首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A semi-implicit 3-D numerical formulation for solving non-hydrostatic pressure free-surface flows on an unstructured,sigma grid is proposed.Pressure-splitting and 9 semi-implicit methods are inherited and reformed from Casulli’s z-coordinate formulation.The non-orthogonal sigma-coordinate transformation leads to additional terms. The resulting linear system for the non-hydrostatic correction is diagonally dominant but unsymmetric,and it is solved by the BiCGstab method.In contrast with z-coordinate non-hydrostatic models,the new model fits vertical boundaries much better,which is important for the long-time simulation of sediment transport and riverbed deformation.A lock-exchange density flow is computed to determine whether the new scheme is able to simulate non-hydrostatic free-surface flows.The new model is further verified using the field data of a natural river bend of the lower Yangtze River.Good agreement between simulations and earlier research results,field data is obtained, indicating that the new model is applicable to hydraulic projects in real rivers.  相似文献   

2.
A numerical-physical model for the planetary boundary layer has been formulated for the purpose of predicting the winds, temperatures and humidities in the lowest 1600 m of the atmosphere. An application of the model to the synoptic situation of 30 August, 1972, demonstrates its ability to produce useful forecasts for a period of 24 h. Results are illustrated in terms of horizontal maps and time-height sections of winds and temperatures. The model is divided in the vertical direction into three layers that are governed, respectively, by different physical formulations. At the lowest level, which is the surface of the earth, forecasts of temperature and humidity are computed from empirical relations. In the first layer, the surface layer, application is made of the similarity theories of Monin-Obukhov, Monin-Kazanski and Businger’s form of the universal functions. The second layer, the Ekman layer, is 1550 m deep and is governed by diagnostic momentum and time-dependent thermodynamic and humidity equations. External input to the model are large-scale pressure gradients and middle-level cloudiness. Cressman’s objective analysis procedure is applied to conventional surface and upper air data over a horizontal region of about 2500 km by 2500 km, centered about Lake Ontario. With a grid distance of 127 km and a time interval of 30 min, the computer time required on Control Data Cyber 76 for a 24 h forecast for the case study is less than two minutes.  相似文献   

3.
许广春 《地球物理学报》2017,60(12):4866-4873
本文实现了地面矩形大定源三维频率域反演.矩形大定源三维模型响应计算采用交错网格有限差分技术.正演的微分方程为异常电场满足的非齐次Helmholtz方程,方程右手边源项中的大定源产生的背景格林函数由虚界面法结合虚框法计算.频率域三维反演采用非线性共轭梯度反演技术.反演的数据类型为垂直磁场的频率域响应Hz的实部和虚部分量.数值结果表明,(1)三维模型正演模拟数值结果与前人一致,为三维反演奠定基础;(2)针对两个三维导电模型,分别进行了三维反演数值试算.反演结果可以清晰恢复出异常体的电阻率和位置信息,表明地面矩形大定源三维频率域非线性共轭梯度反演具有可行性.本文研究的意义在于,在电磁响应时频转换技术的基础上,如果将野外实测的瞬变电磁数据变换为对应的频率响应,则结合本文提出的三维反演技术,可以为矩形大定源瞬变电磁数据的三维解释提供一个新的思路.  相似文献   

4.
This paper analyses the effect of spatial resolution and distribution of model input data on the results of regional-scale land use scenarios using three different hydrological catchment models. A 25 m resolution data set of a mesoscale catchment and three land use scenarios are used. Data are systematically aggregated to resolutions up to 2 km. Land use scenarios are spatially redistributed, both randomly and topography based. Using these data, water fluxes are calculated on a daily time step for a 16 year time period without further calibration. Simulation results are used to identify grid size, distribution and model dependent scenario effects. In the case of data aggregation, all applied models react sensitively to grid size. WASIM and TOPLATS simulate constant water balances for grid sizes from 50 m to 300–500 m, SWAT is more sensitive to input data aggregation, simulating constant water balances between 50 m and 200 m grid size. The calculation of scenario effects is less robust to data aggregation. The maximum acceptable grid size reduces to 200–300 m for TOPLATS and WASIM. In case of spatial distribution, SWAT and TOPLATS are slightly sensitive to a redistribution of land use (below 1.5% for water balance terms), whereas WASIM shows almost no reaction. Because the aggregation effects were stronger than the redistribution effects, it is concluded that spatial discretisation is more important than spatial distribution. As the aggregation effect was mainly associated with a change in land use fraction, it is concluded that accuracy of data sets is much more important than a high spatial resolution.  相似文献   

