首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an effective approach for achieving minimum‐cost designs for seismic retrofitting using nonlinear fluid viscous dampers. The damping coefficients of the dampers and the stiffness coefficients of the supporting braces are designed by an optimization algorithm. A realistic retrofitting cost function is minimized subject to constraints on inter‐story drifts at the peripheries of frame structures. The cost function accounts for costs related to both the topology and the sizes of the dampers. The behavior of each damper‐brace element is defined by the Maxwell model, where the force–velocity relation of the nonlinear dampers is formulated with a fractional power law. The optimization problem is first posed and solved as a mixed integer problem. For the reduction of the computational effort required in the optimization, the problem is then reformulated with continuous variables only and solved with a gradient‐based algorithm. Material interpolation techniques, which have been successfully applied in topology optimization and in multi‐material optimization, play a key role in achieving practical final design solutions with a reasonable computational effort. Promising results attained for 3‐D irregular frames are presented and discussed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an effective approach for achieving minimum cost designs for seismic retrofitting using viscous fluid dampers. A new and realistic retrofitting cost function is formulated and minimized subject to constraints on inter-story drifts at the peripheries of frame structures. The components of the new cost function are related to both the topology and to the sizes of the dampers. This constitutes an important step forward towards a realistic definition of the optimal retrofitting problem. The optimization problem is first posed and solved as a mixed-integer problem. To improve the efficiency of the solution scheme, the problem is then re-formulated and solved by nonlinear programming using only continuous variables. Material interpolation techniques, that have been successfully applied in topology optimization and in multi-material optimization, play a key role in achieving practical final design solutions with a reasonable computational effort. Promising results attained for 3-D irregular frames are presented and compared with those achieved using genetic algorithms.  相似文献   

3.
The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance because such structures create abrupt changes in the stiffness or strength that may lead to undesirable stress concentrations at weak locations. Structural control devices are one of the effective ways to reduce seismic impacts, particularly in asymmetric structures. For passive vibration control of structures, VE dampers are considered among the most preferred devices for energy dissipation. Therefore, in this research, VE dampers are implemented at strategic locations in a realistic case study structure to increase the level of distributed damping without occupying significant architectural space and reducing earthquake vibrations in terms of story displacements(drifts) and other design forces. It has been concluded that the seismic response of the considered structure retrofitted with supplemental VE dampers corresponded well in controlling the displacement demands. Moreover, it has been demonstrated that seismic response in terms of interstory drifts was effectively mitigated with supplemental damping when added up to a certain level. Exceeding the supplemental damping from this level did not contribute to additional mitigation of the seismic response of the considered structure. In addition, it was found that the supplemental damping increased the total acceleration of the considered structure at all floor levels, which indicates that for irregular tall structures of this type, VE dampers were only a good retrofitting measure for earthquake induced interstory deformations and their use may not be suitable for acceleration sensitive structures. Overall, the research findings demonstrate how seismic hazards to these types of structures can be reduced by introducing additional damping into the structure.  相似文献   

4.
A new methodology for performance‐based optimal seismic retrofitting using a limited number of size groups of viscous dampers is presented. The damping coefficient of each size group of dampers is taken as a continuous variable and is determined by the optimization algorithm. Furthermore, for each potential location, a damper of a single size group is optimally assigned, if any. Hence, the formulation presents a large step forward towards practical optimal design of dampers. The key for achieving an efficient optimization scheme is the incorporation of material interpolation techniques that were successfully applied in other structural optimization problems of discrete nature. This results in a very effective optimization methodology that is expected to be very efficient for large‐scale structures. The proposed approach is demonstrated on several example problems of 3D irregular frame structures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A methodology for the optimal design of supplemental viscous dampers for regular as well as irregular yielding shear‐frames is presented. It addresses the problem of minimizing the added damping subject to a constraint on an energy‐based global damage index (GDI) for an ensemble of realistic ground motion records. The applicability of the methodology for irregular structures is achieved by choosing an appropriate GDI. For a particular choice of the parameters comprising the GDI, a design for the elastic behavior of the frame or equal damage for all stories is achieved. The use of a gradient‐based optimization algorithm for the solution of the optimization problem is enabled by first deriving an expression for the gradient of the constraint. The optimization process is started for one ‘active’ ground motion record which is efficiently selected from the given ensemble. If the resulting optimal design fails to satisfy the constraints for other records from the original ensemble, additional ground motions (loading conditions) are added one by one to the ‘active’ set until the optimum is reached. Two examples for the optimal designs of supplemental dampers are given: a 2‐story shear frame with varying strength distribution and a 10‐story shear frame. The 2‐story shear frame is designed for one given ground motion whereas the 10‐story frame is designed for an ensemble of twenty ground motions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A retrofit procedure for existing buildings called the "weakening and damping technique" (WED) is presented in this paper. Weakening of structures can limit the maximum response accelerations during severe ground motions, but leads to an increase in the displacements or inter-story drifts. Added damping by using viscous dampers, on the other hand, reduces the inter-story drifts and has no significant effect on total accelerations, when structures behave inelastically. The weakening and damping technique addresses the two main causes for both structural and nonstructural damage in structures. The weakening retrofit is particularly suitable for structures that have overstressed components and weak brittle components. In this paper, the advantages of the WeD are verified by nonlinear dynamic analysis and simplified spectral approach that has been modified to fit structures with additional damping devices. A hospital structure located in the San Femando Valley in California is selected as a case study. The results from both analyses show that the retrofit solution is feasible to reduce both structural acceleration and displacement. A sensitivity analysis is also carried out to evaluate the effectiveness of the retrofitting method using different combinations of performance thresholds in accelerations and displacements through fragility analysis.  相似文献   

