首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent WMAP results indicate quite early reionization of the universe. Here we discuss possible implications on CMB anisotropies and CMB polarization of the early reionization.  相似文献   

2.
《New Astronomy》2004,9(2):83-101
The polarization of the Cosmic Microwave Background (CMB) is a powerful observational tool at hand for modern cosmology. It allows to break the degeneracy of fundamental cosmological parameters one cannot obtain using only anisotropy data and provides new insight into conditions existing in the very early Universe. Many experiments are now in progress whose aim is detecting anisotropy and polarization of the CMB. Measurements of the CMB polarization are however hampered by the presence of polarized foregrounds, above all the synchrotron emission of our Galaxy, whose importance increases as frequency decreases and dominates the polarized diffuse radiation at frequencies below ≃50 GHz. In the past the separation of CMB and synchrotron was made combining observations of the same area of sky at different frequencies. In this paper, we show that the statistical properties of the polarized components of the synchrotron and dust foregrounds are different from the statistical properties of the polarized component of the CMB, therefore one can build a statistical estimator which allows to extract the polarized component of the CMB from single frequency data also when the polarized CMB signal is just a fraction of the total polarized signal. Our estimator improves the signal/noise ratio for the polarized component of the CMB and reduces from ≃50 to ≃20 GHz, the frequency above which the polarized component of the CMB can be extracted from single frequency maps of the diffuse radiation.  相似文献   

3.
In this paper, we study how to predict the polarization of the Cosmic Microwave Background (CMB) using knowledge of only the temperature (intensity) and the cross-correlation between temperature and polarization. We derive a “Wiener prediction” method and apply it to the Wilkinson Microwave Anisotropy Probe (WMAP) all-sky CMB temperature maps and to the MAXIMA field.  相似文献   

4.
《New Astronomy》2002,7(3):125-134
Observation of the fine structures (anisotropies, polarization, spectral distortions) of the Cosmic Microwave Background (CMB) is hampered by instabilities, 1/f noise and asymmetries of the radiometers used to carry on the measurements. Addition of modulation and synchronous detection allows to increase the overall stability and the noise rejection of the radiometers used for CMB studies. In this paper we discuss the advantages this technique has when we try to detect CMB polarization. The behaviour of a two channel correlation receiver to which phase modulation and synchronous detection have been added is examined. Practical formulae for evaluating the improvements are presented.  相似文献   

5.
We implement the theory of resonant scattering in the context of cosmic microwave background (CMB) polarization anisotropies. We compute the changes in the E-mode polarization (EE) and temperature E-mode (TE) CMB power spectra introduced by the scattering on a resonant transition with a given optical depth τX and polarization coefficient E 1. The latter parameter, accounting for how anisotropic the scattering is, depends on the exchange of angular momentum in the transition, enabling observational discrimination between different resonances. We use this formalism in two different scenarios: cosmological recombination and cosmological re-ionization. In the context of cosmological recombination, we compute predictions in frequency and multipole space for the change in the TE and EE power spectra introduced by scattering on the Hα and Pα lines of hydrogen. This constitutes a fundamental test of the standard model of recombination, and the sensitivity it requires is comparable to that needed in measuring the primordial CMB B-mode polarization component. In the context of re-ionization, we study the scattering off metals and ions produced by the first stars, and find that polarization anisotropies, apart from providing a consistency test for intensity measurements, give some insight on how re-ionization evolved. Since polarization anisotropies have memory of how anisotropic the line scattering is, they should be able to discern the O  i 63.2-μm transition from other possible transitions associated to O  iii , N  ii , N  iii , etc. The amplitude of these signals are, however, between 10 and 100 times below the (already challenging) level of CMB B-mode polarization anisotropies.  相似文献   

6.
The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization ( E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization history, within the framework of inhomogeneous reionization. Since the E -mode polarization reflects the amplitude of the quadrupole component of the CMB temperature fluctuations, the angular power spectrum of the cross-correlation exhibits oscillations at all multipoles. The first peak of the power spectrum appears at the scale corresponding to the quadrupole at the redshift, which is probed by the 21-cm line fluctuations. The peak reaches its maximum value in redshift when the average ionization fraction of the universe is about half. On the other hand, on small scales, there is a damping that depends on the duration of reionization. Thus, the cross-correlation between the CMB polarization and the 21-cm line fluctuations has the potential to accurately constrain the epoch and the duration of reionization.  相似文献   