5.
The problem of resolving or parameterising small-scale processes in oceanographic models and the extent to which small-scale effects influence the large scale are briefly discussed and illustrated for a number of cases. For tides and surges in near-shore regions, the advantages of using a graded mesh to resolve coastal and estuarine small-scale features are demonstrated in terms of a west coast of Britain unstructured mesh model. The effect of mesh resolution upon the accuracy of the overall solution is illustrated in terms of a finite element model of the Irish Sea and Mersey estuary. For baroclinic motion at high Froude number, the effect of resolving small-scale topography within a non-hydrostatic model is illustrated in terms of tidally induced mixing at a single sill, or two closely spaced sills. The question of how to parameterise small-scale non-linear interaction processes that lead to significant mixing, in a form suitable for coarser grid hydrostatic models, is briefly considered. In addition, the importance of topographically induced mixing that occurs in the oceanic lateral boundary layer, namely, the shelf edge upon the large-scale ocean circulation is discussed together with the implications for coarse grid oceanic climate models. The use of unstructured grids in these models to enhance resolution in shelf-edge regions in a similar manner to that used in storm surge models to enhance near coastal resolution is suggested as a suitable “way forward” in large-scale ocean circulation modelling.  相似文献   

6.
Simulating ground water-lake interactions: approaches and insights   总被引:4,自引:0,他引:4  
Approaches for modeling lake-ground water interactions have evolved significantly from early simulations that used fixed lake stages specified as constant head to sophisticated LAK packages for MODFLOW. Although model input can be complex, the LAK package capabilities and output are superior to methods that rely on a fixed lake stage and compare well to other simple methods where lake stage can be calculated. Regardless of the approach, guidelines presented here for model grid size, location of three-dimensional flow, and extent of vertical capture can facilitate the construction of appropriately detailed models that simulate important lake-ground water interactions without adding unnecessary complexity. In addition to MODFLOW approaches, lake simulation has been formulated in terms of analytic elements. The analytic element lake package had acceptable agreement with a published LAKI problem, even though there were differences in the total lake conductance and number of layers used in the two models. The grid size used in the original LAKI problem, however, violated a grid size guideline presented in this paper. Grid sensitivity analyses demonstrated that an appreciable discrepancy in the distribution of stream and lake flux was related to the large grid size used in the original LAKI problem. This artifact is expected regardless of MODFLOW LAK package used. When the grid size was reduced, a finite-difference formulation approached the analytic element results. These insights and guidelines can help ensure that the proper lake simulation tool is being selected and applied.  相似文献   

7.
A multiscale adjoint (MSADJ) method is developed to compute high-resolution sensitivity coefficients for subsurface flow in large-scale heterogeneous geologic formations. In this method, the original fine-scale problem is partitioned into a set of coupled subgrid problems, such that the global adjoint problem can be efficiently solved on a coarse grid. Then, the coarse-scale sensitivities are interpolated to the local fine grid by reconstructing the local variability of the model parameters with the aid of solving embedded adjoint subproblems. The approach employs the multiscale finite-volume (MSFV) formulation to accurately and efficiently solve the highly detailed flow problem. The MSFV method couples a global coarse-scale solution with local fine-scale reconstruction operators, hence yielding model responses that are quite accurate at both scales. The MSADJ method is equally efficient in computing the gradient of the objective function with respect to model parameters. Several examples demonstrate that the approach is accurate and computationally efficient. The accuracy of our multiscale method for inverse problems is twofold: the sensitivity coefficients computed by this approach are more accurate than the traditional finite-difference-based numerical method for computing derivatives, and the calibrated models after history matching honor the available dynamic data on the fine scale. In other words, the multiscale based adjoint scheme can be used to history match fine-scale models quite effectively.  相似文献   

