首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The initial acquisition of direct-sequence spread-spectrum (DSSS) signal transmitted in bursts by ground terminals at satellite-borne receiver poses an engineering challenge. We propose a low-complexity acquisition algorithm that is capable of capturing extremely weak DSSS signal in the presence of large Doppler dynamics. The algorithm uses fast Fourier transform (FFT)-based frequency-domain techniques to implement circular correlations between the received signal and the local pseudo-random noise (PRN) code, and it coherently accumulates the correlation results across multiple PRN code periods, to achieve a sufficient signal–noise ratio for reliable acquisition. We invoke another FFT procedure to perform the coherent accumulation and the fine compensation for the residual Doppler frequency offset. To highlight the advantage of the proposed algorithm, we make a complexity comparison among the proposed algorithm and two other benchmark strategies, namely the modified double block zero padding (MDBZP) and two-dimensional exhaustive search (2D-ES). It is shown that the proposed algorithm has the lowest complexity, which is particularly desirable for satellite-borne receivers where the computational resource is limited. The acquisition performance of the proposed algorithm is verified by theoretical analysis and Monte Carlo simulations and compared with that of MDBZP and 2D-ES. Moreover, we have carried out extensive tests on a hardware verification system, and we show the claimed tradeoff between performance and cost is indeed attainable with the suggested algorithm. Numerically, it is found the proposed algorithm can achieve a detection rate of 0.9 and a false alarm rate of \(10^{ - 5}\) at C/N 0 = 29.5 dBHz over a Doppler frequency offset range of \(\left[ { - 7.5\,{\text{kHz}},7.5\,{\text{kHz}}} \right]\) in floating-point simulation, which coincides with the analytical results. The same performance is achieved at C/N 0 = 31 dBHz in fixed-point simulation and at C/N 0 = 31.5 dBHz on a hardware system.  相似文献   

2.
In this paper, we define an intersection matrix for enriching the semantics of the topological relationships between a directed polyline and a polygon. In particular, we propose the \(\mathcal {DLP}\)-intersection matrix which enables us to model the origin and destination points, as well as the right- and left-hand sides of the directed polyline. This matrix overcomes the limitation of the well-known DE-9IM, because it allows the representation of the different dimensions of the intersection results at the same time. Accordingly, the geo-operators have been revised and extended in order to address the notions of right- and left-hand sides of a directed polyline, as well as additional notions related to the orientation of the polyline. The \(\mathcal {DLP}\)-intersection matrix has been implemented by extending the Java Topology Suite methods in order to address the new geo-operators based on the notion of orientation.  相似文献   

3.
In this paper, we investigate the impact of ambient temperature changes on the gravity reading of spring-based relative gravimeters. Controlled heating experiments using two Scintrex CG5 gravimeters allowed us to determine a linear correlation (R \(^{2}>\) 0.9) between ambient temperature and gravity variations. The relation is stable and constant for the two CG5 we used: ?5 nm/s\(^{2}/^\circ \)C. A linear relation is also seen between gravity and residual sensor temperature variations (R \(^{2}>\) 0.75), but contrary to ambient temperature, this relation is neither constant over time nor similar between the two instruments. The linear correction of ambient temperature on the controlled heating time series reduced the standard deviation at least by a factor of 2, to less than 10 nm/s\(^{2}\). The laboratory results allowed for reprocessing the data gathered on a field survey that originally aimed to characterize local hydrological heterogeneities on a karstic area. The correction of two years of monthly CG5 measurements from ambient temperature variations halved the standard deviation (from 62 to 32 nm/s\(^{2}\)) and led us to a better hydrological interpretation. Although the origin of this effect is uncertain, we suggest that an imperfect control of the sensor temperature may be involved, as well as a change of the properties of an electronic component.  相似文献   

4.
We analyze the high-resolution dilatation data for the October 2013 \(M_w\) 6.2 Ruisui, Taiwan, earthquake, which occurred at a distance of 15–20 km away from a Sacks–Evertson dilatometer network. Based on well-constrained source parameters (\(\hbox {strike}=217^\circ \), \(\hbox {dip}=48^\circ \), \(\hbox {rake}=49^\circ \)), we propose a simple rupture model that explains the permanent static deformation and the dynamic vibrations at short period (\(\sim \)3.5–4.5 s) for most of the four sites with less than 20 % of discrepancies. This study represents a first attempt of modeling simultaneously the dynamic and static crustal strain using dilatation data. The results illustrate the potential for strain recordings of high-frequency seismic waves in the near-field of an earthquake to add constraints on the properties of seismic sources.  相似文献   