7.
《New Astronomy》2003,8(3):231-253
We discuss the four-point correlation function, or the trispectrum in Fourier space, of CMB temperature and polarization anisotropies due to the weak gravitational lensing effect by intervening large scale structure. We discuss the squared temperature power spectrum as a probe of this trispectrum and, more importantly, as an observational approach to extracting the power spectrum of the deflection angle associated with the weak gravitational lensing effect on the CMB. We extend previous discussions on the trispectrum and associated weak lensing reconstruction from CMB data by calculating non-Gaussian noise contributions, beyond the previously discussed dominant Gaussian noise. Non-Gaussian noise contributions are generated by lensing itself and by the correlation between the lensing effect and other foreground secondary anisotropies in the CMB such as the Sunyaev–Zel’dovich (SZ) effect. When the SZ effect is removed from temperature maps using its spectral dependence, we find these additional non-Gaussian noise contributions to be an order of magnitude lower than the dominant Gaussian noise. If the noise-bias due to the dominant Gaussian part of the temperature squared power spectrum is removed, then these additional non-Gaussian contributions provide the limiting noise level for the lensing reconstruction. The temperature squared power spectrum allows a high signal-to-noise extraction of the lensing deflections and a confusion-free separation of the curl (or B-mode) polarization due to inflationary gravitational waves from that due to lensed gradient (or E-mode) polarization. The small angular scale temperature and polarization anisotropy measurements provide a novel approach to weak lensing studies, complementing the approach based on galaxy ellipticities.  相似文献   

8.
One of the fundamental problems in extracting the cosmic microwave background signal (CMB) from millimeter/submillimeter observations is the pollution by emission from the Milky Way: synchrotron, free-free, and thermal dust emission. To extract the fundamental cosmological parameters from CMB signal, it is mandatory to minimize this pollution since it will create systematic errors in the CMB power spectra. In previous investigations, it has been demonstrated that the neural network method provide high quality CMB maps from temperature data. Here the analysis is extended to polarization maps. As a concrete example, the WMAP 7-year polarization data, the most reliable determination of the polarization properties of the CMB, has been analyzed. The analysis has adopted the frequency maps, noise models, window functions and the foreground models as provided by the WMAP Team, and no auxiliary data is included. Within this framework it is demonstrated that the network can extract the CMB polarization signal with no sign of pollution by the polarized foregrounds. The errors in the derived polarization power spectra are improved compared to the errors derived by the WMAP Team.  相似文献   

9.
Electron scattering induces a polarization in the cosmic microwave background (CMB) signal measured in the direction of a galaxy cluster owing to the presence of a quadrupole component in the CMB temperature distribution. Measuring the polarization towards distant clusters provides the unique opportunity to observe the evolution of the CMB quadrupole at moderate redshifts, z ∼0.5–3. We demonstrate that for the local cluster population the polarization degree will depend on the cluster celestial position. There are two extended regions in the sky, which are opposite to each other, where the polarization is maximal, ∼0.1( τ /0.02) μK in the Rayleigh–Jeans part of the CMB spectrum ( τ being the Thomson optical depth across the cluster). This value exceeds the polarization introduced by the cluster transverse peculiar motion if v t<1300 km s−1. One can hope to detect this small signal by measuring a large number of clusters, thereby effectively removing the systematic contribution from other polarization components produced in clusters. These polarization effects, which are of the order of ( v t c )2 τ , ( v t c ) τ 2 and ( kT e m e c 2) τ 2, as well as the polarization owing to the CMB quadrupole, were previously given by Sunyaev and Zel'dovich for the Rayleigh–Jeans part of the spectrum. We fully confirm their earlier results and present exact frequency dependences for all these effects. The polarization degree is considerably higher in the Wien region.  相似文献   

10.
We consider the role of the Galactic kinetic Sunyaev–Zeldovich (SZ) effect as a cosmic microwave background (CMB) polarization foreground. While the Galactic thermal SZ effect has previously been studied and discarded as a potential CMB foreground, we find that the kinetic SZ effect is dominant in the Galactic case. We analyse the detectability of the kinetic SZ effect by means of an optimally matched filter technique applied to a simulation of an ideal observation. We obtain no detection, getting a signal-to-noise ratio of 0.1, thereby demonstrating that the kinetic SZ effect can also safely be ignored as a CMB foreground. However, we provide maps of the expected signal for inclusion in future high-precision data processing. Furthermore, we rule out the significant contamination of the polarized CMB signal by second scattering of Galactic kinetic SZ photons, since we show that the scattering of the CMB quadrupole photons by Galactic electrons is a stronger effect than the SZ second scattering, and has already been shown to produce no significant polarized contamination.  相似文献   