8.
A rainfall‐runoff model based on an artificial neural network (ANN) is presented for the Blue Nile catchment. The best geometry of the ANN rainfall‐runoff model in terms of number of hidden layers and nodes is identified through a sensitivity analysis. The Blue Nile catchment (about 300 000 km2) in the Nile basin is selected here as a case study. The catchment is classified into seven subcatchments, and the mean areal precipitation over those subcatchments is computed as a main input to the ANN model. The available daily data (1992–99) are divided into two sets for model calibration (1992–96) and for validation (1997–99). The results of the ANN model are compared with one of physical distributed rainfall‐runoff models that apply hydraulic and hydrologic fundamental equations in a grid base. The results over the case study area and the comparative analysis with the physically based distributed model show that the ANN technique has great potential in simulating the rainfall‐runoff process adequately. Because the available record used in the calibration of the ANN model is too short, the ANN model is biased compared with the distributed model, especially for high flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
基于非均一场源的球坐标大地电磁模拟方法   总被引:1,自引:0,他引:1       下载免费PDF全文
大地电磁测深理论与数据处理解释均假定平面电磁波垂直入射地下空间,但随着研究尺度的逐渐扩大,使得因地球弧度产生的影响难以忽略.此时,传统笛卡尔坐标体系及平面波场源不再适用于大尺度的大地电磁数据正反演解释.本文提出并实现了一种基于球坐标系的大地电磁交错网格有限差分三维正演算法,并对电场进行极向-环向分解,结合球谐函数和贝塞尔函数构建了可取代平面波的场源模型.首先利用经纬度信息构建三维地电模型,将场源设置于模型空间正上方,然后通过直接求解球坐标系下麦克斯韦方程来获得大地电磁响应.在此基础上,本文设计了球坐标下具有不同分辨率的多个三维地电模型,阐述了由球体模型到笛卡尔模型的转换方法,详细对比了两种坐标体系在计算效率、所求得的电场和视电阻率方面的差异.结果表明二者差异度主要与电性横向分布和地图投影方法有关,与周期并不存在明显的单调递增关系.  相似文献   

10.
Dip and anisotropy effects on flow using a vertically skewed model grid   总被引:2,自引:0,他引:2  
Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 < or = theta < or = 90) and gradient directions (0 < or = phi < or = 360). The equations can be coded into ground water models (e.g., MODFLOW) that can use a skewed Cartesian coordinate system to simulate flow in structural terrain with deformed bedding planes. Models modified with these equations will require input arrays of strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.  相似文献   

11.
Understanding the effects of contaminants that can diffuse into low-permeability (“low-k”) zones is crucial for effective groundwater remedial decision-making. Because low-k zones can serve as low-level sources of contamination to more transmissive zones over time, an accurate evaluation of the impacts of matrix diffusion at contaminated sites is vital. This study compared numerical groundwater flow and transport simulations using MODFLOW/RT3D at a hypothetical site using three cases, each with increasing discretization of the vertical 10-m thick domain: (1) a coarse multilayer heterogeneous grid based on one layer for each of four different hydrogeological units, (2) a “low-resolution” discretization approach where the low-k units were divided into several sublayers giving the model 10 layers, and (3) a “high-resolution” numerical model with 199 layers that are a few centimeters thick. When comparing the results of each case, significant differences were observed between the discretizations used, even though all other model input data were identical. The conventional grid models (Cases 1 and 2) appeared to underestimate groundwater plume concentrations by a factor ranging from 1.1 to 36 when compared to the high-resolution grid model (Case 3), and underestimated predicted cleanup times by more than a factor of 10 for some of the hypothetical sampling points in the modeling domain. These results validate the implication of Chapman et al. (2012), that conventional vertical discretization of numerical groundwater flow and transport models at contaminated sites (with layers that are greater than 1 m thick) can lead to significant errors when compared to more accurate high-resolution vertical discretization schemes (layers that are centimeters thick).  相似文献   

12.
The existence of a worldwide international GPS service (IGS) permanent network of dual-frequency receivers makes the computation of global ionospheric maps (GIMs) of total electron content (TEC) feasible. The GIMs computed by the IGS Associate Analysis Centers on a daily basis and by other kinds of forecast GIMs, which can be computed from, for instance, the international reference ionosphere (IRI) model, and the GPS broadcast models in the navigation message, can be applied to a broad diversity of fields, for instance as, navigation and time transfer.In this context, the performance of different kinds of models are presented in order to determine the accuracy of the different GIM. This is carried out by comparison with the TOPEX data that provides an independent and precise (at the level of few TECU) vertical TEC determination over the oceans and seas. Thus, the obtained accuracies, in terms of global relative error, ranging from 54% corresponding to the GPS broadcast model, to about 41% corresponding to IRI climatological model, and to less than 30% corresponding to GPS data driven models.  相似文献   

13.
In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton-Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.  相似文献   

