首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We derive a formula for the nodal precession frequency and the Keplerian period of a particle at an arbitrary orbital inclination (with a minimum latitudinal angle reached at the orbit) in the post-Newtonian approximation in the external field of an oblate rotating neutron star (NS). We also derive formulas for the nodal precession and periastron rotation frequencies of slightly inclined low-eccentricity orbits in the field of a rapidly rotating NS in the form of asymptotic expansions whose first terms are given by the Okazaki-Kato formulas. The NS gravitational field is described by the exact solution of the Einstein equation that includes the NS quadrupole moment induced by rapid rotation. Convenient asymptotic formulas are given for the metric coefficients of the corresponding space-time in the form of Kerr metric perturbations in Boyer-Lindquist coordinates.  相似文献   

2.
Abstract— Goldstone and Arecibo delay‐Doppler radar imaging of asteroid 1998 ML 14 shortly after its discovery reveals a 1 km diameter spheroid with prominent topography on one side and subdued topography on the other. The object's radar and optical properties are typical for S‐class near‐Earth asteroids. The gravitational slopes of a shape model derived from the images and assumed to have a uniform density are shallow, exceeding 30° over only 4% of the surface. If 1998 ML14's density distribution is uniform, then its orbital environment is similar to a planetary body with a spheroidal gravitational field and is relatively stable. Integration of a radar‐refined orbit reveals that the 1998 apparition was the asteroid's closest approach to Earth since at least 1100 and until 2283, when it approaches to within 2.4 lunar distances. Outside of that time interval, orbit uncertainties based on the present set of observations preclude reliable prediction.  相似文献   

3.
Comet C/1853 E1 (Secchi) has a hyperbolic orbit with eccentricity 1.01060 and perihelion outside of the Earth's orbit. Integrating the orbit with barycentric coordinates backwards to 50000 AU, the approximate edge of the Oort cloud, shows that the orbit remains hyperbolic. This is still true even if plutoids additional to Pluto are included in the integration. Nor does including Galactic tidal and disc effects and possible nongravitational forces change the orbit to a high eccentricity ellipse. Although certain factors, such as unknown massive plutoids, gravitational effects by interstellar gas clouds, or unmodelled nongravitational forces operating on the comet, could change this situation, the tentative conclusion that the origin of this comet is extrasolar remains the one most consistent with the observations (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
《Global and Planetary Change》2006,50(1-2):112-126
Signatures between monthly global Earth gravity field solutions obtained from GRACE satellite mission data are analyzed with respect to continental water storage variability. GRACE gravity field models are derived in terms of Stokes' coefficients of a spherical harmonic expansion of the gravitational potential from the analysis of gravitational orbit perturbations of the two GRACE satellites using GPS high–low and K-band low–low intersatellite tracking and on-board accelerometry. Comparing the GRACE observations, i.e., the mass variability extracted from temporal gravity variations, with the water mass redistribution predicted by hydrological models, it is found that, when filtering with an averaging radius of 750 km, the hydrological signals generated by the world's major river basins are clearly recovered by GRACE. The analyses are based on differences in gravity and continental water mass distribution over 3- and 6-month intervals during the period April 2002 to May 2003. A background model uncertainty of some 35 mm in equivalent water column height from one month to another is estimated to be inherent in the present GRACE solutions at the selected filter length. The differences over 3 and 6 months between the GRACE monthly solutions reveal a signal of some 75 mm scattering with peak values of 400 mm in equivalent water column height changes over the continents, which is far above the uncertainty level and about 50% larger than predicted by global hydrological models. The inversion method, combining GRACE results with the signal and stochastic properties of a hydrological model as ‘a priori’ in a statistical least squares adjustment, significantly reduces the overall power in the obtained water mass estimates due to error reduction, but also reflects the current limitations in the hydrological models to represent total continental water storage change in particular for the major river basins.  相似文献   

5.
Neutral interstellar matter entering the solar system has been considered in respect to its influences on the upper atmosphere. Calculations show that in consequence of the focussing effect due to the sun's gravitational field the incoming neutral hydrogen and helium under special, but possible conditions will represent a semi-annually varying density along the earth's orbit. The particle fluxes amounting at least to some 107 cm?2 sec?1, which are connected with these density-profiles and reach the upper atmosphere, show annual periodicities and so will cause annual variations of the densities of the light, atmospheric gas constituents. Especially it is to be expected, that so produced density variations of atmospheric hydrogen are important. Temperature increases caused by the energy flux of interstellar particles should in general only amount to a few thousandths of the CIRA-temperatures.  相似文献   