11.
In this paper, I investigate a local effect of polarization of the Cosmic Microwave Background (CMB) in clusters of galaxies, induced by the Thomson scattering of an anisotropic radiation. A local anisotropy of the CMB is produced by some scattering and gravitational effects, as, for instance, the Sunyaev Zel‘dovich effect, the Doppler shift due to the cluster motion and the gravitational lensing. The resulting anisotropy ΔI/I depends on the physical properties of the clusters, in particular on their emissivity in the X band on their size, on their gravitational potential and on the peculiar conditions characterizing the gas they contain. By solving the Boltzmann radiative transfer equation in presence of such anisotropies I calculate the average polarization at the centre of some clusters, namelyA2218, A576 and A2163, whose properties are quite well known. I prove that the gravitational effects due to the contraction or to the expansion have some importance, particularly for high density structures; moreover, the peculiar motion of the cluster, considered as a gravitational lens, influences the propagation of the CMB photons by introducing a particular angular dependence in the gravitational anisotropy and in the scattering integrals. Thus, the gravitational and the scattering effects overally produce an appreciable local average polarization of the CMB, may be observable through a careful polarization measurements towards the centres of the galaxy clusters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We have constructed the first all-sky cosmic microwave background (CMB) temperature and polarization lensed maps based on a high-resolution cosmological N -body simulation, the Millennium Simulation (MS). We have exploited the lensing potential map obtained using a previously developed map-making procedure which integrates along the line-of-sight the MS dark matter distribution by stacking and randomizing the simulation boxes up to   z = 127  , and which semi-analytically supplies the large-scale power in the angular lensing potential that is not correctly sampled by the N -body simulation. The lensed sky has been obtained by properly modifying the latest version of the LensPix code to account for the MS structures. We have also produced all-sky lensed maps of the so-called  ψ E   and  ψ B   potentials, which are directly related to the electric and magnetic types of polarization. The angular power spectra of the simulated lensed temperature and polarization maps agree well with semi-analytic estimates up to   l ≤ 2500  , while on smaller scales we find a slight excess of power which we interpret as being due to non-linear clustering in the MS. We also observe how non-linear lensing power in the polarized CMB is transferred to large angular scales by suitably misaligned modes in the CMB and the lensing potential. This work is relevant in view of the future CMB probes, as a way to analyse the lensed sky and disentangle the contribution from primordial gravitational waves.  相似文献   

13.
We derive analytic expressions for the leading-order corrections to the polarization induced in the cosmic microwave background (CMB) owing to scattering of photons off hot electrons in galaxy clusters along the line of sight. For a thermal distribution of electrons with kinetic temperature k B T e∼10 keV and bulk peculiar velocity V ∼1000 km s−1, the dominant corrections to the polarization induced by the primordial CMB quadrupole and the cluster peculiar velocity arise from electron thermal motion and are at the level of ∼10 per cent in each case, near the peak of the polarization signal. When more sensitive measurements become feasible, these effects will be significant for the determination of transverse peculiar velocities, and the value of the CMB quadrupole at the cluster redshift, via the cluster polarization route.  相似文献   

14.
We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure the E-mode polarization anisotropy of the cosmic microwave background radiation (CMB) on angular scales of 10 to 2°. MAXIPOL is the first CMB experiment to collect data with a polarimeter that utilizes a rotating half-wave plate and fixed wire-grid polarizer. We present the instrument design, elaborate on the polarimeter strategy and show the instrument performance during flight with some time domain data. Our primary dataset was collected during a 26 h turnaround flight that was launched from the National Scientific Ballooning Facility in Ft. Sumner, New Mexico in May 2003. During this flight five regions of the sky were mapped. Data analysis is in progress.  相似文献   

