首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
围绕Cryosat-2卫星SAR模式测高数据处理方法展开研究,利用决策树算法确定冰间水道观测值提取的参数和阈值,进而建立北冰洋海冰覆盖海域的海平面模型UST-CS2。结果表明,UST-CS2与DTU21海平面模型具有较高的一致性。ICESat-2激光测高数据的验证结果表明,UST-CS2的标准差为10.72 cm,与DTU21等模型精度基本持平,证明该模型具有可靠性。  相似文献   

2.
利用ICESat激光测高卫星数据获取2003-10~2008-03北冰洋秋季与冬季海冰出水高度,结果与国外相关研究基本一致。出水高度数据的拟合结果表明,北极海冰出水高度以每年约2.3 cm的速度递减,该速度比此前的相关研究结果更快。在不同作者利用ICESat数据计算的北极海冰出水高度的对比中,不同方法得到的结果之间存在明显的系统误差。对引起系统误差的原因进行深入分析表明,高程滤波的窗口长度、确定海面高的范围以及海面观测值的选取方式都会使出水高度的计算产生cm级的误差。  相似文献   

3.
CryoSat-2卫星海冰区域波形识别及海冰干舷高确定   总被引:1,自引:0,他引:1  
利用40%阈值法对CryoSat-2卫星波形数据进行重跟踪,将波形特征参数和海冰浓度相结合,对海冰和Lead(浮冰之间的开阔水域)进行有效识别。利用沿轨前后搜索算法计算海冰干舷高,并引用AWI结果,绘制2011~2013年北冰洋多年冰区域和一年冰区域平均海冰干舷高变化趋势图。比较本文结果与AWI结果的各年同期数据,验证本文结果的可靠性。  相似文献   

4.
受冬季强寒潮侵袭,辽东湾会出现大范围结冰现象。为了分析2015—2020年辽东湾海冰冰情的变化规律与影响因素,本文选取Sentinel-1A/B数据开展辽东湾海冰监测。首先,采用巴氏距离选择最优纹理特征组合,再利用最大似然方法实现海冰分类;然后,根据上述海冰分类结果,分析海冰冰情等级、海冰外缘线、海冰面积、海冰类型和海冰结冰概率等冰情特征的变化规律;最后,研究海水深度、海温、气温和风速与海冰冰情的关系。主要结论如下:① 采用不同纹理特征组合方法和本文方法对2020年2月1日Sentinel-1B影像进行实验,结果表明本文方法的总体分类精度和Kappa系数分别为93.16%和0.85,分类精度最高。② 11月末到12月海冰类型以初生冰为主,间有灰冰;1月到2月中上旬以灰冰为主,间有初生冰和白冰;2月下旬到3月上旬的海冰类型以灰冰和初生冰为主。辽东湾内部结冰概率存在差异,北部沿岸结冰概率高于南部,东部结冰概率高于西部。辽东湾海冰冰情受海水深度、海温和气温影响明显,受风速影响较小。  相似文献   

5.
联合多代卫星测高数据,研究并实现了多种测高数据联合交叉点平差方法,削弱了数据内部系统性偏差;采用沿轨迹加权最小二乘方法,选取适当的搜索半径,确定了浙江近海剩余垂线偏差子午分量ξ和卯酉分量η;基于移去 恢复方法和FFT技术,利用剩余垂线偏差,考虑最内圈带的影响,选取适当的积分半径,反演得到了浙江近海高分辨率的重力异常模型和大地水准面模型;将浙江近海重力异常与船测重力进行比较,差值的均方根为±5.231 58 mGal;将浙江近海大地水准面与EGM96及EGM2008模型大地水准面进行比较,差值的均方根分别为±0.694 57 m及±0.029 51 m。  相似文献   

6.
利用多源卫星测高数据构建9°~19°N、110°~116°E范围内分辨率为1′×1′的平均海面高模型,对ERM数据的共线平均、GM数据的时变改正、单星及多星间交叉点平差、格网化等方法进行阐述。实验结果表明,平均海面高模型与CLS15差值的平均值(mean)、均方根(RMS)、标准差(STD)分别为0.59 cm、 2.85 cm、2.79 cm,与DTU18差值的mean、RMS、STD分别为2.06 cm、4.17 cm、3.62 cm。利用独立于模型的测高数据(Sentinel-3B、HY-2B)验证模型的精度,建立MSS时使用HY-2A、Jason-3和Sentinel-3A卫星数据,再通过与T/P(TOPEX/Poseidon)数据的对比,分析新数据对MSS的提升作用。  相似文献   

