna was species-poor, indicating harsh conditions with a high sedimentation rate and lowered salinity due to glacial meltwater supply. The pioneer vegetation around the lake was dominated by mosses and herbs. Deposition of relatively coarse sediments during the early Holocene indicates erosion of the newly deglaciated terrain. Remains of the first woody plant (Salix herbacea) appear at 7600 cal yr BP and remains of other woody plants (Salix arctica, Dryas octopetala, Cassiope tetragona and Empetrum nigrum) appear around one millennium later. Declining concentrations of D. octopetala and the caddis fly Apatania zonella in the late Holocene probably imply falling summer temperatures. Only moderate changes in the granulometric and geochemical record during the Holocene indicate relatively stable environmental settings in the lake, which can probably be explained by its location at the outer coast and the buffering effect of the neighboring ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号