7.
A general method is developed for optimal application of dampers and actuators by installing them at optimal location on seismic-resistant structures. The study includes development of a statistical criterion, formulation of a general optimization problem and establishment of a solution procedure. Numerical analysis of the seismic response in time-history of controlled structures is used to verify the proposed method for optimal device application and to demonstrate the effectiveness of seismic response control with optimal device location. This study shows that the proposed method for the optimal device application is simple and general, and that the optimally applied dampers and actuators are very efficient for seismic response reduction.  相似文献   

8.
阻尼器是一种效果良好的减震装置,将阻尼器安装于结构中能够适时为结构体系提供阻尼力,从而减小地震作用对结构的破坏。黏滞阻尼器对振动的反应比较敏感,在结构受到较小振动时就可以发挥其减震效果,其阻尼力会随着振动周期和使用状态温度的不同而变化。当地震发生时,安装在结构中的阻尼器会消减地震作用,降低传导到主结构体系的地震能量,减小结构相对位移。本文介绍了黏滞阻尼器的工作原理和安装有黏滞阻尼器的结构体系的阻尼比的计算方法,对减震结构的减震效果的评析方法做出探讨,并以一安装有黏滞阻尼器的台湾某既有钢框架结构为例,分析了(1)该结构在遭受地震作用时的地震反应;(2)该结构体系在不同地震作用水平时的阻尼比,包括主体结构阻尼比和黏滞阻尼器阻尼比;(3)结构安装黏滞阻尼器后的减震效果。实例对本文的减震评析方法和减震效果进行了说明和分析,计算及分析结果表明利用黏滞阻尼器加固既有结构能够取得较好的减震效果,本文所提减震效果评析方法是一种实用有效的评析方法,对类似工程的减震评析具有一定的参考价值。  相似文献   

9.
This paper illustrates the design of a four-storey, three-bay, moment-resisting, planar steel frame. Non-linear step-by-step integration is used as the analysis technique within the design process itself rather than as a check at the end of the design process. The method of design directly quantifies the accepted seismic-resistant design philosophy that a properly designed structure: (1) resists moderate ground motion without structural damage, and (2) resists severe ground motion without collapse. Actual ground motion accelerograms are selected and scaled to levels representing moderate and severe ground motions. Constraints quantifying structural damage and limited non-structural damage are constructed for the case of moderate ground motion, along with constraints quantifying collapse and limited structural damage for the case of severe ground motion. In addition serviceability constraints are imposed on structural behaviour under gravity loads only. Objective functions include the minimization of structural volume as well as the minimization of response quantities such as storey drifts and inelastically dissipated energy. A sophisticated optimization algorithm is utilized to solve the resulting mathematical programming problem. Comparative results concerning the computational phase as well as performance of both preliminary and final designs are presented. The practicality and reliability of the design method are assessed.  相似文献   