5.
Gravimetric quantities are commonly represented in terms of high degree surface or solid spherical harmonics. After EGM2008, such expansions routinely extend to spherical harmonic degree 2190, which makes the computation of gravimetric quantities at a large number of arbitrarily scattered points in space using harmonic synthesis, a very computationally demanding process. We present here the development of an algorithm and its associated software for the efficient and precise evaluation of gravimetric quantities, represented in high degree solid spherical harmonics, at arbitrarily scattered points in the space exterior to the surface of the Earth. The new algorithm is based on representation of the quantities of interest in solid ellipsoidal harmonics and application of the tensor product trigonometric needlets. A FORTRAN implementation of this algorithm has been developed and extensively tested. The capabilities of the code are demonstrated using as examples the disturbing potential T, height anomaly \(\zeta \), gravity anomaly \(\Delta g\), gravity disturbance \(\delta g\), north–south deflection of the vertical \(\xi \), east–west deflection of the vertical \(\eta \), and the second radial derivative \(T_{rr}\) of the disturbing potential. After a pre-computational step that takes between 1 and 2 h per quantity, the current version of the software is capable of computing on a standard PC each of these quantities in the range from the surface of the Earth up to 544 km above that surface at speeds between 20,000 and 40,000 point evaluations per second, depending on the gravimetric quantity being evaluated, while the relative error does not exceed \(10^{-6}\) and the memory (RAM) use is 9.3 GB.  相似文献   

6.
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model’s spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components \(V_{xy}\) and \(V_{yz}\) of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE’s inclination of \(96.7^{\circ }\). With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of \(V_{xy}\) and \(V_{yz}\) are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1’s accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.  相似文献   

7.
We address the problem of estimating the carrier-to-noise ratio (C/N0) in weak signal conditions. There are several environments, such as forested areas, indoor buildings and urban canyons, where high-sensitivity global navigation satellite system (HS-GNSS) receivers are expected to work under these reception conditions. The acquisition of weak signals from the satellites requires the use of post-detection integration (PDI) techniques to accumulate enough energy to detect them. However, due to the attenuation suffered by these signals, estimating their C/N0 becomes a challenge. Measurements of C/N0 are important in many applications of HS-GNSS receivers such as the determination of a detection threshold or the mitigation of near-far problems. For this reason, different techniques have been proposed in the literature to estimate the C/N0, but they only work properly in the high C/N0 region where the coherent integration is enough to acquire the satellites. We derive four C/N0 estimators that are specially designed for HS-GNSS snapshot receivers and only use the output of a PDI technique to perform the estimation. We consider four PDI techniques, namely non-coherent PDI, non-quadratic non-coherent PDI, differential PDI and truncated generalized PDI and we obtain the corresponding C/N0 estimator for each of them. Our performance analysis shows a significant advantage of the proposed estimators with respect to other C/N0 estimators available in the literature in terms of estimation accuracy and computational resources.  相似文献   

8.
9.
Proper understanding of how the Earth’s mass distributions and redistributions influence the Earth’s gravity field-related functionals is crucial for numerous applications in geodesy, geophysics and related geosciences. Calculations of the gravitational curvatures (GC) have been proposed in geodesy in recent years. In view of future satellite missions, the sixth-order developments of the gradients are becoming requisite. In this paper, a set of 3D integral GC formulas of a tesseroid mass body have been provided by spherical integral kernels in the spatial domain. Based on the Taylor series expansion approach, the numerical expressions of the 3D GC formulas are provided up to sixth order. Moreover, numerical experiments demonstrate the correctness of the 3D Taylor series approach for the GC formulas with order as high as sixth order. Analogous to other gravitational effects (e.g., gravitational potential, gravity vector, gravity gradient tensor), numerically it is found that there exist the very-near-area problem and polar singularity problem in the GC east–east–radial, north–north–radial and radial–radial–radial components in spatial domain, and compared to the other gravitational effects, the relative approximation errors of the GC components are larger due to not only the influence of the geocentric distance but also the influence of the latitude. This study shows that the magnitude of each term for the nonzero GC functionals by a grid resolution 15\(^{{\prime } }\,\times \) 15\(^{{\prime }}\) at GOCE satellite height can reach of about 10\(^{-16}\) m\(^{-1}\) s\(^{2}\) for zero order, 10\(^{-24 }\) or 10\(^{-23}\) m\(^{-1}\) s\(^{2}\) for second order, 10\(^{-29}\) m\(^{-1}\) s\(^{2}\) for fourth order and 10\(^{-35}\) or 10\(^{-34}\) m\(^{-1}\) s\(^{2}\) for sixth order, respectively.  相似文献   

