首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stream invertebrate distribution patterns reflect local sedimentary and hydraulic conditions, which in turn are influenced by a range of factors operating at larger scales. We assessed whether spatial variation in invertebrate assemblages across a meso-scale catchment is best understood in terms of the characteristics of the study reaches themselves or the characteristics of respective upstream catchment areas. The study river experiences naturally high fine sediment loads as a result of the extraordinary supply of sediment from high erodible marls in its catchment. We hypothesized that between-reach variation in the volume of fine sediment stored within the channel results from a combination of reach and upstream catchment characteristics, and that these characteristics help explain variation in invertebrate assemblages. The storage of fine sediment in study reaches correlated with a number of upstream catchment characteristics, as well as reach-scale hydraulic conditions. Variability in invertebrate assemblages correlated most strongly (62% of variance explained) with the characteristics of the catchment upstream from each reach (area of contribution), with the characteristics of the reaches accounting for only 35% of the variability. The explanatory power of the reach-scale habitat variables was reduced when the effect of upstream catchment conditions was removed. This suggests inbuilt effects of larger scale conditions on reach habitat and invertebrate assemblages. Results lend support to theories of scale hierarchy within river systems and help emphasize the need to target management at upstream catchment areas.  相似文献   

2.
The special hydrological situation of temporary streams has a great influence on the abiotic processes and other habitat conditions for organisms. To monitor possible impacts of stream drying on the composition of lotic communities, streamflow measurements and collections of the macrozoobenthos were conducted in a temporary and an adjacent upstream permanent section of the karst stream Sauer (East Westphalia, Germany) in 1996. The Sauer has a summer-dry temporary flow regime. The seasonal dry phase can last from spring to early autumn, so the duration of the dry phase varies from one to several months, increasing with distance downstream from the upstream permanent section. The number of invertebrate taxa and individuals decreases with increasing duration of the dry phase. The permanent section is characterized by taxa typical of montane and submontane streams, whereas the fauna of the temporary section is quite different, composed of representatives of various zonal areas. Limnephilid caddisflies are particularly characteristic of this section. Life cycle strategies and specific adaptations with respect to habitat drying are discussed for several species. It can be concluded that the temporary discharge regime of the karst stream Sauer has a clear effect on the invertebrate communities. They mainly consist of species which can be seen as characteristic faunal elements of temporary streams.  相似文献   

3.
This study examined if riparian land use (forested vs agricultural) affects hydraulic transport in headwater streams located in an agriculturally fragmented watershed. We identified paired 50‐m reaches (one reach in agricultural land use and the other in forested land use) along three headwater streams in the Upper Sugar Creek Watershed in northeast Ohio, USA (40° 51′42″N, 81° 50′29″W). Using breakthrough curves obtained by Rhodamine WT slug injections and the one‐dimensional transport with inflow and storage model (OTIS), hydraulic transport parameters were obtained for each reach on six different occasions (n = 36). Relative transient storage (AS:A) was similar between both reach types (As: A = 0·3 ± 0·1 for both agricultural and forested reaches). Comparing values of Fmed200 to those in the literature indicates that the effect of transient storage was moderately high in the study streams in the Upper Sugar Creek Watershed. Examining travel times revealed that overall residence time (HRT) and residence time in transient storage (TSTO) were both longer in forested reaches (forested HRT = 19·1 ± 11·5 min and TSTO = 4·0 ± 3·8 min; agricultural HRT = 9·3 ± 5·3 min and TSTO = 1·7 ± 1·4 min). We concluded that the effect of transient storage on solute transport was similar between the forested and agricultural reaches but the forested reaches had a greater potential to retain solutes as a result of longer travel times. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   

