首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A research program is summarized in which collapse of a steel frame structure is predicted numerically and the accuracy of prediction is validated experimentally through earthquake simulator tests of two 1:8 scale models of a 4‐story code‐compliant prototype moment‐resisting frame. We demonstrate that (1) sidesway collapse can occur for realistic combinations of structural framing and earthquake ground motion; (2) P?Δeffects and component deterioration dominate behavior of the frame near collapse; (3) prediction of collapse is feasible using relatively simple analytical models provided that component deterioration is adequately represented in the analytical model; and (4) response of the framing system near collapse is sensitive to the history that every important component of the frames experiences, implying that symmetric cyclic loading histories that are routinely used to test components provide insufficient information for modeling deterioration near collapse. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In order to effectively utilize results from quasi-static cyclic testing on structural components for the earthquake-induced collapse risk quantification of structures, the need exists to establish collapse-consistent loading protocols representing the asymmetric lateral drift demands of structures under low-probability of occurrence earthquakes. This paper summarizes the development of such protocols for experimental testing of steel columns prone to inelastic local buckling. The protocols are fully defined with a deformation- and a force-controlled parameter. They are generally applicable to quantify the capacity and demands of steel columns experiencing constant and variable axial load coupled with lateral drift demands. Through rigorous nonlinear earthquake collapse simulations, it is found that the building height, the column's local slenderness ratio, and ground motion type have the largest influence on the dual-parameter loading protocol indexes. Comprehensive comparisons with measured data from full-scale shake table collapse tests suggest that unlike routinely used symmetric cyclic loading histories, the proposed loading protocol provides sufficient information for modeling strength and stiffness deterioration in steel columns at large inelastic deformations.  相似文献   

3.
Collapse of a nonductile concrete frame: Evaluation of analytical models   总被引:1,自引:0,他引:1  
The current paper presents nonlinear dynamic analyses that simulate shaking table tests performed on a four‐column reinforced concrete frame described in a companion paper. The frame consists of two ductile and two nonductile columns interconnected by a stiff beam. In order to validate existing analytical models for nonductile concrete columns, a blind comparison of the test data and results of the analysis is performed. The analysis adequately captures the drift response and correctly detects collapse of the structure; however, strength degradation due to cover spalling is exaggerated in the analytical model. Refinement of the analysis by changing the concrete cover model results in an excellent agreement between the test data and analysis results at the initiation of shear failure and collapse of the frame. The experimental data are further compared with lumped‐plasticity nonlinear models used in engineering practice. The results suggest that the sudden strength degradation used in ASCE/SEI 41‐06 results in an exaggerated estimate of the displacement demands. It is also observed that ignoring the strength degradation, using an elastic‐perfectly‐plastic model, provides a good estimate of the displacement demands when strength degradation is not severe. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The aim of this work is to model beam‐column behavior in a computationally effective manner, revealing reliably the overall response of reinforced concrete members subjected to intensive seismic loading. In this respect, plasticity and damage are considered in the predominant longitudinal direction, allowing for fiber finite element modeling, while in addition the effect of inelastic buckling of longitudinal rebars, which becomes essential at later stages of intensive cyclic loading, is incorporated. Α smooth plasticity‐damage model is developed for concrete, accounting for unilateral compressive and tensile behavior, nonlinear unloading and crack closure phenomena. This is used to address concrete core crushing and spalling, which triggers the inelastic buckling of longitudinal rebars. For this reason, a uniaxial local stress‐strain constitutive relation for steel rebars is developed, which is based on a combined nonlinear kinematic and isotropic hardening law. The proposed constitutive model is validated on the basis of existing experimental data and the formulation of the buckling model for a single rebar is developed. The cross section of rebar is discretized into fibers, each one following the derived stress‐strain uniaxial law. The buckling curve is determined analytically, while equilibrium is imposed at the deformed configuration. The proposed models for concrete and rebars are embedded into a properly adjusted fiber beam‐column element of reinforced concrete members and the proposed formulation is verified with existing experimental data under intensive cyclic loading.  相似文献   

6.

