首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four assemblages from calcic pelitic schists from South Strafford,Vermont, have been studied in detail to determine the relationshipbetween reaction history and compositional zoning of minerals.The lowest-grade assemblage is garnet + biotite + chlorite +plagioclase + epidote + quartz + muscovite + graphite + fluid.Along a path of isobaric heating, the net reaction is Chl +Ms + Ep + Gr = Grt + Bt + Pl + fluid. Garnet grows with decreasingFe/(Fe + Mg) and XSpa, (from 0•2 to 0•05), XGra staysnearly constant between 0•20 and 0•25, and plagioclasegrows with XAn increasing from peristerite to 0•2–0•5. The subsequent evolution depends on whether chlorite or epidotereacts out first. If chlorite is removed from the assemblagefirst, the net reaction along an isobaric heating path becomesGrt + Ms + Ep + Qtz + Gr = Bt + Pl + fluid. XAn of plagioclaseincreases to 0•20–0•70, depending on the bulk-rockcomposition and changes in pressure and temperature. If epidoteis removed first, the assemblage becomes a simple pelite andthe net reaction becomes Chl + Pl + Ms + Qtz = Grt + Bt + H2O.Plagioclase is consumed to provide Ca for growing garnet, andXAn, Fe/(Fe + Mg) of garnet, XGra, and XSpa all decrease. Afterboth chlorite and epidote are removed, continued heating upto the metamorphic peak of {small tilde}600C produces littleprogress of the reaction Grt + Ms = Bt + Pl; and XAn increases. The four assemblages have been numerically modeled using theGibbs method starting with measured compositions. The modelssuccessfully predict the observed compositional zoning and trendsof mineral growth and consumption along the computed P–Tpaths. The models also predict the compositional mineral zoningthat would have resulted from other P–T paths. * Present address: Department of Geology, University of Alabama, Tuscaloosa, Alabama 35487  相似文献   

2.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

3.
Quartz–calcite sandstones experienced the reaction calcite+ quartz = wollastonite + CO2 during prograde contact metamorphismat P = 1500 bars and T = 560°C. Rocks were in equilibriumduring reaction with a CO2–H2O fluid with XCO2 = 0·14.The transition from calcite-bearing, wollastonite-free to wollastonite-bearing,calcite-free rocks across the wollastonite isograd is only severalmillimeters wide. The wollastonite-forming reaction was drivenby infiltration of quartz–calcite sandstone by chemicallyreactive H2O-rich fluids, and the distribution of wollastonitedirectly images the flow paths of reactive fluids during metamorphism.The mapped distribution of wollastonite and modeling of an O-isotopeprofile across a lithologic contact indicate that the principaldirection of flow was layer-parallel, directed upward, withany cross-layer component of flow <0·1% of the layer-parallelcomponent. Fluid flow was channeled at a scale of 1–100m by pre-metamorphic dikes, thrust and strike-slip faults, foldhinges, bedding, and stratigraphic contacts. Limits on the amountof fluid, based on minimum and maximum estimates for the displacementof the wollastonite reaction front from the fluid source, are(0·7–1·9) x 105 cm3 fluid/cm2 rock. Thesharpness of the wollastonite isograd, the consistency of mineralthermobarometry, the uniform measured 18O–16O fractionationsbetween quartz and calcite, and model calculations all arguefor a close approach to local mineral–fluid equilibriumduring the wollastonite-forming reaction. KEY WORDS: contact metamorphism, fluid flow, wollastonite, oxygen isotopes, reaction front  相似文献   

4.
Experiments were conducted to determine the solubilities ofH2O and CO2 and the nature of their mixing behavior in basalticliquid at pressures and temperature relevant to seqfloor eruption.Mid-ocean ridge basaltic (MORB) liquid was equilibrated at 1200°Cwith pure H2O at pressures of 176–717 bar and H2O—CO2vapor at pressures up to 980 bar. Concentrations and speciationof H2O and CO2 dissolved in the quenched glasses were measuredusing IR spectroscopy. Molar absorptivities for the 4500 cm–1band of hydroxyl groups and the 5200 and 1630 cm–1 bandsof molecular water are 0•67±0•03, 0•62±0•07,and 25±3 l/mol-cm, respectively. These and previouslydetermined molar absorptivities for a range of silicate meltcompositions correlate positively and linearly with the concentrationof tetrahedral cations (Si+Al). The speciation of water in glass quenched from vapor-saturatedbasaltic melt is similar to that determined by Silver &Stolper (Journal of Petrology 30, 667–709, 1989) in albiticglass and can be fitted by their regular ternary solution modelusing the coefficients for albitic glasses. Concentrations ofmolecular water measured in the quenched basaltic glasses areproportional to f H2O in all samples regardless of the compositionof the vapor, demonstrating that the activity of molecular waterin basaltic melts follows Henry's law at these pressures. Abest fit to our data and existing higher-pressure water solubilitydata (Khitarov et al., Geochemistry 5, 479–492, 1959;Hamilton et al., Journal of Petrology 5, 21–39, 1964),assuming Henrian behavior for molecular water and that the dependenceof molecular water content on total water content can be describedby the regular solution model, gives estimates for the Vo, mH2Oof 12±1 cm3/mol and for the 1-bar water solubility of0•11 wt%. Concentrations of CO2 dissolved as carbonate in the melt forpure CO2-saturated and mixed H2O-CO2-saturated experiments area simple function of fCO2 These results suggest Henrian behaviorfor the activity of carbonate in basaltic melt and do not supportthe widely held view that water significantly enhances the solutionof carbon dioxide in basaltic melts. Using a Vo, mr of 23 cm3/mol(Pan et al., Geochimica et Cosmochimica Acta 55, 1587–1595,1991), the solubility of carbonate in the melt at 1 bar and1200°C is 0•5 p.p.m. Our revised determination of CO2solubility is 20% higher than that reported by Stolper &Holloway (Earth and Planetary Science Letters 87, 397–408,1988). KEY WORDS: mid-ocean ridge basalts; water and carbon dioxide solubility; experimental petrology  相似文献   