6.
Studies investigating the effects of human activities on the functional organization of macroinvertebrate communities in tropical streams and rivers are very limited, despite these areas witnessing the greatest loss of natural forests globally. We investigated changes in taxon richness, numerical abundance and biomass of macroinvertebrate functional feeding groups (FFGs) in streams draining different land-use types in the Sosiani-Kipkaren River in western Kenya. Twenty-one sites in river reaches categorized as forested, mixed, urban or agricultural were sampled during the dry and wet seasons. Collected macroinvertebrates were identified to the lowest taxon possible (mainly genus) and classified into five major FFGs; collector-gatherers, collector-filterers, scrapers, predators and shredders. There were significant (p < 0.05) spatial variation in habitat quality, organic matter standing stocks, total suspended solids, electrical conductivity, dissolved oxygen, temperature and nutrient concentrations across land-uses, with forested sites recording lowest values in mean water temperature, electrical conductivity and nutrients while recording highest levels in dissolved oxygen concentrations. Responses in macroinvertebrates to changes in land-use varied with richness, abundance and biomass showing differences within FFGs. Biomass-based metrics responded more strongly to change in land-use while taxon richness was the least predictive, indicating replacement of taxa within FFGs across land-use types. Higher shredder abundance, biomass and richness were recorded in forested streams which were cooler with protected riparian areas and high biomass of coarse particulate organic matter. Collector-gatherers dominated agricultural and urban streams owing to an abundance of particulate organic matter and nutrients, while scrapers responded positively to increased nutrient levels and open canopy in mixed and agricultural streams where primary production and algal biomass was likely increased. Overall, this study provides further evidence of the effects of agricultural and urban land-uses on tropical streams and rivers and contributes to the use of macroinvertebrate FFGs as indicators of ecological health.  相似文献   

7.
Agricultural practices affect the integrity of riparian areas of small streams. In this study we tested the hypothesis that the increase of agricultural activities influences negatively the functional conditions of the low order streams in the Atlantic forest of southern Brazil. Litter bags with leaves of Nectandra megapotamica (Spreng.) Mez were located in eight streams with different amounts of woody vegetation and agriculture land uses in their riparian zones. After 7, 15 and 30 days, the litter bags were removed for identification of associated invertebrates and determination of decomposition rate. Decomposition rates were negatively influenced by agriculture in the riparian zone while primary production was positively influenced. On the other hand, the decomposition mediated by microorganisms did not vary along the degradation gradient. The abundance of collectors increased in streams adjacent to agricultural land while the abundance of shredders was decreased. Our results showed that algae biomass and leaf decomposition were sensitive to the replacement of native vegetation by agricultural use. However, the trophic structure of invertebrates was moderately sensitive to agricultural land use.  相似文献   

8.
Ecological flows between habitats are vital for predicting and understanding structure and function of recipient systems. Ecological flows across riparian areas and headwater intermittent streams are likely to be especially important in many river networks because of the shear extent of these interfaces, their high edge-to-width ratio, and the alternation of wet and dry conditions in intermittent channels. While there has been substantial research supporting the importance of riparian-stream linkages above-ground, comparatively less research has investigated below-ground linkages. We tested the hypothesis that riparian roots are colonized by invertebrates as a food source within stream beds of intermittent headwater streams. We compared benthic invertebrate assemblages colonizing three types of buried substrates (leaves, roots, and plastic roots) among three intermittent Coastal Plain streams, each with a different riparian management treatment (clearcut, thinned, and reference), over a 1-year period. Invertebrate density was significantly lower in root litterbags than in plastic roots litterbags, but neither differed from densities in leaf litterbags. Total invertebrate abundances, however, were significantly higher in leaf and root litterbags compared to abundances in plastic root litterbags. Invertebrate biomass and richness did not vary among substrates, but invertebrate density, abundance, and richness all declined from the wet phase (September–December) through the dry phase (June–August). Meiofauna and aquatic dipterans were the primary colonizing invertebrates during the wet phase. Relative abundance of terrestrial taxa increased during the dry phase, but their absolute abundance remained lower than aquatic taxa during the wet phase. Invertebrate composition did not differ among substrate types, but was significantly different among streams and time periods. Cumulative number of dry days, degree days, and redox depth all strongly correlated with assemblage structure as indicated by ordination scores. Our results suggest that subsurface invertebrates respond to leaves and roots as food sources, but assemblage composition is not substrate specific. Colonization of leaves and roots within stream beds by aquatic and terrestrial taxa supports the idea that headwater intermittent streams are important interfaces for the reciprocal exchange of energy and materials between terrestrial and aquatic ecosystems.  相似文献   