The accuracy and efficiency of the modelling techniques utilized to model the nonlinear behavior of structural components is a significant issue in earthquake engineering. In this study, the sufficiency of three different modelling techniques that can be employed to simulate the structural behavior of columns is investigated. A fiber-based finite length plastic hinge (FB-FLPH) model is calibrated in this study. In order to calibrate the FB-FLPH model, a novel database of the cyclic behavior of hollow steel columns under simultaneous axial and lateral loading cycles with varying amplitudes is used. By employing the FB-FLPH model calibrated in this study, the interaction of the axial force and the bending moment in columns is directly taken into account, and the deterioration in the cyclic behavior of these members is implicitly considered. The superiority of the calibrated FB-FLPH modelling approach is examined compared with the cases in which conventional fiber-based distributed plasticity and concentrated plasticity models are utilized. The efficiency of the enumerated modelling techniques is probed when they are implemented to model the columns of a typical special moment frame in order to prove the advantage of the FB-FLPH modelling approach.

  相似文献   

7.
Reinforced concrete (RC) structures in low to moderate seismic regions and many older RC structures in high seismic regions include columns with steel reinforcement details not meeting the requirements of modern seismic design codes. These columns typically fail in shear or in a brittle manner and their behavior must be accurately captured when RC structures are modeled and analyzed. The total lateral displacement of a low ductility or shear critical RC column can be represented as the sum of three displacement components: (1) flexural displacement, (2) displacement due to slippage of the reinforcing bars at column ends, and (3) shear displacement. In this study, these three displacement components are separately modeled and then combined together following a proposed procedure based on the expected overall behavior of the column and its failure mechanism. A simplified slip model is proposed. The main objective of this research is to develop an easy-to-apply method to model and capture the cyclic behavior of RC columns considering the shear failure mechanism. The proposed model is validated using the available data from RC column and frame experiments.  相似文献   

8.
This paper investigates the effect of the gravity framing system on the overstrength and collapse risk of steel frame buildings with perimeter special moment frames (SMFs) designed in North America. A nonlinear analytical model that simulates the pinched hysteretic response of typical shear tab connections is calibrated with past experimental data. The proposed modeling approach is implemented into nonlinear analytical models of archetype steel buildings with different heights. It is found that when the gravity framing is considered as part of the analytical model, the overall base shear strength of steel frame buildings with perimeter SMFs could be 50% larger than that of the bare SMFs. This is attributed to the gravity framing as well as the composite action provided by the concrete slab. The same analytical models (i) achieve a static overstrength factor, Ωs larger than 3.0 and (ii) pass the collapse risk evaluation criteria by FEMA P695 regardless of the assigned total system uncertainty. However, when more precise collapse metrics are considered for collapse risk assessment of steel frame buildings with perimeter SMFs, a tolerable probability of collapse is only achieved in a return period of 50 years when the perimeter SMFs of mid‐rise steel buildings are designed with a strong‐column/weak‐beam ratio larger than 1.5. The concept of the dynamic overstrength, Ωd is introduced that captures the inelastic force redistribution due to dynamic loading. Steel frame buildings with perimeter SMFs achieve a Ωd > 3 regardless if the gravity framing is considered as part of the nonlinear analytical model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Concrete‐filled steel columns have been widely used in civil and architectural constructions throughout the world in recent years. This study is concerned with the cyclic elastoplastic analysis and capacity prediction of concrete‐filled steel columns having thick‐ and thin‐walled stiffened box‐shaped sections. An analytical procedure for determining the ultimate state of the concrete‐filled steel column is proposed based on the fiber analysis technique. Strength and ductility predictions are made by means of a new failure criterion. This is proposed based on the average failure strain of concrete and steel at critical regions. A recently developed monotonic stress–strain relation for confined concrete is modified so that it can be used in the analysis of thin‐ or thick‐walled section columns with stiffeners. A simple cyclic rule is introduced into this model in order to be used in cyclic analysis. Material non‐linearity of steel is represented by the modified two surface model developed at Nagoya University. The predictions are then compared with the existing experimental results and found to exhibit satisfactory agreement. Both small‐ and large‐scaled columns are considered in the comparisons. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
结构地震倒塌判别准则是工程结构强震分析的关键问题。在层损伤模型的基础上,建立了基于推覆分析的建筑结构整体损伤模型,并以国内某2层2跨平面钢框架结构拟静力试验为背景,应用有限元程序ABAQUS对平面钢框架进行了强震倒塌数值模拟。分析了钢框架结构的倒塌破坏过程,基于建议地震倒塌判别准则研究了钢框架结构的损伤演化规律。结果表明:钢框架结构在强震作用下的损伤发展顺序与塑性发展顺序一致;基于推覆分析的结构整体损伤模型能较好的体现强震作用下钢框架结构的损伤演化规律,且在上下界处收敛;强震作用下,钢框架结构的初始损伤主要由结构的残余侧移引起,而后期损伤主要由结构的承载力和刚度退化引起。  相似文献   