5.
Outside the Bergell tonalite contact aureole, ophicarbonate rocks consist of blocks of antigorite schist embedded in veins of calcite ± tremolite. An antigorite schistosity predates some of these calcite veins. Mono- and bimineralic assemblages occur in reaction zones associated with the veins. Within the aureole, the ophicarbonate veining becomes less distinct and polymineralic assemblages become more frequent. A regular sequence of isobaric univariant assemblages is found, separated by isograds corresponding to isobaric invariant assemblages. In order of increasing grade the invariant assemblages are: antigorite+diopside+olivine+tremolite+calcite antigorite+dolomite+olivine+tremolite+calcite antigorite+olivine+talc+magnesite antigorite+dolomite+olivine+tremolite+talc These assemblages match a previously derived topology in P-T-XCO2 space for the system CaO-MgO-SiO2-H2O-CO2; the field sequence can be used to adjust the relative locations of calculated invariant points with respect to temperature. Isobaric univariant and invariant assemblages are plotted along a profile map to permit direct comparison with the phase diagram.It is inferred that, during the formation of the ophicarbonate veins, calcite precipitated from fluid introduced into the serpentinite. During contact metamorphism, however, the compositions of pore fluids evolved by reaction in the ophicarbonate rocks were largely buffered by the solid phases. This control occurred on a small scale, because there are local variations in the buffering solid assemblages within a centimeter range.  相似文献   

6.
Thermodynamic calculations based on addition of mass balanceequations to the Gibbs Method (Spear, 1986) are used to modelthe cordierite-producing reaction in pelitic gneiss from theMcCullough Range, southern Nevada. Calculations which treatthe model paragenesis as a system open to transfer of H2O areconsistent with textural relations. Results indicate that cordieritegrew by the continuous net-transfer reaction: 0?76 BIO+1?72 SILL+3? 55 QTZ+0?27 PLG+0?005 GRT +0?06Al2R2+–1Si–1[BIO]1?02 KSP+0?76 H2O +0?30 FeMg–1[CRD]+0?15FeMg–1[BIO]+0?0005 FeMg–1[GRT] +0?005 CaNaAl–1Si–1[PLG] with decreasing P, decreasing T, and increasing aH2O The steepretrograde dP/dT path for these low-pressure granulites contrastswith isobaric cooling paths typical of higher pressure granulites,and suggests uplift and erosion were active during Proterozoicgranulite-grade metamorphism in this area.  相似文献   

7.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

8.
The Diahot terrane of NE New Caledonia contains an interbeddedsequence of Cretaceous to Eocene metasediments, felsic and maficmetavolcanics that experienced c. 40 Ma high-P/T metamorphism.Metabasaltic assemblages define two prograde events (M1 andM2) and a tectonically disrupted crustal profile that extendsfrom lawsonite–blueschist conditions in the SW to paragonite–eclogiteconditions in the NE. Weakly deformed metabasalts from lowest-gradeparts of the Diahot terrane contain M1 omphacite, chlorite,lawsonite and glaucophane-bearing assemblages that partiallypseudomorph igneous plagioclase and augite, and reflect P =0·7–1·0 GPa and T = 350–400°C.M1 assemblages are enveloped by a steeply SW-dipping S2 foliationthat becomes progressively more intense towards the NE overa distance of c. 15 km. S2 assemblages are divided into fourzones: (1) lawsonite–omphacite; (2) lawsonite–clinozoisite–spessartine;(3) clinozoisite–hornblende–almandine; (4) almandine–omphacite.S2 assemblages reflect a PT gradient that spans the exposed15 km of the Diahot terrane from P = 0·8–1·0GPa and T = 350–400°C (Zone 1) to P = 1·6–1·7GPa and T = 550–600°C (Zone 4). The systematic mineralogicalchanges reflect parts of a PT array between 1·0and 1·7 GPa that was extensively disrupted by tectonicthinning during exhumation. KEY WORDS: blueschist; eclogite; New Caledonia; CNFMASH; pseudosection  相似文献   