10.
Supplemental damping is known as an efficient and practical means to improve seismic response of building structures. Presented in this paper is a mixed‐integer programming approach to find the optimal placement of supplemental dampers in a given shear building model. The damping coefficients of dampers are treated as discrete design variables. It is shown that a minimization problem of the sum of the transfer function amplitudes of the interstory drifts can be formulated as a mixed‐integer second‐order cone programming problem. The global optimal solution of the optimization problem is then found by using a solver based on a branch‐and‐cut algorithm. Two numerical examples in literature are solved with discrete design variables. In one of these examples, the proposed method finds a better solution than an existing method in literature developed for the continuous optimal damper placement problem. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The effectiveness of viscous and viscoelastic dampers for seismic response reduction of structures is quite well known in the earthquake engineering community. This paper deals with the optimal utilization of these dampers in a structure to achieve a desired performance under earthquake‐induced ground excitations. Frequency‐dependent and ‐independent viscous dampers and viscoelastic dampers have been considered as the devices of choice. To determine the optimal size and location of these dampers in the structure, a genetic algorithm is used. The desired performance is defined in terms of several different forms of performance functions. The use of the genetic approach is not limited to any particular form of performance function as long as it can be calculated numerically. For illustration, numerical examples for different building structures are presented showing the distribution and size of different dampers required to achieve a desired level of reduction in the response or a performance index. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The effectiveness of hysteretic passive devices to protect and mitigate the response of a structure under seismic loading is well established by both analytical and experimental research. Nevertheless, a systematic and well‐established methodology for the topological distribution and size of these devices in order to achieve a desired structural response performance does not exist. In this paper, a computational framework is proposed for the optimal distribution and design of yielding metallic buckling restrained braces (BRB) and/or friction dampers within steel moment‐resisting frames (MRF) for a given seismic environment. A Genetic Algorithm (GA) is used to solve the resulting discrete optimization problem. Specific examples involving two three‐story, four‐bay steel MRFs and a six‐story, three‐bay steel MRF retrofitted with yielding and/or friction braces are considered. The seismic environment consists of four synthetic ground motions representative of the west coast of the United States with 5% probability of exceedance in 50 years. Non‐linear time‐history analyses are employed to evaluate the potential designs. As a result of the evolutionary process, the optimal placement, strength and size of the dampers are obtained throughout the height of the steel MRF. Furthermore, the developed computational approach for seismic design based upon GAs provides an attractive procedure for design of MRFs with hysteretic passive dampers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A methodology for the optimal design of supplemental viscous dampers for framed structures is presented. It addresses the problem of minimizing the added damping subject to a constraint on the maximal interstorey angular drift for an ensemble of realistic ground motion records while assuming linear behaviour of the damped structure. The solution is achieved by actually solving an equivalent optimization problem of minimizing the added damping subject to a constraint on a maximal weighted integral on the squared angular drift. The computational effort is appreciably reduced by first using one ‘active’ ground motion record. If the resulting optimal design fails to satisfy the constraints for other ground motions from the original ensemble, additional ground motions (loading conditions) are added one by one to the ‘active’ set until the optimum is reached. An efficient selecting process which is presented herein will usually require one or two records to attain an optimum design. Examples of optimal designs of supplemental dampers are presented for a 2‐storey shear frame and a 10‐storey industrial frame. The 2‐storey shear frame is required to withstand one given ground motion whereas the 10‐storey frame is required to withstand an ensemble of twenty ground motions. The resulting viscously damped structures have envelope values of interstorey drifts equal or less than the target drifts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
By advancing the technologies regarding seismic control of structures and development of earthquake resistance systems in the past decades application of different types of earthquake energy dissipation system has incredibly increased. Viscous damper device as a famous and the simplest earthquake energy dissipation system is implemented in many new structures and numerous number of researches have been done on the performance of viscous dampers in structures subjected to earthquake. The experience of recent severe earthquakes indicates that sometimes the earthquake energy dissipation devices are damaged during earthquakes and there is no function for structural control system. So, damage of earthquake energy dissipation systems such as viscous damper device must be considered during design of earthquake resistance structures.This paper demonstrates the development of three-dimensional elasto-plastic viscous damper element consisting of elastic damper in the middle part and two plastic hinges at both ends of the element which are compatible with the constitutive model to reinforce concrete structures and are capable to detect failure and damage in viscous damper device connections during earthquake excitation. The finite element model consists of reinforced concrete frame element and viscous damper element is developed and special finite element algorithm using Newmark׳s direct step-by-step integration is developed for inelastic dynamic analysis of structure with supplementary elasto-plastic viscous damper element. So based on all the developed components an especial finite computer program has been codified for “Nonlinear Analysis of Reinforced Concrete Buildings with Earthquake Energy Dissipation System”. The evaluation of seismic response of structure and damage detection in structural members and damper device was carried out by 3D modeling, of 3 story reinforced concrete frame building under earthquake multi-support excitation.  相似文献   

15.
The paper introduces a synthetic optimization analysis method of structures with viscoelastic (VE) dampers, namely the simplex method. The optimal parameters and location of VE dampers can be determined by this method. Numerical example and a shaking table test about reinforced concrete structures with VE dampers show that the seismic responses of structures will be reduced more effectively when the parameters and location of VE dampers are designed in accordance with the results calculated by the simplex method.  相似文献   