10.
In order to move the polar singularity of arbitrary spherical harmonic expansion to a point on the equator, we rotate the expansion around the y-axis by \(90^{\circ }\) such that the x-axis becomes a new pole. The expansion coefficients are transformed by multiplying a special value of Wigner D-matrix and a normalization factor. The transformation matrix is unchanged whether the coefficients are \(4 \pi \) fully normalized or Schmidt quasi-normalized. The matrix is recursively computed by the so-called X-number formulation (Fukushima in J Geodesy 86: 271–285, 2012a). As an example, we obtained \(2190\times 2190\) coefficients of the rectangular rotated spherical harmonic expansion of EGM2008. A proper combination of the original and the rotated expansions will be useful in (i) integrating the polar orbits of artificial satellites precisely and (ii) synthesizing/analyzing the gravitational/geomagnetic potentials and their derivatives accurately in the high latitude regions including the arctic and antarctic area.  相似文献   

11.
Twenty-seven-day variation caused by solar rotation is one of the main periodic effects of solar radiation influence on the ionosphere, and there have been many studies on this periodicity using peak electron density \(\mathrm{N_{m}F_{2}}\) and solar radio flux index F10.7. In this paper, the global electron content (GEC) and observation of Solar EUV Monitor (SEM) represent the whole ionosphere and solar EUV flux, respectively, to investigate the 27-day variation. The 27-day period components of indices \((\hbox {GEC}_{27}\), \(\hbox {SEM}_{27}\), \(\hbox {F10.7}_{27}\), \(\hbox {Ap}_{27})\) are obtained using Chebyshev band-pass filter. The comparison of regression results indicates that the index SEM has higher coherence than F10.7 with 27-day variation of the ionosphere. The regression coefficients of \(\hbox {SEM}_{27 }\) varied from 0.6 to 1.4 and the coefficients of \(\hbox {Ap}_{27}\) varied from \({-}\)0.6 to 0.3, which suggests that EUV radiation seasonal variations are the primary driver for the 27-day variations of the ionosphere for most periods. TEC map grid points on three meridians where IGS stations are dense are selected for regression, and the results show that the contribution of solar EUV radiation is positive at all geomagnetic latitudes and larger than geomagnetic activity in most latitudes. The contribution of geomagnetic activity is negative at high geomagnetic latitude, increasing with decreasing geomagnetic latitudes, and positive at low geomagnetic latitudes. The global structure of 27-day variation of ionosphere is presented and demonstrates that there are two zonal anomaly regions along with the geomagnetic latitudes lines and two peaks in the north of Southeast Asia and the Middle Pacific where \(\hbox {TEC}_{27}\) magnitude values are notably larger than elsewhere along zonal anomaly regions.  相似文献   

12.
Absolute orientation is a basic technical work in digital image geologic logging of underground coal mine. Traditional control-point-based absolute orientation method requires setting object space control points of the known three-dimensional coordinates, which may lead to low efficiency. Therefore, this paper proposed a point-free close-range photogrammetry absolute orientation algorithm, which utilized direction line segments including plumb line segments and line segments with known directions and lengths to identify the dimensional orientation of a stereoscopic model. Experiment results show that the precision of the orientation results is favorable. σ X and σ Y are as high as 0.5 mm, and σ Z is 0.3 mm. Finally, this paper introduced the application of the proposed algorithm in rapid geological logging of coal mine roadway, which was fast and reliable, convenient and feasible.  相似文献   