7.
针对GRACE数据后处理过程中滤波导致的信号衰减和泄漏,利用模拟数据研究正向建模改正,改正的量级约为1 cm,在利用GRACE反演陆地水储量变化时这一影响因素不可忽略。基于2002-07~2014-12的GRACE Level-2数据反演三峡库区的水储量变化,结果表明,正向建模改正前后GRACE年周期项振幅分别为7.0±2.4 cm和7.2±2.7 cm,改正后信号泄漏有所减小;GRACE和水文模式数据均表现出明显的季节性特征,但GRACE受多种因素的综合影响,其周年项振幅略大于水文模式;水库3次蓄水引起的等效水高变化分别为60.2 mm、28.3 mm、20.5 mm,与利用水位观测估计得到的库区容量变化具有较好的一致性;分析2003~2009年正向建模改正前后GRACE反演得到的三峡地区等效水高变化速度的空间分布发现,改正后库区蓄水信号明显收敛。  相似文献   

8.
本文以SOA开放式架构与OGC标准规范,提出了极地海冰-海洋参数遥感反演模型分布式共享服务体系。服务体系以"模型服务"为核心,探讨了模型服务接口和模型服务的互操作问题。为了简化极地海冰-海洋参数遥感反演模型的分布式共享过程,提出了极地海冰-海洋参数遥感反演模型共享服务平台的概念。共享服务平台处于模型与模型应用客户端之间,可以实现两者之间的数据转化和功能协同,以及实现模型算法与其他功能的分离,使模型开发者可以专注于模型算法的设计和实现。最后,以海冰密集度遥感反演模型和冰间湖识别模型为例,实现了极地海冰-海洋参数遥感反演模型分布式共享方法。  相似文献   

9.
采用D-InSAR技术对覆盖2020年日本鹿儿岛市樱岛火山喷发前后时段的2景降轨Sentinel-1A数据进行处理,获取日本鹿儿岛市樱岛火山南岳火山口喷发事件引起的地表形变场,并在此基础上结合点源Mogi模型对樱岛火山喷发时的岩浆源进行反演分析。结果表明,2020-07-28~08-09期间沉降主要集中在火山中心地区,最大沉降区域为火山中心地带,最大沉降量与平均沉降量分别为5.5 cm与2.85 cm;抬升主要发生在火山边缘区域,最大抬升量与平均抬升量分别为5 cm与2.24 cm,抬升可能与艾拉火山口下方的岩浆活动有关。根据点源Mogi模型反演得到岩浆源深度和体积变化量分别为1.016 km和-0.139×106 m3,岩浆源位于南岳下方,与南岳火山口的喷发活动有关。  相似文献   

10.
针对南海区域,使用3种重力信号(垂线偏差、重力异常、垂直重力梯度异常)训练卷积神经网络模型,并将预测结果与船测数据和国外模型结果进行对比分析。将3种重力信号分成4组数据:重力异常,重力异常与垂直重力梯度异常,重力异常与垂线偏差,以及重力异常、垂线偏差和垂直重力梯度异常。4种组合方式的反演结果与船测水深之间的标准差分别为104.780 m、102.778 m、93.788 m、88.289 m,表明随着不同类型重力数据的加入,水深预测精度明显提高,并且在深度大于2 000 m时,反演结果精度提升效果更为显著。将训练集占总数据集的比例分别设置为80%、70%、60%和50%,反演结果与船测水深之间的标准差分别为88.289 m、91.256 m、92.833 m、96.022 m,表明数据量的增多可以有效提高模型学习结果的精度。  相似文献   