6.
We study the dynamics of a viscoelastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. We work in the quadrupole approximation. We consider the solution in which the center of mass of the body moves on a circular orbit, and the body rotates in a synchronous way about its axis, so that it always shows the same face to the planet as the Moon does with the Earth. We prove that if any internal deformation of the body dissipates some energy, then such an orbit is locally asymptotically stable. The proof is based on the construction of a suitable system of coordinates and on the use of LaSalle??s principle. A large part of the paper is devoted to the analysis of the kinematics of an elastic body interacting with a gravitational field. We think this could have some interest in itself.  相似文献   

7.
田伟 《天文学报》2021,62(2):16-62
作为一颗与地球共轨道的小行星,(469219)Kamo'oalewa是一个具有很高研究价值的近地小天体,也是中国首次小行星探测计划的目标天体之一.针对其轨道特性,建立了兼顾太阳、地球和月球非球形引力作用的小行星动力学模型.并在该模型的基础上,利用国际小行星中心(Minor Planet Center,MPC)提供的2004|2018年间的光学观测数据对该小行星的轨道进行确定.拟合后观测残差的均方根误差约为0:2″(与美国喷气推进实验室的Horizons在线历表系统相当),其中2004年期间数据的观测残差有所改进.最后,对小行星(469219)Kamo'oalewa的轨道误差进行了详细分析,并预报了2020-2025年期间该小行星的轨道误差.  相似文献   

8.
In analysing the orbit of Ariel 1 to determine upper-atmosphere winds, it was observed that the orbital inclination underwent a noticeable perturbation in November 1969 at the 29:2 resonance with the Earth's gravitational field, when the satellite track over the Earth repeats every 2 days after 29 revolutions. The variations in the inclination and eccentricity of the orbit between July 1969 and February 1970 have now been analysed, using 35 US Navy orbits, and fitted with theoretical curves to obtain lumped values of 29th-order harmonic coefficients in the geopotential.  相似文献   

9.
A novel formulation of the quadrupole equation for potential stellar gravitational‐wave power estimation is derived. The derivation commences with the classical Einstein quadrupole formalism and then utilizes Newton's second law to establish a simplified formulation involving the radius of gyration of a mass or system of masses involving a pair of massive stars either on orbit about one another, or otherwise separated, or a star with a dumbbell‐like or aspherical mass distribution and an impulsive force acting on the mass or masses in order to estimate the power of a gravitational wave that is generated. A numerical example, based upon the well‐known gravitational‐wave power observed to be generated by PSR 1913+16, is utilized to test the formulation. Potential applications to stellar jets, including stellar‐black‐hole produced jets, are cited as examples of the potential applications of the novel quadrupole formulation. It is suggested that the gravitational waves, generated by the applications suggested, might be detected by the proposed space‐based Laser Interferometer Space Antenna or LISA. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Cosmos 373, 1970-87A, was launched on 20 October 1970 into an orbit inclined at 62.9° to the Equator, with an initial perigee height of 472 km. The orbit has been determined at 25 epochs covering a period of just over 4 yr using the RAE orbit refinement program PROP, with over 1500 observations. Observations from the Hewitt camera at Malvern were available for all 25 orbits.The main purpose of the orbit determination was to provide accurate values of the eccentricity for use in determining the odd zonal harmonics in the Earth's gravitational potential. The analysis has resulted in extremely accurate values of e with S.D.'s down to 0.000005 and has indicated an amplitude of the oscillation in eccentricity of 0.0085, equivalent to almost 60 km in perigee height—the largest yet recorded for any near-Earth orbit of high accuracy.  相似文献   