13.
Estimating the water budgets of large basins is a challenge because of the lack of data and information. It becomes more complicated in endorheic basins that consist of separate land and water phases. The application of remotely-sensed data is one solution in this regard. The present study addresses this issue and develops a modeling framework to evaluate a water budget based on remotely-sensed data for endorheic basins. To explore the methodology, Lake Urmia basin was selected as a case study. The lake water level has declined steeply since 1995 and stakeholders have agreed to allocate 3100 MCM of water per year to the lake. This makes it necessary to monitor river inflow into the lake to fulfill the agreement. Gauging stations have been employed around the lake, but they could not account for shortages such as water uptake below the stations. To do this, separate water budgets for the water body and the land were required. More specifically, it was necessary to estimate actual evapotranspiration (ET a ) from freshwater (E f ) and saltwater (E s ) estimated using the SEBAL model. Different methods were applied to estimate soil moisture, groundwater exploitation, and surface-groundwater inflow into the lake. A comparison of the observed and estimated amounts showed good agreement. For instance, the coefficient of determination for the observed/reported and estimated ET a and E f were 0.83 and 0.84, respectively. The average annual inflow was estimated to be 2.2 BCM/year for 2002–2008 using the RS model, which is about 84 % of the total inflow from the last recording stations before the lake and shows influence of water exploitation after these stations. Future study should focus on increasing temporal and spatial resolution of the method  相似文献   

14.
Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission’s triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the \(80\;\text {nm}/\sqrt{\text {Hz}}\) displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.  相似文献   

15.
Chlorophyll fluorescence is an indicator of plant photosynthetic activity and has been used to monitor the health status of vegetation. Several studies have exploited the application of red/far-red chlorophyll fluorescence ratio in detecting the impact of various types of stresses in plants. Recently, sunlight-induced chlorophyll fluorescence imaging has been used to detect and discriminate different stages of mosaic virus infection in potted cassava plants with a multi-spectral imaging system (MSIS). In this study, the MSIS is used to investigate the impact of drought and herbicide stress in field grown crop plants. Towards this control and treatment groups of colocasia and sweet potato plants were grown in laterite soil beds and the reflectance images of these crop plants were recorded up to 14-days of treatment at the Fraunhofer lines of O2 B at 687 nm and O2 A at 759.5 nm and the off-lines at 684 and 757.5 nm. The recorded images were analyzed using the Fraunhofer Line Discrimination technique to extract the sunlight-induced chlorophyll fluorescence component from the reflectance images of the plant leaves. As compared to the control group, the chlorophyll fluorescence image ratio (F 687/F 760) in the treatment groups of both the plant varieties shows an increasing trend with increase in the extent of stress. Further, the F 687/F 760 ratio was found to correlate with the net photosynthetic rate (Pn) and stomatal conductance (gs) of leaves. The correlation coefficient (R 2) for the relationship of F 687/F 760 ratio with Pn were found to be 0.78, 0.79 and 0.78, respectively for the control, herbicide treated and drought treated colocasia plants, while these were 0.77, 0.86 and 0.88, respectively for sweet potato plants. The results presented show the potential of proximal remote sensing and the application F 687/F 760 fluorescence image ratio for effective monitoring of stress-induced changes in field grown plants.  相似文献   

16.

Background

Biomass models are useful for several purposes, especially for quantifying carbon stocks and dynamics in forests. Selecting appropriate equations from a fitted model is a process which can involves several criteria, some widely used and others used to a lesser extent. This study analyzes six selection criteria for models fitted to six sets of individual biomass collected from woody indigenous species of the Tropical Atlantic Rain Forest in Brazil. Six models were examined and the respective fitted equations evaluated by the residual sum of squares, adjusted coefficient of determination, absolute and relative estimates of the standard error of estimate, and Akaike and Schwartz (Bayesian) information criteria. The aim of this study was to analyze the numeric behavior of these model selection criteria and discuss the ease of interpretation of them. The importance of residual analysis in model selection is stressed.

Results

The adjusted coefficient of determination (\( R^{2}_{adj.} \)) and the standard error of estimate in percentage (Syx%) are relative model selection criteria and are not affected by sample size and scale of the response variable. The sum of squared residuals (SSR), the absolute standard error of estimate (Syx), the Akaike information criterion and the Schwartz information criterion, in turn, depend on these quantities. The best fit model was always the same within a given data set regardless the model selection criteria considered (except for SSR in two cases), indicating they tend to converge to a common result. However, such criteria are not always closely related across different data sets. General model selection criteria are indicative of the average goodness of fit, but do not capture bias and outlier effects. Graphical residual analysis is a useful tool to this detection and must always be used in model selection.