16.
Passive supplemental damping in a seismically isolated structure provides the necessary energy dissipation to limit the isolation system displacement. However, damper forces can become quite large as the passive damping level is increased, resulting in the requirement to transfer large forces at the damper connections to the structure which may be particularly difficult to accommodate in retrofit applications. One method to limit the level of damping force while simultaneously controlling the isolation system displacement is to utilize an intelligent hybrid isolation system containing semi-active dampers in which the damping coeffic ient can be modulated. The effectiveness of such a hybrid seismic isolation system for earthquake hazard mitigation is investigated in this paper. The system is examined through an analytical and computational study of the seismic response of a bridge structure containing a hybrid isolation system consisting of elastomeric bearings and semi-active dampers. Control algorithms for operation of the semi-active dampers are developed based on fuzzy logic control theory. Practical limits on the response of the isolation system are considered and utilized in the evaluation of the control algorithms. The results of the study show that both passive and semi-active hybrid seismic isolation systems consisting of combined base isolation bearings and supplemental energy dissipation devices can be beneficial in reducing the seismic response of structures. These hybrid systems may prevent or significantly reduce structural damage during a seismic event. Furthermore, it is shown that intelligent semi-active seismic isolation systems are capable of controlling the peak deck displacement of bridges, and thus reducing the required length of expansion joints, while simultaneously limiting peak damper forces. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents the results of an experimental and analytical/computational study of the performance of multi‐unit particle dampers with an MDOF system. A series of shaking table tests of a three‐storey steel frame with the particle damper system were carried out to evaluate the performance of the system and to verify the analysis method. An analytical solution based on the discrete element method is also presented. A comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system under earthquake excitations can be obtained. These results also indicate that the excitation characterization influences the performance of the particle damper system, for example, particle dampers have good performance in reducing the seismic response of structures and particle movements of plug flow pattern can yield good vibration attenuation effects. It is shown that by using properly designed multi‐unit particle dampers, a lightly damped primary system can achieve a reasonable reduction in its response, with a small weight penalty. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Viscoelastic–plastic (VEP) dampers are hybrid passive damping devices that combine the advantages of viscoelastic and hysteretic damping. This paper first formulates a semi‐analytical procedure for predicting the peak response of nonlinear SDOF systems equipped with VEP dampers, which forms the basis for the generation of Performance Spectra that can then be used for direct performance assessment and optimization of VEP damped structures. This procedure is first verified against extensive nonlinear time‐history analyses based on a Kelvin viscoelastic model of the dampers, and then against a more advanced evolutionary model that is calibrated to characterization tests of VEP damper specimens built from commercially available viscoelastic damping devices, and an adjustable friction device. The results show that the proposed procedure is sufficiently accurate for predicting the response of VEP systems without iterative dynamic analysis for preliminary design purposes. A design method based on the Performance Spectra framework is then proposed for systems equipped with passive VEP dampers and is applied to enhance the seismic response of a six‐storey steel moment frame. The numerical simulation results on the damped structure confirm the use of the Performance Spectra as a convenient and accurate platform for the optimization of VEP systems, particularly during the initial design stage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Design parameters for single- and multiple-tuned liquid column dampers for reducing the response of structures to seismic excitations are presented. A deterministic analysis is carried out using 72 earthquake ground motion records to determine the tuning ratio, tube width to liquid length ratio, and head loss coefficient corresponding to a given mass ratio for single-tuned liquid column dampers. A similar analysis is performed to determine the central tuning ratio, tuning bandwidth, and grouping of dampers for multiple-tuned liquid column dampers. The study indicates that by properly selecting the design parameters, single- and multiple-tuned liquid column dampers can reduce the response of structures to seismic excitation by up to 45 per cent. Design examples using single- and multiple-tuned liquid column dampers in a bridge and a ten-storey building are presented to illustrate how the parameters are selected and to demonstrate the performance of the devices under different ground excitations. The response of several structures with tuned liquid column dampers is compared with that using tuned mass dampers where it is shown that both devices result in comparable reductions in the response. © 1998 John Wiley & Sons, Ltd. This paper was produced under the auspices of the U.S. Government and it is therefore not subject to copyright in the U.S.  相似文献   

20.
A new computational framework is developed for the design and retrofit of building structures by considering aseismic design as a complex adaptive process. For the initial phase of the development within this framework, genetic algorithms are employed for the discrete optimization of passively damped structural systems. The passive elements may include metallic plate dampers, viscous fluid dampers and viscoelastic solid dampers. The primary objective is to determine robust designs, including both the non‐linearity of the structural system and the uncertainty of the seismic environment. Within the present paper, this computational design approach is applied to a series of model problems, involving sizing and placement of passive dampers for energy dissipation. In order to facilitate our investigations and provide a baseline for further study, we introduce several simplifications for these initial examples. In particular, we employ deterministic lumped parameter structural models, memoryless fitness function definitions and hypothetical seismic environments. Despite these restrictions, some interesting results are obtained from the simulations and we are able to gain an understanding of the potential for the proposed evolutionary aseismic design methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号