11.
Asteroid 2201 Oljato passed through perihelion inside the orbit of Venus near the time of its conjunction with Venus in 1980, 1983, and 1986. During those three years, many interplanetary field enhancements (IFEs) were observed by the Pioneer Venus Orbiter (PVO) in the longitude sector where the orbit of Oljato lies inside Venus' orbit. We attribute IFEs to clouds of fine‐scale, possibly highly charged dust picked up by the solar wind after an interplanetary collision between objects in the diameter range of 10–1000 m. We interpret the increase rate in IFEs at PVO in these years as due to material in Oljato's orbit colliding with material in, or near to, Venus' orbital plane and producing a dust‐anchored structure in the interplanetary magnetic field. In March 2012, almost 30 yr later, with Venus Express (VEX) now in orbit, the Oljato‐Venus geometry is similar to the one in 1980. Here, we compare IFEs detected by VEX and PVO using the same IFE identification criteria. We find an evolution with time of the IFE rate. In contrast to the results in the 1980s, the recent VEX observations reveal that at solar longitudes in which the Oljato orbit is inside that of Venus, the IFE rate is reduced to the level even below the rate seen at solar longitudes where Oljato's orbit is outside that of Venus. This observation implies that Oljato not only lost its co‐orbiting material but also disrupted the “target material,” with which the co‐orbiting material was colliding, near Venus.  相似文献   

12.
Abstract— We observed 25143 Itokawa, the target of Japan's Hayabusa (MUSES‐C) sample‐return mission, during its 2001 close approach at Arecibo on twelve dates during March 18‐April 9 and at Goldstone on nine dates during March 20‐April 2. We obtained delay‐Doppler images with range resolutions of 100 ns (15 m) at Arecibo and 125 ns (19 m) at Goldstone. Itokawa's average circular polarization ratio at 13 cm, 0.26 ± 0.04, is comparable to that of Eros, so its cm‐to‐m surface roughness probably is comparable to that on Eros. Itokawa's radar reflectivity and polarization properties indicate a near‐surface bulk density within 20% of 2.5 g cm?3. We present a preliminary estimate of Itokawa's shape, reconstructed from images with rather limited rotation‐phase coverage, using the method of Hudson (1993) and assuming the lightcurve‐derived spin period (12.132 hr) and pole direction (ecliptic long., lat. = 355°, ?84°) of Kaasalainen et al. (2003). The model can be described as a slightly asymmetrical, slightly flattened ellipsoid with extents along its principal axes of 548 times 312 times 276 m ± 10%. Itokawa's topography is very subdued compared to that of other asteroids for which spacecraft images or radar reconstructions are available. Similarly, gravitational slopes on our Itokawa model average only 9° and everywhere are less than 27°. The radar‐refined orbit allows accurate identification of Itokawa's close planetary approaches through 2170. If radar ranging planned for Itokawa's 2004 apparition succeeds, then tracking of Hayabusa during its 2005 rendezvous should reveal Yarkovsky perturbation of the asteroid's orbit.  相似文献   

13.
Abstract— The newly discovered asteroid 2003 YN107 is currently a quasi‐satellite of the Earth, making a satellite‐like orbit of high inclination with apparent period of one year. The term quasi‐satellite is used since these large orbits are not completely closed, but rather perturbed portions of the asteroid's orbit around the Sun. Due to its extremely Earth‐like orbit, this asteroid is influenced by Earth's gravity to remain within 0.1 AU of the Earth for approximately 10 years (1997 to 2006). Prior to this, it had been on a horseshoe orbit closely following Earth's orbit for several hundred years. It will re‐enter such an orbit, and make one final libration of 123 years, after which it will have a close interaction with the Earth and transition to a circulating orbit. Chaotic effects limit our ability to determine the origin or fate of this object.  相似文献   

14.
In the current study, we use the polyhedral model to compute the potential of the asteroid. There are five equilibrium points in the gravitational field of the asteroid 283 Emma. We concluded that the zero-velocity surfaces and the equilibrium points change with the suppositive variation of the rotational speed of the asteroid. It is found that if the rotational speed equals a half as it is in present, the number of equilibrium points is also five. However, if the rotational speed equals twice as it is in present, there are only three equilibrium points left. Four different periodic orbits are calculated using the hierarchical grid searching method. We calculated characteristic multipliers of periodic orbits to investigate the stability of these periodic orbits. The orbit near the primary's equatorial plane is more likely to be stable when the separation/ primary-radius is a large number.  相似文献   