Conclusions

It is concluded that the criteria for model selection tend to lead to a common result, regardless their mathematical formulation and statistical significance. Relative measures of goodness of fitting are easier to interpret than the absolute ones. Careful graphical residual analysis must always be used to confirm the performance of the models.
  相似文献   

17.
We propose an approach for calibrating the horizontal tidal shear components [(differential extension (\(\gamma _1\)) and engineering shear (\(\gamma _2\))] of two Sacks–Evertson (in Pap Meteorol Geophys 22:195–208, 1971) SES-3 borehole strainmeters installed in the Longitudinal Valley in eastern Taiwan. The method is based on the waveform reconstruction of the Earth and ocean tidal shear signals through linear regressions on strain gauge signals, with variable sensor azimuth. This method allows us to derive the orientation of the sensor without any initial constraints and to calibrate the shear strain components \(\gamma _1\) and \(\gamma _2\) against \(M_2\) tidal constituent. The results illustrate the potential of tensor strainmeters for recording horizontal tidal shear strain.  相似文献   

18.
The correlation between the rate of TEC index (ROTI) and scintillation indices S 4 and σ Φ for low-latitude region is analyzed in this study, using data collected from a Global Positioning System (GPS) scintillation monitoring receiver installed at the south of Hong Kong for the periods June–August of 2012 and May 2013 and July–December of 2013. The analysis indicates that the correlation coefficient between ROTI and S 4/σ Φ is about 0.6 if data from all GPS satellites are used together. If each individual satellite is considered, the correlation coefficients are above 0.6 on average and sometimes above 0.8. The analysis also shows that the ratio of ROTI and S 4 varies between 1 and 4. The ratio ROTI/σ Φ, varies between 2 and 9. In addition, it is also found that there is a good consistency between the temporal variations of ROTI with scintillation activity under different ionospheric conditions. ROTI has a high correlation relationship with scintillation indices on geomagnetically disturbed days or in solar active months. Moreover, the data observed at low elevation angles have weak correlation between ROTI and scintillation indices. These results demonstrate the feasibility of using ROTI derived from GPS observations recorded by common non-scintillation GPS receivers to characterize ionospheric scintillations.  相似文献   

19.
Ionospheric sporadic-E (Es) activity and global morphology were studied using the 50 Hz signal-to-noise ratio amplitude and excess phase measurements from the FormoSat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) GPS radio occultation (RO) observations. The results are presented for data collected during the last sunspot cycle from mid-2006 to the end of 2017. The FS3/COSMIC generally performed more than 1000 complete E-region GPS RO observations per day, which were used to retrieve normalized L1-band amplitude standard deviation (SDL1) and relative electron density (Ne) profiles successfully. More or less 31% of those observations were identified as Es events based on SDL1 and peak SDL1 altitude criteria. We found that the peak Es-event i values are approximately proportional to the logarithms of the corresponding peak Ne differences. Five major geographical zones were identified, in which the seasonal and diurnal Es occurrence patterns are markedly different. These five zones include the geomagnetic equatorial zone (??5°?<?magnetic latitude (ML)?<?5°), two extended geomagnetic mid-latitude zones (15°?<?ML?<?55°, and ??55°?<?ML < ??15°), and two auroral zones (70°?<?ML, and ML < ??70°). The Es climatology, namely its variations with each identified zone, altitude, season, and local time has been documented.  相似文献   

20.
It has been noted that the satellite laser ranging (SLR) residuals of the Quasi-Zenith Satellite System (QZSS) Michibiki satellite orbits show very marked dependence on the elevation angle of the Sun above the orbital plane (i.e., the \(\beta \) angle). It is well recognized that the systematic error is caused by mismodeling of the solar radiation pressure (SRP). Although the error can be reduced by the updated ECOM SRP model, the orbit error is still very large when the satellite switches to orbit-normal (ON) orientation. In this study, an a priori SRP model was established for the QZSS Michibiki satellite to enhance the ECOM model. This model is expressed in ECOM’s D, Y, and B axes (DYB) using seven parameters for the yaw-steering (YS) mode, and additional three parameters are used to compensate the remaining modeling deficiencies, particularly the perturbations in the Y axis, based on a redefined DYB for the ON mode. With the proposed a priori model, QZSS Michibiki’s precise orbits over 21 months were determined. SLR validation indicated that the systematic \(\beta \)-angle-dependent error was reduced when the satellite was in the YS mode, and better than an 8-cm root mean square (RMS) was achieved. More importantly, the orbit quality was also improved significantly when the satellite was in the ON mode. Relative to ECOM and adjustable box-wing model, the proposed SRP model showed the best performance in the ON mode, and the RMS of the SLR residuals was better than 15 cm, which was a two times improvement over the ECOM without a priori model used, but was still two times worse than the YS mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号