15.
《New Astronomy Reviews》2003,47(11-12):1057
B is a balloon-borne telescope designed for long duration (LDB) flights around Antarctica. The second LDB flight of B took place in January 2003. The primary goal of this flight was to measure the polarization of the CMB. The receiver uses polarization sensitive bolometers at 145 GHz. Polarizing grids provide polarization sensitivity at 245 and 345 GHz. We describe the B telescope noting changes made for 2003 LDB flight, and discuss some of the issues involved in the measurement of polarization with bolometers. Lastly, we report on the 2003 flight and provide an estimate of the expected results.  相似文献   

16.
Mapping cosmic microwave background (CMB) polarization is an essential ingredient of current cosmological research. Particularly challenging is the measurement of an extremely weak B-mode polarization that can potentially yield unique insight on inflation. Achieving this objective requires very precise measurements of the secondary polarization components on both large and small angular scales. Scattering of the CMB in galaxy clusters induces several polarization effects whose measurements can probe cluster properties. Perhaps more important are levels of the statistical polarization signals from the population of clusters. Power spectra of five of these polarization components are calculated and compared with the primary polarization spectra. These spectra peak at multipoles  ℓ≥ 3000  , and attain levels that are unlikely to appreciably contaminate the primordial polarization signals.  相似文献   

17.
18.
The High Frequency Instrument (HFI) of Planck is the most sensitive CMB experiment ever planned. Statistical fluctuations (photon noise) of the CMB itself will be the major limitation to the sensitivity of the CMB channels. Higher frequency channels will measure galactic foregrounds. Together with the Low Frequency Instrument, this will make a unique tool to measure the full sky and to separate the various components of its spectrum. Measurement of the polarization of these various components will give a new picture of the CMB. In addition, HFI will provide the scientific community with new full sky maps of intensity and polarization at six frequencies, with unprecedented angular resolution and sensitivity. This paper describes the logics that prevailed to define the HFI and the performances expected from this instrument. It details several features of the HFI design that has not been published up to now.  相似文献   

19.
The polarization of the Cosmic Microwave Background (CMB) induced by gravitational waves (GWs) is studied by solving in a semi-analytical way the Chandrasekhar radiative transfer equation; following the Polnarev approach, the equation is written as a second-kind Volterra integral equation and its kernel is handled by performing a series expansion of the trigonometric functions it contains. In this way, a recursive calculation of the Volterra equation gets possible and the polarizing effect of the gravitational waves can be brought out.The polarization degree of the CMB coming from this analysis shows a peak for a wavenumber corresponding to GWs re-entering the horizon at the end of the recombination epoch: the position and the size of the maximum are in agreement with the results of other works, based on a totally numerical calculation. However, a difference quite relevant can be remarked when one looks at the shape of the polarization plot: a semi-analytical calculation of the solution of the Volterra integral equation gives a sharp peak due to the fact that the contribution of each packet of GWs of fixed wavenumberk is strongly singled out when one substitutes the integrals with series and sums.As a consequence, this solution method may have some usefulness when one wants to point out the contributions really dominating in producing a polarization for the CMB.From this analysis one can also infer that the best angular scales to test in order to detect a polarization for the CMB are 2°–3°, smaller than those investigated by COBE.  相似文献   

20.
We investigate the polarization properties of Comptonized X-rays from relativistic jets in active galactic nuclei (AGN) using Monte Carlo simulations. We consider three scenarios commonly proposed for the observed X-ray emission in AGN: Compton scattering of blackbody photons emitted from an accretion disc; scattering of cosmic microwave background (CMB) photons and self-Comptonization of intrinsically polarized synchrotron photons emitted by jet electrons. Our simulations show that for Comptonization of disc and CMB photons, the degree of polarization of the scattered photons increases with the viewing inclination angle with respect to the jet axis. In both cases, the maximum linear polarization is  ≈20 per cent  . In the case of synchrotron self-Comptonization (SSC), we find that the resulting X-ray polarization depends strongly on the seed synchrotron photon injection site, with typical fractional polarizations   P ≈ 10–20 per cent  when synchrotron emission is localized near the jet base, while   P ≈ 20–70 per cent  for the case of uniform emission throughout the jet. These results indicate that X-ray polarimetry may be capable of providing unique clues to identify the location of particle acceleration sites in relativistic jets. In particular, if synchrotron photons are emitted quasi-uniformly throughout a jet, then the observed degree of X-ray polarization may be sufficiently different for each of the competing X-ray emission mechanisms (synchrotron, SSC or external Comptonization) to determine which is the dominant process. However, X-ray polarimetry alone is unlikely to be able to distinguish between disc and CMB Comptonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号