首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidisciplinary studies of geotransects across the North European Plain and Southern North Sea, and geological reexamination of the Variscides of the North Bohemian Massif, permit a new 3-D reassessment of the relationships between the principal crustal blocks abutting Baltica along the Trans-European Suture Zone (TESZ). Accretion was in three stages: Cambrian accretion of the Bruno–Silesian, Lysogory and Malopolska terranes; end-Ordovician/early Silurian accretion of Avalonia; and early Carboniferous accretion of the Armorican Terrane Assemblage (ATA). Palaeozoic plume-influenced metabasite geochemistry in the Bohemian Massif explains the progressive rifting away of peri-Gondwanan crustal blocks before their accretion to Baltica. Geophysical data, faunal and provenance information from boreholes, and dated small inliers and cores confirm that Avalonian crust extends beyond the Anglo-Brabant Deformation Belt eastwards to northwest Poland. The location and dip of reflectors along the TESZ and beneath the North European Plain suggest that Avalonian crust overrode the Baltica passive margin, marked by a high-velocity lower crustal layer, on shallowly southwest-dipping thrust planes forming the Heligoland–Pomerania Deformation Belt. The “Variscan orocline” of southwest Poland masks two junctions between the Armorican Terrane Assemblage (ATA) and previously accreted crustal blocks. To the east is a dextrally transpressive contact with the Bruno–Silesian and Malopolska blocks, accreted in the Cambrian, while to the north is a thrust contact with easternmost Avalonia, deeply buried beneath younger sedimentary cover. In the northeast Bohemian and Rhenohercynian Massifs Devonian “early Variscide” deformation dominated by WNW and NW-directed thrusting, records closure of Ordovician–Devonian seaways between detached “islands” of the ATA and Avalonia.  相似文献   

2.
In recent years the northwestern Black Sea has been investigated by a great number of geophysical methods. Charts of the M discontinuity and (isopachous) charts of the “granitic”, the “basaltic”, the Paleozoic, the Jurassic-Triassic, the Upper and Lower Cretaceous and the Eocene layers were plotted based on the results of the combined data of these investigations together with associated drilling data. The data for different velocity levels confirms the concept of layered-block structure of the crust, where large blocks are divided by deep faults penetrating to the upper mantle. Sedimentation within each block is continuous while reverse fault zones, dividing the East European Platform with a crustal thickness of more than 40 km and the Scythian Platform with a crust of about 30 km thick, and the latter from the Black Sea depression with crust of about 20 km, are discontinuous. Therefore, one can speak of a continuous-discontinuous nature of the sedimentation.

An inverse relationship in thicknesses of the “granitic” and sedimentary layers has been established. In places of intensive sedimentation the thickness of the “granitic” layer is less than that within the stable unsagging blocks. On the whole the greater the thickness of “basaltic” layer, the greater is the crustal thickness.

The relationship between the main geological structures of the area should be sought in the nature of structure of these “granitic” and “basaltic” layers.  相似文献   