11.
This paper investigates the effect of the composite action on the seismic performance of steel special moment frames (SMFs) through collapse. A rational approach is first proposed to model the hysteretic behavior of fully restrained composite beam‐to‐column connections, with reduced beam sections. Using the proposed modeling recommendations, a system‐level analytical study is performed on archetype steel buildings that utilize perimeter steel SMFs, with different heights, designed in the West‐Coast of the USA. It is shown that in average, the composite action may enhance the seismic performance of steel SMFs. However, bottom story collapse mechanisms may be triggered leading to rapid deterioration of the global strength of steel SMFs. Because of composite action, excessive panel zone shear distortion is also observed in interior joints of steel SMFs designed with strong‐column/weak‐beam ratios larger than 1.0. It is demonstrated that when steel SMFs are designed with strong‐column/weak‐beam ratios larger than 1.5, (i) bottom story collapse mechanisms are typically avoided; (ii) a tolerable probability of collapse is achieved in a return period of 50 years; and (iii) controlled panel zone yielding is achieved while reducing the required number of welded doubler plates in interior beam‐to‐column joints. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
为研究不同形式的中心支撑对钢管混凝土结构抗连续倒塌性能的影响,基于纤维梁模型建立5种钢管混凝土框架-中心支撑结构数值模型,在合理选取钢材和混凝土材料本构模型的基础上,计算不同失效工况下结构的抗连续倒塌非线性动力响应,通过非线性静力加载获得结构的整体刚度和极限承载力。研究结果表明:设置中心支撑均可以提高结构的整体刚度和抗倒塌承载能力,其中对边柱失效工况的提升效果好于中柱失效工况;设置中心支撑提供了新的荷载传递路径,可以有效减小失效柱相邻构件的分配内力;X型支撑在不同失效工况下都能显著提升框架刚度和承载能力,降低失效节点的竖向位移,反斜支撑框架表现出更好的延性和极限承载能力,研究结果可为建筑结构抗连续倒塌设计提供参考。  相似文献   

13.
An existing two‐dimensional macroelement for reinforced concrete beam–column joints is extended to a three‐dimensional macroelement. The three‐dimensional macroelement for beam–column joints consists of six rigid interface plates and uniaxial springs for concrete, steel, and bond–slip, which model the inside of a beam–column joint. The mechanical models for the materials and the stiffness equation for the springs are also presented. To validate the model, we used test results from three slab–beam–column sub‐assemblages subjected to bi‐lateral cyclic load. It is revealed that the new joint model is capable of capturing the strength of beam–column joints and the bidirectional interaction in joint shear response, including the concentration of damage in the beam–column joint, the pinching nature in hysteretic behavior, the stiffness degradation, and strength deterioration resulting from cyclic and bidirectional loading. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.  相似文献   