9.
We studied two forested, headwater streams to compare patterns of invertebrate community structure and consequences for ecosystem functioning in two temperate locations, Galicia (NW Spain) and Vancouver (SW Canada). The two sites were selected due to the similar dominance of congeneric invertebrate species, as well as similarity in their hydromorphological and physico-chemical characteristics. Field experiments tested for similarities and dissimilarities in the invertebrate community assembly in leaf packs in streams. Our results indicated that alder leaves always decomposed faster than eucalyptus leaves, from threefold higher in Galicia to tenfold in Vancouver. At the species level, the biogeographic factor was the main source of variation on invertebrate assemblages (84.9 %), but this percentage quickly decreased at higher levels of taxonomic resolution, i.e. family. Moreover, there was a strong leaf species influence in both sites. There were more invertebrates colonizing leaves (per unit mass) in Vancouver than in Galicia (fourfold on average), though alder leaves seemed to be always the preferred resource (5.5-fold higher density on average). Regardless, a similar trophic structure was found between sites and leaf species. Brillia spp. and Corynoneura spp., a shredder and a collector-gatherer, respectively, seemed to be the most important species and showed similar colonization patterns in both sites with potential to strongly influence the leaf processing and nutrient cycling in these ecosystems. Even though our results are limited to the similarity found between only two sites, results from other studies, where the same species have been found coexisting during leaf pack processing, reinforces our results that common rules and mechanisms determine patterns of key ecological processes on a biogeographical scale.  相似文献   

10.
The potential for increased loads of dissolved organic carbon (DOC) in streams and rivers is a concern for regulating the water quality in water supply watersheds. With increasing hydroclimatic variability related to global warming and shifts in forest ecosystem community and structure, understanding and predicting the magnitude and variability of watershed supply and transport of DOC over multiple time scales have become important research and management goals. In this study, we use a distributed process‐based ecohydrological model (Regional Hydro‐Ecological Simulation System [RHESSys]) to explore controls and predict streamflow DOC loads in Biscuit Brook. Biscuit Brook is a forested headwater catchment of the Neversink Reservoir, part of the New York City water supply system in the Catskill Mountains. Three different model structures of RHESSys were proposed to explore and evaluate hypotheses addressing how vegetation phenology and hydrologic connectivity between deep groundwater and riparian zones influence streamflow and DOC loads. Model results showed that incorporating dynamic phenology improved model agreement with measured streamflow in spring, summer, and fall and fall DOC concentration, compared with a static phenology. Additionally, the connectivity of deep groundwater flux through riparian zones with dynamic phenology improved streamflow and DOC flux in low flow conditions. Therefore, this study suggests the importance of inter‐annual vegetation phenology and the connectivity of deep groundwater drainage through riparian zones in the hydrology and stream DOC loading in this forested watershed and the ability of process‐based ecohydrological models to simulate these dynamics. The advantage of a process‐based modelling approach is specifically seen in the sensitivity to forest ecosystem dynamics and the interactions of hydroclimate variability with ecosystem processes controlling the supply and distribution of DOC. These models will be useful to evaluate different forest management approaches toward mitigating water quality concerns.  相似文献   

