首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
在地表形变监测中,若全采用双频GPS则费用过高,若全采用单频GPS则因电离层误差得不到较好消除而导致精度下降。针对这一问题,本文采用GPS单双频混合模式,即通过解算监测区域外围的双频GPS数据获取该区域大气延迟误差残余量,将其用于改正内部单频监测站点数据,从而在降低硬件成本的同时改善监测精度。利用研发的软件对实测数据进行处理分析,结果表明,改正后的高程分量精度优于1.24cm,三维位置精度优于1.59cm,较单频方法提高24%;且当单频站点位于双频站点组成的区域内部时改正效果更好,高程分量精度优于0.95cm,三维位置精度优于1.2cm,精度改善比例达到30%,最高可达58%。  相似文献   

2.
电离层延迟是影响GPS精密定位的主要因素,对单频接收机的影响尤为明显。介绍了一种新的基于区域双频观测网构建电离层模型的方法,并选取德国境内平均基线超过300 km(最长基线为461 km)的一个长距离观测网连续10 d的数据对模型进行了检测分析。实验证明,基于该电离层模型,网内单频接收机用户可获得接近双频观测数据的解算精度,即使对于200 km的长距离基线,单频数据的基线解算结果都能够达到平面方向6 mm,高程方向2.5 cm。区域电离层延迟模型构造方法可被有效应用于GPS、GLONASS和GALILEO等各类卫星导航定位系统,满足事后、实时或准实时单频接收机精密数据处理的需要。  相似文献   

3.
周建  宫萍  吴兴存  虞尚泳 《测绘科学》2015,40(6):151-155
电离层延迟误差是单频GPS实时/事后定位误差的一个重要来源,目前尚无有效的方法来削弱其影响。针对这一状况,该文首先介绍了单频GPS改正电离层延迟误差的常用方法,通过分析说明了电离层格网数据能够有效改善单频GPS实时/事后定位误差。给出了电离层格网数据的建立、预报方法,并详细介绍了刺入点地心经纬度VTEC值的计算方法、四点格网法内插刺入点天顶方向的总电子含量以及单层模型投影函数。结合算例,分析比较了不同类型电离层改正数据与卫星星历数据对单频GPS实时/事后定位精度的影响。实验结果表明,利用电离层格网预报数据能够显著改善单频GPS的实时/事后导航定位精度,对提高单频GPS定位精度具有一定实用价值。  相似文献   

4.
不同Klobuchar模型参数的性能比较   总被引:3,自引:1,他引:2  
王斐  吴晓莉  周田  李宇翔 《测绘学报》2014,43(11):1151-1157
对于GPS单频用户而言,电离层延迟是最重要的误差来源之一。GPS系统使用Klobuchar模型对电离层延迟进行改正,其改正数从370组常数中选取。目前全球分布的GPS测站可以获得高精度的全球电离层监测结果,GPS为什么不发播采用实测数据计算得到的Klobuchar模型参数呢?本文针对这一问题进行分析。首先对欧洲定轨中心CODE提供的全球电离层图GIM预报COPG电离层进行精度评估,然后根据COPG电离层进行Klobuchar模型参数拟合并利用IGS提供的事后高精度电离层图进行精度分析,最后将不同的电离层模型参数应用于单点定位以评估其对单频用户的影响。分析结果表明:受8参数的Klobuchar模型本身结构限制,采用全球实测数据计算的电离层模型参数与导航电文中发播的电离层模型精度相当,为55%左右。而仅采用地磁纬度45oS以北的数据拟合得到的模型参数,其电离层改正精度有明显提升,可达65%左右,但其对单频用户定位精度改善不明显。本文研究结果为我国全球电离层建模提供参考。  相似文献   

5.
基于原始观测值的单频精密单点定位算法   总被引:1,自引:0,他引:1  
王利  张勤  涂锐  刘站科 《测绘学报》2015,44(1):19-25
研究了一种基于GPS原始观测值的单频PPP算法。该算法通过增加电离层延迟先验信息、空间和时间约束的虚拟观测方程,将电离层延迟当作未知参数与其他定位参数一并进行估计来高效修正电离层延迟误差。通过使用全球178个IGS站1d的实测数据对本算法的收敛速度、定位精度和电离层VTEC的精度进行检验与分析。结果表明,该算法的收敛速度和稳定性均得到了改善,其静态单频单天PPP解的精度可达2~3cm、模拟动态单频单天PPP解的精度可达2~3dm,并且单频PPP与双频PPP提取的电离层总电子含量平均偏差小于5个TECU,可作为一种附属定位产品使用。  相似文献   