11.
Snow on sea ice is a sensitive indicator of climate change because it plays an important role regulating surface and near surface air temperatures. Given its high albedo and low thermal conductivity, snow cover is considered a key reason for amplified warming in polar regions. This study focuses on retrieving snow depth on sea ice from brightness temperatures recorded by the Microwave Radiation Imager(MWRI) on board the FengYun(FY)-3 B satellite. After cross calibration with the Advanced Microwave Scanning Radiometer-EOS(AMSR-E) Level 2 A data from January 1 to May 31, 2011, MWRI brightness temperatures were used to calculate sea ice concentrations based on the Arctic Radiation and Turbulence Interaction Study Sea Ice(ASI) algorithm. Snow depths were derived according to the proportional relationship between snow depth and surface scattering at 18.7 and 36.5 GHz. To eliminate the influence of uncertainties in snow grain sizes and sporadic weather effects, seven-day averaged snow depths were calculated. These results were compared with snow depths from two external data sets, the IceBridge ICDIS4 and AMSR-E Level 3 Sea Ice products. The bias and standard deviation of the differences between the MWRI snow depth and IceBridge data were respectively 1.6 and 3.2 cm for a total of 52 comparisons. Differences between MWRI snow depths and AMSR-E Level 3 products showed biases ranging between-1.01 and-0.58 cm, standard deviations from 3.63 to 4.23 cm, and correlation coefficients from 0.61 to 0.79 for the different months.  相似文献   

12.
北极海冰范围时空变化及其与海温气温间的数值分析   总被引:1,自引:0,他引:1  
本文利用美国国家冰雪中心提供的1989-2014年海冰范围资料,分析了北极海冰范围的年际变化和季节变化规律。分析发现,北极海冰范围呈减少趋势,每年减小5.91×104 km2,夏季减少趋势显著,冬季减少趋势弱。北极海冰范围显现相对稳定的季节变化规律,海冰的结冰和融化主要发生在各个边缘海,夏季期间的海冰具有融化快、冻结快的特征。结合海温、气温数据,进行北极海冰范围与海温、气温间的数值分析,结果表明北极海冰范围变化通过影响北极海温变化进而影响北极气温变化。海冰范围的季节变化滞后于海温和气温的季节变化。基于北极考察走航海温气温数据,进行楚科奇海海冰范围线与海温气温间的数值分析,发现楚科奇海海冰范围线所在区域的海温、气温与纬度高低、离陆地远近有关。  相似文献   

13.
The variation in Arctic sea ice has significant implications for climate change due to its huge influence on the global heat balance. In this study, we quantified the spatio-temporal variation of Arctic sea ice distribution using Advanced Microwave Scanning Radiometer(AMSR-E) sea-ice concentration data from 2003 to 2013. The results found that, over this period, the extent of sea ice reached a maximum in 2004, whereas in 2007 and 2012, the extent of summer sea ice was at a minimum. It declined continuously from 2010 to 2012, falling to its lowest level since 2003. Sea-ice extent fell continuously each summer between July and mid-September before increasing again. It decreased most rapidly in September, and the summer reduction rate was 1.35 × 10~5 km~2/yr, twice as fast as the rate between 1979 and 2006, and slightly slower than from 2002 to 2011. Area with 90% sea-ice concentration decreased by 1.32 × 10~7 km~2/yr, while locations with 50% sea-ice concentration, which were mainly covered by perennial ice, were near the North Pole, the Beaufort Sea, and the Queen Elizabeth Islands. Perennial Arctic ice decreased at a rate of 1.54 × 10~5 km~2 annually over the past 11 years.  相似文献   

14.
Flat thin ice (<30 cm thick) is a common ice type in the Bohai Sea, China. Ice thickness detection is important to offshore exploration and marine transport in winter. Synthetic aperture radar (SAR) can be used to acquire sea ice data in all weather conditions, and it is a useful tool for monitoring sea ice conditions. In this paper, we combine a multi-layered sea ice electromagnetic (EM) scattering model with a sea ice thermodynamic model to assess the determination of the thickness of flat thin ice in the Bohai Sea using SAR at different frequencies, polarization, and incidence angles. Our modeling studies suggest that co-polarization backscattering coefficients and the co-polarized ratio can be used to retrieve the thickness of flat thin ice from C- and X-band SAR, while the co-polarized correlation coefficient can be used to retrieve flat thin ice thickness from L-, C-, and X-band SAR. Importantly, small or moderate incidence angles should be chosen to avoid the effect of speckle noise.  相似文献   