11.
Measurements from a fixed‐bed, Froude‐scaled hydraulic model of a stream in northeastern Vermont demonstrate the importance of forested riparian vegetation effects on near‐bank turbulence during overbank flows. Sections of the prototype stream, a tributary to Sleepers River, have increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research found that reaches of small streams with forested riparian zones are commonly wider than adjacent reaches with non‐forested, or grassy, vegetation; however, driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed with a 1:5 scale, simplified model of half a channel and its floodplain, mimicking the typical non‐forested channel size. Two types of riparian vegetation were placed on the constructed floodplain: non‐forested, with synthetic grass carpeting; and forested, where rigid, randomly distributed, wooden dowels were added. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 41 locations within the channel and floodplain at near‐bed and 0·6‐depth elevations. Observations of velocity components and calculations of turbulent kinetic energy (TKE), Reynolds shear stress and boundary shear stress showed significant differences between forested and non‐forested runs. Generally, forested runs exhibited a narrow band of high turbulence between the floodplain and main channel, where TKE was roughly two times greater than TKE in non‐forested runs. Compared to non‐forested runs, the hydraulic characteristics of forested runs appear to create an environment with higher erosion potential. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity and given that mature forested stream reaches are wider than comparable non‐forested reaches, our results demonstrated a possible driving mechanism for channel widening during overbank flow events in stream reaches with recently reforested riparian zones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
B. W. Webb  Y. Zhang 《水文研究》2004,18(11):2117-2146
The nature of intra‐annual variability in the non‐advective heat fluxes affecting streams and rivers in Devon, UK was investigated through detailed monitoring of study reaches in an upland moorland catchment, below a regulating reservoir, and flowing through deciduous woodland and coniferous forest during the period May 1995 to April 1996. A clear pattern of seasonal variation was evident, whereby net radiation provided a heat source during the summer but a heat sink in the winter, as incoming short‐wave radiation declined and outgoing long‐wave radiation increased. Sensible transfer added heat to the study reaches in the summer but removed it during the winter, and bed conduction acted as a heat sink in the summer period but as a heat source in the winter months. Friction and evaporation added and removed heat, respectively, from the study reaches throughout the year, but the magnitude of these fluxes reflected seasonal variations in discharge and in wind speed. Water temperature generally followed the net non‐advective heat energy budget, which was positive in summer but negative in winter. Although a general pattern of seasonal variability in the non‐advective heat energy budget was evident, detailed differences in the nature and extent of intra‐annual variability were apparent between the study reaches and particularly between forested and non‐forested sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Lotic ecosystems are highly affected by land use changes such as afforestation of natural areas for management or commercial purposes. The aim of this study was to analyze the effect of pine plantations on benthic invertebrate communities in mountain grassland streams. Additionally, we assessed if the hydrological period modifies the effect of afforestation on stream invertebrates. Three headwater streams draining grasslands (reference streams) and three draining plantations of Pinus elliottii were selected in a mountain watershed of Córdoba province (Argentina). Hydrologic and physicochemical variables were registered and benthic invertebrate samples were collected in each stream at two different hydrological periods. Total invertebrate abundance, richness and diversity were reduced in afforested streams as well as the number of indicator taxa. In addition, invertebrate functional structure (i.e. taxonomic richness and total and relative abundance of functional feeding groups, FFG) showed differences between streams with different riparian vegetation and between hydrological periods. Total abundance of all FFGs was lower in afforested streams and scrapers’ relative abundance was higher in grassland streams at the low water period. In addition, in most FFGs richness was diminished in afforested streams. Changes in light intensity, hydrology and coarse organic matter inputs produced by afforestation alter fluvial habitats and consequently the composition and trophic structure of invertebrate communities in grassland streams of Córdoba mountains.  相似文献   