14.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Optimization of Cell Parameterizations for Tomographic Inverse Problems   总被引:1,自引:0,他引:1  
—?We develop algorithms for the construction of irregular cell (block) models for parameterization of tomographic inverse problems. The forward problem is defined on a regular basic grid of non-overlapping cells. The basic cells are used as building blocks for construction of non-overlapping irregular cells. The construction algorithms are not computationally intensive and not particularly complex, and, in general, allow for grid optimization where cell size is determined from scalar functions, e.g., measures of model sampling or a priori estimates of model resolution. The link between a particular cell j in the regular basic grid and its host cell k in the irregular grid is provided by a pointer array which implicitly defines the irregular cell model. The complex geometrical aspects of irregular cell models are not needed in the forward or in the inverse problem. The matrix system of tomographic equations is computed once on the regular basic cell model. After grid construction, the basic matrix equation is mapped using the pointer array on a new matrix equation in which the model vector relates directly to cells in the irregular model. Next, the mapped system can be solved on the irregular grid. This approach avoids forward computation on the complex geometry of irregular grids. Generally, grid optimization can aim at reducing the number of model parameters in volumes poorly sampled by the data while elsewhere retaining the power to resolve the smallest scales warranted by the data. Unnecessary overparameterization of the model space can be avoided and grid construction can aim at improving the conditioning of the inverse problem. We present simple theory and optimization algorithms in the context of seismic tomography and apply the methods to Rayleigh-wave group velocity inversion and global travel-time tomography.  相似文献   

16.
The potential gradient at ground level due to a charge volume is obtained in terms of integrals, some values of which are computed as functions of normalized vertical and horizontal distances. Using these values the vertical potential gradients at points on the ground below some simple cloud volumes, built up of cylindrical slices of uniform charge densities, are calculated. The results consitute definite improvements on those provided by conventional point-charge models.  相似文献   

17.
Space geodetic applications require to model troposphere delays as good as possible in order to achieve highly accurate positioning estimates. However, these models are not capable to consider complex refractivity fields which are likely to occur during extreme weather situations like typhoons, storms, heavy rain-fall, etc. Thus it has been investigated how positioning results can be improved if information from numerical weather models is taken into account. It will be demonstrated that positioning errors can be significantly reduced by the usage of ray-traced slant delays. Therefore, meso-scale and fine-mesh numerical weather models are utilized and their impact on the positioning results will be measured. The approach has been evaluated during a typhoon passage using global positioning service (GPS) observations of 72 receivers located around Tokyo, proving the usefulness of ray-traced slant delays for positioning applications. Thereby, it is possible reduce virtual station movements as well as improve station height repeatabilities by up to 30% w.r.t. standard processing techniques. Additionally the advantages and caveats of numerical weather models will be discussed and it will be shown how fine-mesh numerical weather models, which are restricted in their spatial extent, have to be handled in order to provide useful corrections.  相似文献   

18.
Abstract

The snow and rain in the Himalayas are the main sources of supply for the rivers in the Indo-Gangetic plains. Irrigation, hydropower generation, and water supply are very much dependent on the availability of water in the Himalaya rivers. Mathematical models serve as important aids for the estimation of water availability in rivers. In the present study the SLURP watershed model is applied to a rainfed area of the Satluj catchment located in the western Himalayas, India. The SLURP model developed at NHRI, Canada, is a distributed conceptual model which simulates the behaviour of a watershed by carrying out vertical water balances for each element of a matrix of landcovers and subareas of a watershed and then routing the resulting runoff between subareas. The ILWIS geographic information system was used to prepare the input data required for SLURP and land use data were obtained from the IRS satellite LISS II visible and near infrared sensors. The simulated flows at the Bhakhra Dam outlet of the Satluj catchment were computed and found to compare well with the observed flows.  相似文献   

19.
20.
Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami   总被引:8,自引:0,他引:8  
Numerical computations of tsunamis are made for the 1992 Nicaragua earthquake using different governing equations, bottom frictional values and bathymetry data. The results are compared with each other as well as with the observations, both tide gauge records and runup heights. Comparison of the observed and computed tsunami waveforms indicates that the use of detailed bathymetry data with a small grid size is more effective than to include nonlinear terms in tsunami computation. Linear computation overestimates the amplitude for the later phase than the first arrival, particularly when the amplitude becomes large. The computed amplitudes along the coast from nonlinear computation are much smaller than the observed tsunami runup heights; the average ratio, or the amplification factor, is estimated to be 3 in the present case when the grid size of 1 minute is used. The factor however may depend on the grid size for the computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号