6.
GPS相对定位中气象误差的影响   总被引:2,自引:0,他引:2  
卫星星历误差和卫星信号传播过程中的大气延迟误差是GPS定位中的两大误差源。随着我国GPS卫星跟踪网的逐步建立,卫星星历误差将基本得以解决。在大气延迟误差中电离层延迟已可利用双频观测资料较好地予以消除(中长基线)。在短基线上,由于两端的电离层延迟具有很强的相关性,因而即使采用单频观测值也可获  相似文献   

7.
利用GPS研究电离层延迟及电子浓度变化规律   总被引:3,自引:0,他引:3  
电离层是大气层的重要组成部分,电离层对GPS观测信号的折射影响,是GPS测量中最严重最棘手的误差源之一,精确修正电离层折射影响和反演电离层结构,一直是GPS研究和应用中的热点问题,一方面,为提高(特别是单频)GPS测量精度,需研究精确的电离层折射改正模型或其它有效方法;另一方面,利用各类GPS网络所拥有的大量高精度的GPS观测资料可有效提取电离层变化信息,深入了解电离层精细结构、变化规律及其对无线电信号干扰机制,实现对电离层灾害性突发事件的探测和预报,近年来,结合理论研究和实际应用的需要,我们在这领域作了以下几方面的工作:(1)研究如何利用单台双频CPS接收机的观测信息确定电离层延迟改正模型,为小范围的单频用户服务;(2)研究如何建立较大区域的电离层格网模型,进而初步设想利用中国地壳运动观测网络深入研究我国领域的电离层的电子浓度变化规律;(3)研究单频用户如何更好地利用电离层延迟改正信息;(4)研究如何利用GPS网络系统监测电离层的异常活动。  相似文献   

8.
单基站差分GPS定位精度的分析与检验   总被引:4,自引:0,他引:4  
分析了影响单基站差分GPS测量的主要误差因素,研究了不同基线长情况下广播星历、电离层和对流层延迟等误差对单基站差分GPS数据精度的影响程度及规律,通过设立双基站测量、与精密单点定位软件处理比较等方法检验了单基站差分GPS数据精度,得出了在用单基站差分GPS测量系统满足一定精度要求的结论。  相似文献   

9.
电离层误差严重影响着GNSS的定位精度,GPS、BDS、Galileo、GLONASS有不同的电离层误差校正方法.全文概述了电离层误差校正方法,综述了单频电离层误差校正、双频电离层误差校正及多频电离层误差校正等技术的原理与发展现状.在单频电离层误差校正技术中总结了增强系统中的电离层误差校正技术、北斗全球电离层延迟修正模型(BeiDou global ionospheric delay correction model,BDGIM)、Klobuchar模型、单频电离层误差校正技术的优化—附加国际参考电离层(international reference ionosphere,IRI)约束模型和NeQuick-G模型;在双频电离层误差校正技术中重点总结了双频消电离层误差、无电离层组合模型及PPP-RTK技术中电离层误差校正方法;在多频电离层误差校正技术中介绍了高阶项改正和地磁场建模对电离层误差校正技术的优化与改进.最后,对电离层误差校正技术及其改进方法进行了分析,总结了其发展趋势与方向.  相似文献   

10.
北斗三号系统于2017年正式启动建设,将采用新的北斗全球电离层延迟修正模型(BeiDou global ionospheric delay correction model,BDGIM)。使用高精度格网电离层数据和双频实测电离层延迟数据作为参考,对北斗试验卫星系统播发的BDGIM模型精度进行了相应分析和评估,并与北斗Klobuchar和GPS Klobuchar模型精度进行了比较。研究结果表明,在中国区域,BDGIM模型和北斗Klobuchar模型精度相当,优于GPS Klobuchar模型;在全球范围内,BDGIM模型精度优于北斗Klobuchar和GPS Klobuchar模型。采用不同电离层模型进行伪距单频单点定位,并对定位结果进行对比分析,结果显示,使用BDGIM模型比北斗Klobuchar模型的定位精度有13%的提高,比GPS Klobuchar模型有7%~10%的提高。  相似文献   