3.
John L. Smellie   《Earth》2008,88(1-2):60-88
Subglacially-erupted volcanic sequences provide proxies for a unique range of palaeo-ice parameters and they are potentially highly useful archives of palaeoenvironmental information, particularly for pre-Quaternary periods. They can thus be incorporated by climate and ice sheet modellers in the same way as other environmental proxies, yet they remain largely under-utilised. Basaltic volcanic sequences erupted subglacially consist empirically of two major types, corresponding to eruptions under “thick” and “thin” ice, respectively. The latter are called subglacial sheet-like sequences and only one generic type of sequence has been described so far. However, there is now evidence that there are at least two generic types, with significantly different implications for interpretations of associated palaeo-ice sheet thicknesses. One type, which is relatively well described, is believed to be a diagnostic product of eruptions associated with a relatively thin glacial cover (< c. 150–200 m), probably corresponding most commonly to mountain glaciers but also conceivably thin ice caps or sheets, of any thermal regime (temperate, sub-polar, polar). It is here called the Mount Pinafore type. By contrast, a second subglacial sheet-like sequence, described in this paper for the first time and called the Dalsheidi-type, represents products of eruptions under much thicker ice (probably > 1000 m). Eruptions that form the Dalsheidi-type of sequence commence with the injection and inflation of a sill along the ice:bedrock interface. Such “interface sills” were predicted theoretically but had no known geological example, until now. Subsequent evolution commonly involves floating of the ice cover, catastrophic meltwater drainage and emplacement of widespread sheets of hyaloclastite, as cohesionless mass flows and hyperconcentrated flows. The water-saturated hyaloclastite is characteristically intruded by apophyses sourced in the underlying “interface sill”. Eruptions are commonly not explosive until their later stages. Dalsheidi-type deposits are outflow sequences probably linked to subglacial pillow volcanoes, which in Iceland were erupted along fissures. They only provide an indication of minimum thicknesses of the associated overlying ice, although theoretical considerations suggest substantial ice thicknesses in excess of 1000 m. However, they are likely to be characteristic products of eruptions under the thick West Antarctic Ice Sheet, but are currently inaccessible. Such eruptions may be capable of destabilising that ice sheet.  相似文献   

4.
This paper reports the integrated application of petrographic and Sm–Nd isotopic analyses for studying the provenance of the Neoproterozoic Maricá Formation, southern Brazil. This unit encompasses sedimentary rocks of fluvial and marine affiliations. In the lower fluvial succession, sandstones plot in the “craton interior” and “transitional continental” fields of the QFL diagram. Chemical weathering probably caused the decrease of the 147Sm/144Nd ratios to 0.0826 and 0.0960, consequently lowering originally > 2.0 Ga TDM ages to 1.76 and 1.81 Ga. 143Nd/144Nd ratios are also low (0.511521 to 0.511633), corresponding to negative εNd present-day values (− 21.8 and − 19.6). In the intermediate marine succession, sandstones plot in the “dissected arc” field, reflecting the input of andesitic clasts. Siltstones and shales reveal low 143Nd/144Nd ratios (0.511429 to 0.511710), εNd values of − 18.1 and − 23.6, and TDM ages of 2.16 and 2.37 Ga. Sandstones of the upper fluvial succession have “dissected arc” and “recycled orogen” provenance. 143Nd/144Nd isotopic ratios are also relatively low, from 0.511487 to 0.511560, corresponding to εNd values of − 22.4 and − 21.0 and TDM of 2.07 Ga. A uniform granite–gneissic basement block of Paleoproterozoic age, with subordinate volcanic rocks, is suggested as the main sediment source of the Maricá Formation.  相似文献   

5.
Using ICP-MS–LA analyses, we demonstrate that the use of the Ga/Mg ratio, in conjunction with the Fe concentration, is an efficient tool in discriminating between “metamorphic” and “magmatic” blue sapphires. Magmatic blue sapphires found in alkali basalts (e.g. southeastern Asia, China, Africa) are commonly medium-rich to rich in Fe (with average contents between 2000 and 11000 ppm), high in Ga (> 140 ppm), and low in Mg (generally < 20 ppm) with high Ga/Mg ratios (> 10). Conversely, metamorphic blue sapphires found in basalts (e.g. Pailin pastel) and in metamorphic terrains (e.g. Mogok, Sri Lanka, Ilakaka) are characterized by low average iron contents (< 3000 ppm), low Ga contents (< 75 ppm), and high Mg values (> 60 ppm) with low average Ga/Mg ratios (< 10). Basaltic magmatic sapphires have Fe, Ga and Mg contents similar to those obtained for primary magmatic sapphires found in the Garba Tula syenite. This suggests that these both sets of sapphires have a possible common “syenitic” origin, as previously proposed from other criteria. In addition, plumasite-related sapphires and metamorphic sapphires also exhibit similar composition in trace elements. Based on results from the present study, we suggest that fluid circulations during a metamorphic stage produced metasomatic exchanges between mafic and acidic rocks (plumasite model), thus explaining the high Mg contents and converging Ga/Mg ratios observed in metamorphic sapphires.  相似文献   