15.
As an Earth co-orbital asteroid, (469219) Kamoòalewa is a near earth object (NEO) with high value of research, and one of the targets explored by the first Chinese asteroid exploration mission. Given its orbit characteristics, we build a refined dynamical model for this asteroid, in which the effects induced by nonspherical gravitational fields of the Sun, the Earth, and the Moon are combined. On the basis of the dynamical model of the asteroid (469219) Kamoòalewa, its orbit is determined with optical data from 2004 to 2018 available on the Minor Planet Center (MPC) database. The root mean square error of post-fit residuals is about 0.2 arc second (comparable with that of the Jet Propulsion Laboratory (JPL)/Horizons), and the post-fit residuals of optical observations in 2004 are decreased. At the end, we implement error analysis on the asteroid (469219) Kamoòalewa's orbit in detail, and also predict its orbit error at the time interval between 2020 and 2025.  相似文献   

16.
The focus of this paper is the design and station keeping of repeat-groundtrack orbits for Sun-synchronous satellites. A method to compute the semimajor axis of the orbit is presented together with a station-keeping strategy to compensate for the perturbation due to the atmospheric drag. The results show that the nodal period converges gradually with the increase of the order used in the zonal perturbations up to \(J_{15}\). A differential correction algorithm is performed to obtain the nominal semimajor axis of the reference orbit from the inputs of the desired nodal period, eccentricity, inclination and argument of perigee. To keep the satellite in the proximity of the repeat-groundtrack condition, a practical orbit maintenance strategy is proposed in the presence of errors in the orbital measurements and control, as well as in the estimation of the semimajor axis decay rate. The performance of the maintenance strategy is assessed via the Monte Carlo simulation and the validation in a high fidelity model. Numerical simulations substantiate the validity of proposed mean-elements-based orbit maintenance strategy for repeat-groundtrack orbits.  相似文献   

17.
Einstein's field equations can be written in a special way to give expressions free of any quantities which cannot be measured. These expressions are fully coordinate invariant but observer dependent. Generalized LORENTZ transformations according to TREDER 's theory serve as connecting links between the measured values of different observer systems. The field equations contain expressions for gravitational energy and stresses which satisfy covariant conservation laws.  相似文献   

18.
The problem of finding natural bounded relative trajectories between the different units of a distributed space system is of great interest to the astrodynamics community. This is because most popular initialization methods still fail to establish long-term bounded relative motion when gravitational perturbations are involved. Recent numerical searches based on dynamical systems theory and ergodic maps have demonstrated that bounded relative trajectories not only exist but may extend up to hundreds of kilometers, i.e., well beyond the reach of currently available techniques. To remedy this, we introduce a novel approach that relies on neither linearized equations nor mean-to-osculating orbit element mappings. The proposed algorithm applies to rotationally symmetric bodies and is based on a numerical method for computing quasi-periodic invariant tori via stroboscopic maps, including extra constraints to fix the average of the nodal period and RAAN drift between two consecutive equatorial plane crossings of the quasi-periodic solutions. In this way, bounded relative trajectories of arbitrary size can be found with great accuracy as long as these are allowed by the natural dynamics and the physical constraints of the system (e.g., the surface of the gravitational attractor). This holds under any number of zonal harmonics perturbations and for arbitrary time intervals as demonstrated by numerical simulations about an Earth-like planet and the highly oblate primary of the binary asteroid (66391) 1999 KW4.  相似文献   

19.
We discuss gravitational radiation from a neutral mass particle within a bound orbit in the background Schwarzschild metric. We compare the power loss of gravitational radiation according to this formalism with the heuristic quadrupole radiation formula as applied to a binary system. There are evidence and compelling reasons to believe that the quadrupole formula is valid even in a fairly strong gravitational field, although its fully consistent analytical derivation is not yet known. In particular, we emphasize that the application of the quadrupole formula to the binary pulsar system PSR 1913+16 as well as other binary pulsars, which are weakly bound by gravity, is well justified.  相似文献   

20.
It is shown that in Soldner's publication of 1801 the angle of deflection for light in the sun's gravitational field is given with the correct Newtonian value. A factor 2, which had been the occasion for misinterpretation, has to be attributed to the terminology used by German physicists and astronomers of that time – There are, however, two mistakes in Soldner's publication. As they do not affect his analysis they must be interpreted as mere misprints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号