15.
采用地震工程开源模拟软件OpenSees(Open System for Earthquake Engineering Simulation)对CFRP(Carbon Fiber Reinforced Polymer,碳纤维增强复合材料)布加固高强钢筋混凝土方柱的抗震性能进行了数值分析。采用Steel02Material和Concrete02Material材料本构模型模拟了CFRP布加固高强混凝土方柱的抗震性能;在此基础上,进一步研究了轴压比和剪跨比这2个因素对试件抗震性能的影响。将所得数值分析结果与相同条件下的试验结果对比后发现:基于Steel02 Material和Concrete02 Material材料本构,利用OpenSees,可以较好地模拟CFRP布加固高强混凝土方柱的抗震性能,并且与试验结果(滞回曲线、骨架曲线、水平承载力和位移延性系数)能够较好地吻合,从而说明该数值分析方法还可以准确地反映出轴压比和剪跨比对高强混凝土柱抗震性能的影响规律。  相似文献   

16.
新型方钢管混凝土框架节点抗震性能试验研究   总被引:2,自引:0,他引:2  
本文介绍了新型方钢管混凝土柱与钢梁节点在低周反复荷载作用下的试验结果,研究了内填混凝土、加劲肋长度和梁柱相对尺寸等对节点抗震性能的影响,并提出了有关的设计建议。  相似文献   

17.
A test on a full‐scale model of a three‐storey steel moment frame was conducted, with the objectives of acquiring real information about the damage and serious strength deterioration of a steel moment frame under cyclic loading, studying the interaction between the structural frame and non‐structural elements, and examining the capacity of numerical analyses commonly used in seismic design to trace the real cyclic behaviour. The outline of the test structure and test program is presented, results on the overall behaviour are given, and correlation between the experimental results and the results of pre‐test and post‐test numerical analyses is discussed. Pushover analyses conducted prior to the test predicted the elastic stiffness and yield strength very reasonably. With proper adjustment of strain hardening after yielding and composite action, numerical analyses were able to accurately duplicate the cyclic behaviour of the test structure up to a drift angle of 1/25. The analyses could not trace the cyclic behaviour involving larger drifts in which serious strength deterioration occurred due to fracture of beams and anchor bolts and progress of column local buckling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Steel caging technique is commonly used for the seismic strengthening of reinforced concrete (RC) columns of rectangular cross‐section. The steel cage consists of angle sections placed at corners and held together by battens at intervals along the height. In the present study, a rational design method is developed to proportion the steel cage considering its confinement effect on the column concrete. An experimental study was carried out to verify the effectiveness of the proposed design method and detailing of steel cage battens within potential plastic hinge regions. One ordinary RC column and two strengthened columns were investigated experimentally under constant axial compressive load and gradually increasing reversed cyclic lateral displacements. Both strengthened columns showed excellent behavior in terms of flexural strength, lateral stiffness, energy dissipation and ductility due to the external confinement of the column concrete. The proposed model for confinement effect due to steel cage reasonably predicted moment capacities of the strengthened sections, which matched with the observed experimental values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper uses nonlinear truss models for the analysis of shear‐dominated reinforced concrete (RC) columns subjected to cyclic loading. A previously established method, aimed to the analysis of RC walls, is enhanced to allow simulations of column members. The concrete constitutive equations are modified to account for the contribution of the aggregate interlock to the shear resistance. Additionally, an equation is proposed to determine the inclination angle of the diagonal members in the truss models. The modeling approach is validated using the results of quasi‐static and dynamic tests on shear‐dominated RC columns. The combination of predictive capabilities and conceptual simplicity establishes truss‐based models as an attractive approach for the systematic analysis of shear‐dominated RC frame construction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio,shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号