6.
Garnet peridotite xenoliths from the Sloan kimberlite (Colorado) are variably depleted in their major magmaphile (Ca, Al) element compositions with whole rock Re-depletion model ages generally consistent with this depletion occurring in the mid-Proterozoic. Unlike many lithospheric peridotites, the Sloan samples are also depleted in incompatible trace elements, as shown by the composition of separated garnet and clinopyroxene. Most of the Sloan peridotites have intermineral Sm–Nd and Lu–Hf isotope systematics consistent with this depletion occurring in the mid-Proterozoic, though the precise age of this event is poorly defined. Thus, when sampled by the Devonian Sloan kimberlite, the compositional characteristics of the lithospheric mantle in this area primarily reflected the initial melt extraction event that presumably is associated with crust formation in the Proterozoic—a relatively simple history that may also explain the cold geotherm measured for the Sloan xenoliths.

The Williams and Homestead kimberlites erupted through the Wyoming Craton in the Eocene, near the end of the Laramide Orogeny, the major tectonomagmatic event responsible for the formation of the Rocky Mountains in the late Cretaceous–early Tertiary. Rhenium-depletion model ages for the Homestead peridotites are mostly Archean, consistent with their origin in the Archean lithospheric mantle of the Wyoming Craton. Both the Williams and Homestead peridotites, however, clearly show the consequences of metasomatism by incompatible-element-rich melts. Intermineral isotope systematics in both the Homestead and Williams peridotites are highly disturbed with the Sr and Nd isotopic compositions of the minerals being dominated by the metasomatic component. Some Homestead samples preserve an incompatible element depleted signature in their radiogenic Hf isotopic compositions. Sm–Nd tie lines for garnet and clinopyroxene separates from most Homestead samples provide Mesozoic or younger “ages” suggesting that the metasomatism occurred during the Laramide. Highly variable Rb–Sr and Lu–Hf mineral “ages” for these same samples suggest that the Homestead peridotites did not achieve intermineral equilibrium during this metasomatism. This indicates that the metasomatic overprint likely was introduced shortly before kimberlite eruption through interaction of the peridotites with the host kimberlite, or petrogenetically similar magmas, in the Wyoming Craton lithosphere.  相似文献   


7.
The applicability of the Permanent Scatterers Synthetic Aperture Radar Interferometry (PSInSAR) technique for detecting and monitoring ground displacements was tested in the Oltrepo Pavese territory (Northern Italy, southern Lombardia), which could be representative of similar geological contexts in the Italian Apennines. The study area, which extends for almost 1100 km2, is characterized by a complex geological and structural setting and the presence of clay-rich sedimentary formations. These characteristics make the Oltrepo Pavese particularly prone to several geological hazards: shallow and deep landslides, subsidence and swelling/shrinkage of the clayey soils. The PSInSAR technique used in this study overcomes most of the limitations of conventional interferometric approaches by identifying, within the area of interest, a set of “radar benchmarks” (PS), where very precise displacement measurements can be carried out. More than 90,000 PS were identified by processing Synthetic Aperture Radar (SAR) images acquired from 1992 to 2001 by the European Remote Sensing satellites (ERS). The PSInSAR application at a sub-regional scale detected slow ground deformations ranging from + 5 to − 16 mm/year, and resulting from various processes (landslides, swelling/shrinkage of clay soils and water pumping). The PS displacements were analysed by collecting data obtained through geological, geomorphologic field surveys, geotechnical analysis of the soils and the information was integrated within a landslide inventory and the damaged building inventory. Despite the limited number of landslide bodies with PS (7% of the inventoried landslides), the PS data helped to revise the state of activity of several landslides. Furthermore, some previously unknown unstable slopes were detected. Two areas of uplift and two areas of subsidence were identified.  相似文献   

8.
M. Langer 《Engineering Geology》1993,34(3-4):159-167
The problem of waste disposal in Germany has been solved by using a combination of above-ground and underground disposal. Site selection criteria and precise criteria for the performance assessment of various types of waste disposal are available. In view of long-term safety of disposal, it is necessary to include geological and hydrogeological viewpoints in addition to purely engineering viewpoints.