11.
随着PPP的发展与应用,对PPP误差源的研究更加精细、更加科学。电离层折射是高精度PPP的主要误差之一,国内外通用方法是用大气传播理论建立电离层修正模型。本文主要探讨了电离层对精密单点定位影响的基本理论,总结了目前常用方法;研究了Klobuchar模型的改正公式及计算方法;系统地研究了双频观测值建立消电离层延迟模型的理论和方法。使用相同时段的观测数据,将广播星历、Klobuchar模型和双频观测值改正消电离层模型的结果进行比较,发现用GPS双频观测值建立的消电离层模型的精度明显优于广播星历及Klobuchar模型。  相似文献   

12.
在卫星导航定位中,电离层延迟误差是主要误差源之一,其影响可以到达数米乃至数百米,有必要进行高精度的电离层模型研究,尤其是区域的高精度电离层模型建立.本文基于北斗地基增强系统114基准站三系统 (GPS/BDS/GLONASS) 双频的观测数据进行电离层提取计算,并结合多项式函数模型进行建模,得出中国区域内的电离层模型,并采用直接跟CODG的电离层产品比较和间接通过单频精密单点定位方式来评估模型精度.结果表明,基于北斗地基增强系统建立的中国区域电离层模型精度高于CODG发布的电离层格网模型且更符合中国区域电离层的真实空间分布.   相似文献   

13.
分析了单频GPS精密单点定位的特点,提出了先在卫星间求差,再在相邻历元间求差的单频GPS动态定位数学模型,实现了定位坐标的非线性参数估计求解方法。为了降低电离层延迟残差对单频PPP的影响,研究建立了一种相对电离层延迟模型,并基于神经网络理论,实现了相应的算法,通过计算实例进行了精度分析。  相似文献   

14.
提出了利用区域内的双频观测值建立区域SEID模型,利用单频观测值反演得到双频观测值,进而组成双频无电离层组合观测值,实现了单频PPP双频解算。算例结果表明,本文提出的新方法大大缩短了定位收敛时间,显著地提高了单频PPP的定位精度。  相似文献   

15.
硬件延迟是利用GPS进行TEC测量时最大的误差源,其影响可达30多TECU。为获得更准确的绝对TEC数值,必须利用一定的电离层模型计算得出GPS系统硬件延迟。本文为估算利用一个时段内的观测数据计算得出的硬件延迟对后续时段TEC测量的影响,利用IGS网络中60多个数据质量良好的GPS跟踪站数据,对硬件延迟的精度和稳定性进行了研究。结果表明:GPS系统硬件延迟在短期内具有较好的精度和稳定性,但是当发生电离层扰动现象时GPS系统硬件延迟的精度和稳定性会遭到破坏。同时根据GPS系统硬件延迟稳定性的研究成果,本文还提出了一种对太阳耀斑进行预报的观点。  相似文献   

16.
Summary The ionospheric effect is one of the main sources of error in Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) high precision geodesy. Although the use of two frequencies allows the estimation of this effect, in some cases dual observations are not possible due to the available equipment or the type of observation. This paper presents the ionospheric calibration of single frequency VLBI and GPS observations based on the ionospheric electron content estimated from dual frequency GPS data. The ionospheric delays obtained with this procedure and the VLBI baseline length results have been compared with those obtained with dual frequency data. For the European geodetic VLBI baselines, both solutions agree at the 3–5 parts in 10–9 level. The noise introduced by the GPS-based calibration is in the order of 3 cm for the VLBI observables and of 10 cm for the GPS observables.  相似文献   

17.
为监测潘一东区1252(1)首采面开采引起的地表移动变形规律,布设了由1条全走向线和一条全倾向观测线、12个控制点和186个监测点构成的地表移动观测站.在采用GPS定位技术实施观测站平面连接测量过程中,为克服转换基准点中存在的位移对求解的转换参数的影响,采用了抗差估计理论,并建立转换后GPS网的质量评价模型.根据对GPS连接测量平面控制网的处理结果分析,采用抗差估计求参,有利于保留GPS技术高精度的特点.  相似文献   

18.
单历元解算变形信息是解决实时变形监测问题的有效手段。将高精度基线向量作为已知条件,单历元快速求解变形量,研究并实现了顾及误差改正的单历元变形量快速提取算法,将原有的有效基线解算距离从5 km扩展到了10 km。计算实例表明,该算法可以保证10 km以内的基线解算精度达到毫米级。同时,根据获取的数据初步讨论精度改善效果随距离的变化情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号