14.
Eight small steep south-west facing catchments (1-63-8-26 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. Stream temperatures were measured in all catchments for 11 years, including up to four years before harvesting. The streamwater temperature regime under the native forest cover has a seasonal cycle, with an annual mean of about 9°C and mean daily temperatures ranging between a winter minimum of about 5.8°C and a summer maximum of 12.S°C. After harvesting, the winter minimum stream temperatures in all trials were unchanged as topography exerts the major control over incoming solar radiation. The largest rises in mean summer stream temperatures, up to 5.5°C, were in the catchments that had been clearcut and burnt before planting. The maximum stream temperature recorded was 22.8°C in a clearcut catchment with no riparian reserve. Summer stream temperatures in this catchment were up to 11°C higher than in an adjacent control catchment. Summer stream temperature rises in catchments with riparian reserves were less than 1.5°C. Seven years after harvesting, stream temperatures were dropping towards pre-treatments levels in only two of the six treated catchments as revegetation of the riparian areas occurred and the plantations became established. As these small headwater streams discharge into streams with flows one or two orders of magnitude larger, the increases in summer stream temperatures will be rapidly dissipated. However, the cumulative impact of harvesting many small headwater catchments that discharge into a larger stream could have a noticeable effect on stream temperature if intact riparian reserves were not retained in both headwater and main streams.  相似文献   

15.
16.
Abiotic variability is known to structure lotic invertebrate communities, yet its influence on lentic invertebrates is not clear. This study tests the hypothesis that variability of nutrients and macro-ions are structuring invertebrate communities in agricultural drainage ditches. This was determined by investigating invertebrate adaptations to disturbance using insect life-history strategies. Many low-lying agricultural areas contain drainage ditches which potentially provide suitable habitat for aquatic invertebrates. In the province of North Holland (The Netherlands) the extensive network of eutrophic ditches are hydrologically managed, creating seasonal variability of water quality arising from agricultural run-off and the inlet of mineral rich, river derived water. This temporal variability was analysed from monitoring data, collected over a 7 month period (February till August) and covering 84 ditches in three soil regions; sand, clay and peat. Invertebrate diversity was determined as local (α diversity), regional (γ diversity) and species-turnover (β diversity). We ran canonical correspondence analysis and linear mixed models to determine correlations between invertebrate diversity, functional community composition and specific abiotic parameters, including variability (expressed as the Median Absolute Deviation). Invertebrate α diversity was positively correlated to variability in water transparency and negatively correlated to average pH, with the two parameters reflecting a water quality gradient in the environment. Insect life-history strategies expressed adaptations to abiotic variability and harsh (eutrophic) conditions. These adaptations were mainly achieved through good dispersal abilities and developmental trade-offs. The results support measures to reduce influxes of excess nutrients to this network of ditches.  相似文献   