In particular, the geotechnical site-specific safety assessment is described, as defined by the government in “Technical Regulations on Wastes” (TA-Abfall) in the section “Underground Disposal”. This safety assessment must cover the entire system comprising waste, cavern/mine and surrounding rock. For this purpose geo-mechanical models have to be developed.

According to the multi-barrier principle, the geological setting must be able to contribute significantly to isolation of the waste over longer periods. The assessment of the integrity of the geological barrier can only be performed by making calculations with validated geomechanical models.

Various engineering geological data are required for the selection of a site, for the design and construction of a repository, and for a safety analysis for the post-operational phase. These data can only be attained by the execution of a comprehensive site-specific geomechanical exploration and investigation program. The planning and design of an underground repository in rock salt layers are described, as an example for the various steps of this type of safety assessment.  相似文献   


9.
V. B. Sollogub 《Tectonophysics》1970,10(5-6):549-559
The analysis of numerous seismic studies from various geological provinces has demonstrated that variations in crustal thickness depend primarily on the thickness of the “basaltic” layer. In some areas two M discontinuities can be found — the present one and an ancient one. The lower crust, formed in Proterozoic time is apparently still preserved. Roots exist under the former Proterozoic orogens, in spite of the complete denudation of the orogenic mountains. Younger (Paleozoic-Mesozoic) subsurface structures are not so clearly pronounced in the crustal structure. More active reconstruction of the crust seems to have taken place in the course of Alpine orogenesis.  相似文献   

10.
A microzonation study is performed as a part of the Zeytinburnu Pilot Project within the framework of the Earthquake Master Plan for Istanbul to determine the effects of local soil conditions on the earthquake forces that will act on structures. For this purpose, detailed geological and geotechnical studies are conducted at the site, a geological map which demonstrates the local geological features of the site is prepared, and the site is classified with respect to the dynamic behaviour based on the data gathered from the soil borings. In order to investigate the effects of local soil conditions on the dynamic behaviour, site response analyses are performed with the computer code EERA by utilizing the findings of field and laboratory investigations. The behaviour of the region during a probable earthquake is investigated through one dimensional response analyses and microzonation maps are prepared with respect to ground shaking intensity in accordance with the new microzonation manual [Ansal, A., Laue, J., Buchheister, J., Erdik, M., Springman, S., Studer, J., and Koksal, D., 2004. “Site characterization and site amplification for a seismic microzonation study in Turkey” 11th Int. Conference on Soil Dynamics and Earthquake Engineering and 3rd Earthquake Geotechnical Engineering, San Francisco; Studer, J. and Ansal, A., 2004. Belediyeler için Sismik Mikrobölgeleme El Kitabı, Araştırma Raporu, Afet İşleri Genel Müdürlüğü, Bayındırlık ve İskan Bakanlığı, Afet Risk Yönetimi Dünya Enstitüsü].  相似文献   

11.
同位素地质年代学为地球与行星科学研究提供时间坐标,厘定深时地质过程发生和持续的时间,从而为不同地质作用的因果联系和协同演化提供定量制约.新世纪以来,在以EARTHTIME为代表的地质年代学共同体努力下,同位素地质年代学在高精度、高空间分辨率和高效率等维度取得长足进步,与其他学科的结合也更加紧密深入.结合正在兴起的相对定...  相似文献   

12.
The Palimé–Amlamé Pluton (PAP) in southern Togo, consists of silica-rich to intermediate granitoids including enclaves of mafic igneous rocks and of gneisses. They are commonly called the “anatectic complex of Palimé–Amlamé” and without any convincing data, they were interpreted either as synkinematic Pan-African granitoids or as reworked pre Pan-African plutons. New field and petrological observations, mineral and whole-rock chemical analyses together with U–Pb zircon dating, have been performed to evaluate the geodynamic significance of the PAP within the Pan-African orogenic belt. With regard to these new data, the granitoids and related enclaves probably result from mixing and mingling processes between mafic and silicic magmas from respectively mantle and lower crust sources. They display Mg–calc-alkaline chemical features and present some similarities with Late Archaean granites such as transitional (K-rich) TTGs and sanukitoids.