15.
Sea ice is a sensitive indicator of climate change and an important component of climate system models. The Los Alamos Sea Ice Model 5.0(CICE5.0) was introduced to the Beijing Climate Center Climate System Model(BCC_CSM) as a new alternative to the Sea Ice Simulator(SIS). The principal purpose of this paper is to analyze the impacts of these two sea ice components on simulations of basic Arctic sea ice, atmosphere, and ocean states. Two sets of experiments were conducted with the same configurations except for the sea ice component used, i.e., SIS and CICE. The distributions of sea ice concentration and thickness reproduced by the CICE simulations in both March and September were closer to actual observations than those reproduced by SIS simulations, which presented a very thin sea ice cover in September. Changes in sea ice conditions also brought about corresponding modifications to the atmosphere and ocean circulation. CICE simulations showed higher agreement with the reference datasets than did SIS simulations for surface air temperature, sea level pressure, and sea surface temperature in most parts of the Arctic Ocean. More importantly, compared with simulations with SIS, BCC_CSM with CICE revealed stronger Atlantic meridional overturning circulation(AMOC), which is more consistent with actual observations. Thus, CICE shows better performance than SIS in BCC_ CSM. However, both components demonstrate a number of common weaknesses, such as overestimation of the sea ice cover in winter, especially in the Nordic Sea and the Sea of Okhotsk. Additional studies and improvements are necessary to develop these components further.  相似文献   

16.
Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this study, a practical model of sea ice thickness (PMSIT) was proposed based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data. In the proposed model, the MODIS data of the first band were used to estimate sea ice thickness and the difference between the second-band reflectance and the fifth-band reflectance in the MODIS data was calculated to obtain the difference attenuation index (DAI) of each pixel. The obtained DAI was used to estimate the integrated attenuation coefficient of the first band of the MODIS at the pixel level. Then the model was used to estimate sea ice thickness in the Bohai Sea with the MODIS data and then validated with the actual sea ice survey data. The validation results showed that the proposed model and corresponding parameterization scheme could largely avoid the estimation error of sea ice thickness caused by the spatial and temporal heterogeneity of sea ice extinction and allowed the error of 18.7% compared with the measured sea ice thickness.  相似文献   

17.
INTRODUCTIONXuetal.(1993)studiedthebasiccharacteristicsofthethermoclineinthecontinentalshelfandinthedeepsearegionoftheSouthChinaSea(SCS)andthedifferencesbetweenthembyanalyzing1907-1990historicaldataontheSCS.Hepointedoutthatthethermoclineinthedeepsearegionexis…  相似文献   

18.
Remote sensing data from passive microwave and satellite-based altimeters, associated with the data measured underway, were used to characterize seasonal and spatial changes in sea ice conditions along...  相似文献   

19.
During August 1999, we investigated sea ice characteristics; its distribution, surface feature, thickness, ice floe movement, and the temperature field around inter-borders of air/ice/seawater in the Chukchi Sea. Thirteen ice cores were drilled at 11 floe stations in the area of 72°24′ 77°18′N, 153°34′ 163°28′W and the ice core structure was observed. From field observation, three melting processes of ice were observed; surface layer melting, surface and bottom layers melting, and all of ice melting. The observation of temperature fields around sea ice floes showed that the bottom melting under the ice floes were important process. As ice floes and open water areas were alternately distributed in summer Arctic Ocean; the water under ice was colder than the open water by 0.4 2.8℃. The sun radiation heated seawater in open sea areas so that the warmer water went to the bottom when the ice floes move to those areas. This causes ice melting to start at the bottom of the ice floes. This process can balance effectively the temperature fluctuating in the sea in summer. From the crystalline structure of sea ice observed from the cores, it was concluded that the ice was composed of ice crystals and brine-ice films. During the sea ice melting, the brine-ice films between ice crystals melted firstly; then the ice crystals were encircled by brine films; the sea ice became the mixture of ice and liquid brine. At the end of melting, the ice crystals would be separated each other, the bond between ice crystals weakens and this leads to the collapse of the ice sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号