17.
Coarse particulate organic matter (CPOM, i.e. particles such as leaves, wood fragments, twigs, branches, flowers, seeds and fruits) in aquatic systems influences the flow, provides an important food source, and at the catchment scale, may significantly contribute to total carbon export. CPOM exports have rarely been quantified in subtropical, broadleaf forest streams. We captured CPOM in Bunte traps in the rainfall-dominated Vuelta de Zorra stream in southern Chile to (a) propose a novel classification to characterize the different CPOM components, (b) analyze the frequency of each matter class (i.e. leaves, wood fragments, and ‘others’) and its seasonal variability, (c) quantify the CPOM transported, (d) derive a model to quantify CPOM transport rates, and (e) compare the transported CPOM data with those from a unique long-term (> seven years) large wood monitoring dataset. Results showed that leaves were significantly more abundant than other types of CPOM in all seasons. The dry CPOM transport rate ranged over three orders of magnitude, and there was a significant relationship with mean discharge. Mean dry CPOM yield for the study period 2015–2017 was 4.6 kg/ha/yr when normalizing to the total forested catchment area. The 2009–2018 decadal average yield was 6.8 kg/ha/yr when normalizing to the total forested catchment area. These values are similar to measurements from deciduous and coniferous forests in streams in the United States and the Brazilian Mato Grosso and ~1/10 of the yields obtained in a Swiss torrent. Over a three-year period, the CPOM exports in Vuelta de Zorra ranged between 13 and 36% of the exported large wood (particles with diameters ≥ 100 mm and length ≥ 1 m) exports. Our data collected from an underrepresented area improve the understanding of global carbon budgets and cycling. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
We demonstrate how land use can drive mountain streams in the Southern Rockies across a threshold to induce an alternative state of significantly reduced physical complexity of form and reduced ecological function. We evaluate field data from 28 stream reaches in relatively laterally unconfined valleys and unmanaged forest that is either old‐growth forest or naturally disturbed younger forest, and 19 stream reaches in managed forest with past land use. We evaluate potential differences in stream form, as reflected in channel planform, cross‐sectional geometry, and in‐stream wood loads, and stream function, as reflected in pool volume and storage of organic carbon. Field data indicate a threshold of differences in stream form and function between unmanaged and managed stream reaches, regardless of forest stand age, supporting our hypothesis that the legacy effects of past land use result in an alternative state of streams. Because physical complexity that increases stream retentiveness and habitat can maintain aquatic‐riparian ecosystem functions, the alternative physical state of streams in managed watersheds creates a physical template for an alternative ecological state with reduced pool volume, organic carbon storage, and ecosystem productivity. We recommend maintaining riparian forests that can supply large wood to streams as a stream restoration technique in historically forested stream segments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Wood additions to streams can slow water velocities and provide depositional areas for bacteria and fine particles (e.g., particulate organic carbon and nutrients sorbed to fine sediment), therefore increasing solute and particle residence times. Thus, wood additions are thought to create biogeochemical hotspots in streams. Added wood is expected to enhance in-stream heterogeneity, result in more complex flow paths, increase natural retention of fine particles and alter the geomorphic characteristics of the stream reach. Our aim was to directly measure the impact of wood additions on fine particle transport and retention processes. We conducted conservative solute and fluorescent fine particle tracer injection studies in a small agricultural stream in the Whatawhata catchment, North Island of New Zealand in two reaches—a control reach and a reach restored 1-year earlier by means of wood additions. Fine particles were quantified in surface water to assess reach-scale (channel thalweg) and habitat-scale (near wood) transport and retention. Following the injection, habitat-scale measurements were taken in biofilms on cobbles and by stirring streambed sediment to measure fine particles available for resuspension. Tracer injection results showed that fine particle retention was greater in the restored compared to the control reach, with increased habitat-scale particle counts and reach-scale particle retention. Particle deposition was positively correlated with cobble biofilm biomass. We also found that the addition of wood enhanced hydraulic complexity and increased the retention of solute and fine particles near the wood, especially near a channel spanning log. Furthermore, particles were more easily remobilized from the control reach. The mean particle size remobilized after stirring the sediments was ~5 μm, a similar size to both fine particulate organic matter and many microorganisms. These results demonstrate that particles in this size range are dynamic and more likely to remobilize and transport further downstream during bed mobilization events.  相似文献   

20.
Cross-ecosystem subsidies, such as terrestrial invertebrates and leaf litter falling into water as resources for aquatic communities, can vary across environmental gradients. We examined whether the effect of terrestrial subsidy inputs on benthic invertebrates was mediated by resident coastal cutthroat trout (Oncorhynchus clarki) in two representative streams. We experimentally manipulated the input rates (reduced, ambient) of terrestrial subsidies (terrestrial invertebrates and leaf litter) as well as the presence or absence of cutthroat trout in the two streams. The hypothesis that the reduction of terrestrial subsidies to the stream influences benthic invertebrate assemblages was supported by experimental results. The treatments of terrestrial subsidy reduction and cutthroat trout presence had a significant negative effect on benthic invertebrate community biomass and shredder biomass in East Creek with high natural terrestrial subsidy input and small amount of large wood in channel. In contrast, results from Spring Creek with low subsidy input and large amount of large wood in channel showed that only the terrestrial subsidy reduction significantly reduced the biomass of shredders. The effects of the terrestrial subsidy input and trout predation on benthic invertebrate communities varied between the two streams. Our results indicate that a subsidy effect on benthic communities can vary between nearby streams differing in canopy and habitats. This study, with the major finding of highly context-dependent effects of spatial subsidies, suggests that the interplay of resource subsidies and predators on invertebrate community assemblages can be site-specific and context-dependent on habitat features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号