The 2127 ± 2 Ma age obtained from a precise U/Pb concordia on zircon, points out a Paleoproterozoic age for the magma crystallization and a lower intercept at 625 ± 29 Ma interpreted as rejuvenation during Pan-African tectonics and metamorphism. Based on these results, a Pan-African syn to late orogenic setting for the PAP, i.e. the so-called “anatectic complex of Palimé–Amlamé”, can be definitively ruled out. Moreover according to its location within the nappe pile and its relationships with the suture zone, the PAP probably represents a fragment of the West African Craton reactivated during the Pan-African collision.  相似文献   


13.
This study is an attempt to unravel the tectono-metamorphic history of high-grade metamorphic rocks in the Eastern Erzgebirge region. Metamorphism has strongly disturbed the primary petrological genetic characteristics of the rocks. We compare geological, geochemical, and petrological data, and zircon populations as well as isotope and geochronological data for the major gneiss units of the Eastern Erzgebirge; (1) coarse- to medium-grained “Inner Grey Gneiss”, (2) fine-grained “Outer Grey Gneiss”, and (3) “Red Gneiss”. The Inner and Outer Grey Gneiss units (MP–MT overprinted) have very similar geochemical and mineralogical compositions, but they contain different zircon populations. The Inner Grey Gneiss is found to be of primary igneous origin as documented by the presence of long-prismatic, oscillatory zoned zircons (540 Ma) and relics of granitic textures. Geochemical and isotope data classify the igneous precursor as a S-type granite. In contrast, Outer Grey Gneiss samples are free of long-prismatic zircons and contain zircons with signs of mechanical rounding through sedimentary transport. Geochemical data indicate greywackes as main previous precursor. The most euhedral zircons are zoned and document Neoproterozoic (ca. 575 Ma) source rocks eroded to form these greywackes. U–Pb-SHRIMP measurements revealed three further ancient sources, which zircons survived in both the Inner and Outer Grey Gneiss: Neoproterozoic (600–700 Ma), Paleoproterozoic (2100–2200 Ma), and Archaean (2700–2800 Ma). These results point to absence of Grenvillian type sources and derivation of the crust from the West African Craton. The granite magma of the Inner Grey Gneiss was probably derived through in situ melting of the Outer Grey Gneiss sedimentary protolith as indicated by geological relationships, similar geochemical composition, similar Nd model ages, and inherited zircon ages. Red Gneiss occurs as separate bodies within fine- and medium-grained grey gneisses of the gneiss–eclogite zone (HP–HT overprinted). In comparison to Grey Gneisses, the Red Gneiss clearly differs in geochemical composition by lower contents of refractory elements. Rocks contain long-prismatic zircons (480–500 Ma) with oscillatory zonation indicating an igneous precursor for Red Gneiss protoliths. Geochemical data display obvious characteristics of S-type granites derived through partial melting from deeper crustal source rocks. The obtained time marks of magmatic activity (ca. 575 Ma, ca. 540 Ma, ca. 500–480 Ma) of the Eastern Erzgebirge are compared with adjacent units of the Saxothuringian zone. In all these units, similar time marks and geochemical pattern of igneous rocks prove a similar tectono-metamorphic evolution during Neoproterozoic–Ordovician time.  相似文献   

14.
Lithosphere created in an interarc basin is expected to be characterized by features distinguishing it from “normal” oceanic lithosphere. Apart from island-arc geochemical affinities and from the occurrence of hydrous high-T parageneses in the mantle and deep crustal sequences, it is expected that due to a low rate of spreading, vertical transport prevails over lateral drifting.

The Canyon Mountain complex located in an island-arc environment of Permo-Triassic age offers a remarkable illustration of these expected geological characteristics. In particular, mantle diapirism is deduced from the structural study. Smaller diapirs are formed in crustal formations. The intrusions took place at variable temperatures (1300°–800°C) and were accompanied by multistage melting in hydrous conditions.  相似文献   


15.
Mean tendencies and variances of ad hoc mean estimates (field estimates) of some engineering geological parameters were compared to statistically obtained reference values. The latter correspond to the “best” estimates in the sense of approximating so-called reality (Einstein and Baecher, 1982. Probabilistic and statistical methods in engineering geology. Problem statement and introduction to solution. Rock Mech., Suppl. 12: 47–61; Einstein and Baecher, 1983. Probabilistic and statistical methods in engineering geology. Specific methods and examples, Part I: Exploration. Rock Mech. Rock Eng., 16: 39–72). The study was carried out by means of a demoscopic field study on 43 engineering geologists. “Professional experience” was examined by comparing the estimation results of two trial groups, one consisting of people with several years of professional experience, the other one consisting of university students. The biases of the ad hoc estimates due to subjectivity and the limitation of working time at the selected reference outcrops follow statistically describable trends and thus can be analyzed by univariate and multivariate methods. Some geological and psychological hypotheses concerning the mean estimation trends, correlations and discriminations are postulated. Implications on commonly used field estimation methods are discussed.  相似文献   

16.
Combining Lu–Hf garnet geochronology with in situ trace element analyses in garnet allowed us to gain new insight into the metamorphic evolution of UHP–UHT rocks in the Stary Gierałtów region, in the Polish Sudetes. Prograde garnet growth recorded by Rayleigh-type heavy REE (HREE) zoning in the felsic granulites indicates that the obtained 386.6 ± 4.9 Ma Lu–Hf age represents the time of garnet crystallization on a prograde UHP metamorphic path. The surrounding rocks were metamorphosed at the same time as indicated by 381.2 ± 6.7 Ma Sm–Nd garnet age obtained for the mid-crustal metapelites. The second metamorphic episode, which affected most of the lower crust in the Orlica–Śnieżnik Massif (OSM) occurred at ca. 340 Ma as determined by U–Pb zircon and Sm–Nd garnet dating of granulites in this and previous studies is interpreted as a high temperature event, which took place on a retrograde path.

Trace element distribution in garnets from the layered granulites showed significant differences in distribution of medium and HREE in garnets from mafic and felsic protoliths over the course of the metamorphic evolution. This had strong impact on the isotopic dating results and led to “decoupling” of the Sm–Nd and Lu–Hf clocks, which recorded timing of the two different metamorphic episodes separated by as much as 40 Ma. Moreover, the preservation of the HREE growth zonation profile in garnets from the felsic granulites whose minimum metamorphic temperature was established at 900 °C implies that the Lu–Hf system under relatively dry conditions does not undergo significant diffusional re-equilibration even at such extreme temperatures and therefore it sill provides the age of prograde garnet growth. Under hydrous conditions, at least some resetting will take place, as documented by the partially relaxed HREE zonation profile in the amphibolitised mafic granulite, which yielded a 10 Ma younger age. The HREE distribution study appeared to be a particularly valuable and essential tool, which allowed us to distinguish garnet growth from post-growth complexities and hence, provide improved age interpretation. Medium REE, on the other hand, did not show any obvious correlation with the isotopic signature of garnet.

Two distinct metamorphic episodes recorded in the Stary Gierałtów region show that buoyancy-driven uplift of UHP rocks can be arrested at the base of a continental crust if not supported by any additional force. In our case study, the UHP rocks would have never reached the surface if their uplift had not been resumed after a long pause under a different tectonic regime. The multistage, discontinuous uplift revealed by the UHP rocks of the OSM provides a new scenario for the exhumation of continental crust from mantle depths distinct from the fast-track exhumation histories recognized in UHP terranes elsewhere.  相似文献   


17.
A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a “maximum-sized” ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a “minimum” model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.  相似文献   

18.
Mineral chemistry, textures and geochemistry of syenite autoliths from Kilombe volcano indicate that they crystallized in the upper parts of a magma chamber from peralkaline trachytic magmas that compositionally straddle the alkali feldspar join in the “residuum system” (ne = 0–1.03; qz = 0–0.77). Mineral reaction and/or overgrowth processes were responsible for the replacement of (i) Mg–hedenbergite by aegirine–augite, Ca–aegirine and/or aegirine, (ii) fayalite by amphiboles, and (iii) magnetite by aenigmatite. Ti–magnetite in silica-saturated syenites generally shows ilmenite exsolution, partly promoted by circulating fluids.

By contrast, the Fe–Ti oxides in the silica-undersaturated (sodalite-bearing) syenites show no signs of deuteric alteration. These syenites were ejected shortly after completion of crystallization. Ilmenite–magnetite equilibria indicate fO2 between − 19.5 and − 23.1 log units (T 679–578 °C), slightly below the FMQ buffer. The subsequent crystallization of aenigmatite and Na-rich pyroxenes suggests an increase in the oxidation state of the late-magmatic liquids and implies the influence of post-magmatic fluids.

Irrespective of silica saturation, the syenites can be divided into (1) “normal” syenites, characterized by Ce/Ce ratios between 0.83 and 0.99 and (2) Ce-anomalous syenites, showing distinct negative Ce-anomalies (Ce/Ce 0.77–0.24). “Normal” silica-saturated syenites evolved towards pantelleritic trachyte. The Ce-anomalous syenites are relatively depleted in Zr, Hf, Th, Nb and Ta but, with the exception of Ce, are significantly enriched in REE.

The silica-saturated syenites contain REE–fluorcarbonates (synchysite-bastnaesite series) with negative Ce-anomalies (Ce/Ce 0.4–0.8, mean 0.6), corroded monazite group minerals with LREE-rich patches, and hydrated, Fe- and P-rich phyllosilicates. Each of these is inferred to be of non-magmatic origin. Fractures in feldspars and pyroxenes contain Pb-, REE- and Mn-rich cryptocrystalline or amorphous material. The monazite minerals are characterized by the most prominent negative Ce-anomalies (Ce/Cemean = 0.5), and in the most altered and Ca-rich areas (depleted in REE), Ce/Ce is less than 0.2.

It is inferred that carbonatitic fluids rich in F, Na and lanthanides but depleted in Ce by fractional crystallization of cerian pyrochlore, percolated into the subvolcanic system and interacted with the syenites at the thermal boundary layers of the magma chamber, during and shortly after their crystallization.

Chevkinite–(Ce), pyrochlore, monazite and synchysite-bastnaesite, occurring as accessory minerals, have been found for the first time at Kilombe together with eudialyte, nacareniobsite–(Ce) and thorite. These latter represent new mineral occurrences in Kenya.  相似文献   


19.
高精度第四纪年代学是第四纪研究的基础,对了解地球演化和发展非常关键。大型二次离子质谱(SIMS)锆石U-Th-Pb定年方法,集高空间分辨率、高精度、高效率和近无损分析等优势于一体,可以提取矿物微区中记录的丰富地质信息,在第四纪年代学研究中具有很大的应用潜力。文中对SIMS第四纪锆石原位微区年龄测定的基本原理、分析校正方法进行介绍,并报道我们测定台湾第四纪金瓜石英安岩锆石U-Pb年龄的结果((1.166±0.020)Ma)。  相似文献   

20.
This paper analyzes the application of a grid-search approach for the estimation of modified Cam clay parameters from triaxial tests. By means of the systematic sampling of the error, in addition to locating the area presenting the smallest error, its “roughness”, is also characterized. This is a valuable information to evaluate the quality of the identification that has been carried out. The methodology proposed here does not aspire to be “the solution” to the problem of parameter identification. The aim is simply to provide a tool which may aid users with criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号