9.
We have performed time series experiments for periods rangingfrom 3 min to 44 h on the interaction of granite melt and partiallymolten basalt at 920C and 10 kbar, in the presence of 5 wt.%water. With time, the assemblage of the basalt domain changesfrom predominantly amphibole+plagioclase to clinopyroxene+garnet;the melt fraction increases from {small tilde}2•5 to 40%;and between the two domains, the melt compositions progressivelyequilibrate. Initially in each run, melts of the basalt domainhave uniform plateau concentrations for SiO2, Al2O3, CaO, MgO,and FeO because the activities of these components are regulatedby the mineral assemblage, but at advanced stages of reaction,no such control is evident. We have derived analytical expressionsto describe and simulate the diffusion profiles. The concentrationprofiles for SiO2, Al2O3, CaO, and Na2O in the granite, emanatingfrom the basalt–granite interface, have been used to estimateeffective diffusivities. The values from the shorter runs arecompared with those of the experiment of longest duration forwhich we assumed finite couples in our calculations. In thediffusion calculations for K2O the difference in melt fractionbetween the two domains is accounted for. The resulting values(in cm2/s) are: DNa2O=6 10–7, DK2O=3 10–7, DMgO=9 10–8, DCaO=(4–6) 10–8, and DSiO2 and DAl2O3=(3–0•6) 10–8. They are in reasonable agreement with values fromother studies. On the basis of our experiments we calculatethat mafic enclaves of magmatic origin should equilibrate toa large degree with their host magma in slowly cooling non-convectinggranitic plutons. Enclaves approaching complete re-equilibrationretain distinctly higher modal amounts of mafic minerals. Theydo not compositionally resemble binary magma mixtures, but aremore like host magma with accumulated crystals. We show thatthe modal differences between enclave and host are indicativeof the temperature of homogenization and that, in principle,this temperature can be deduced from equilibrium phase diagrams. * Present address: Mineralogisch-Petrologisches Institut, Universitt Gttingen, Goldschmidtstrasse 1, 3400 Gttingen, Germany  相似文献   

10.
Corella marbles in the Mary Kathleen Fold Belt were infiltratedby fluids during low-pressure (200-MPa) contact metamorphismassociated with the intrusion of the Burstall granite at 1730–1740Ma. Fluids emanating from the granite [whole-rock (WR) 18O=8.1–8.6%]produced Fe-rich massive and banded garnet—clinopyroxeneskarns [18O(WR)=9.1–11.9%]. Outside the skarn zones, marblemineralogies define an increase in temperature (500 to >575C) and XCO2 (0.05 to >0.12) towards the granite, andmost marbles contain isobarically univariant or invariant assemblagesin the end-member CaO–MgO–Al2O3–SiO2–H2O–CO2system. Marbles have calcite (Cc) 18O and 13C values of 12.3–24.6%and –1.0 to –3.9%, respectively. A lack of down-temperaturemineral reactions in the marbles suggests that pervasive fluidinfiltration did not continue after the thermal peak of contactmetamorphism. The timing of fluid flow probably correspondsto a period of high fluid production and high intrinsic permeabilitiesduring prograde contact metamorphism. The petrology and stableisotope geochemistry of the marbles suggest that these rockswere infiltrated by water-rich fluids. If fluid flow occurredup to the peak of contact metamorphism, the mineralogical andisotopic resetting is best explained by fluids flowing up-temperaturetoward the Burstall granite. However, if fluid flow ceased beforthe peak of regional metamorphism, the fluid flow directioncannot be unambiguously determined. At individual outcrops,marble 18O(Cc) values vary by several permil over a few squaremetres, suggesting that fluid fluxes varied by at least an orderof magnitude on the metre to tens-of-metre scale. Fluids werefocused across lithological layering; however, mesoscopic fracturesare not recognized. The focusing of fluids was possibly viamicrofractures, and the variation in the degree of resettingmay reflect variations in microcrack density and fracture permeability.The marble—skarn contacts represent a sharp discontinuityin both major element geochemistry and 18O values, suggestingthat, at least locally, little fluid flow occurred across thesecontacts.  相似文献   

11.
La Pacana is one of the largest known calderas on Earth, andis the source of at least two major ignimbrite eruptions witha combined volume of some 2700 km3. These ignimbrites have stronglycontrasting compositions, raising the question of whether theyare genetically related. The Toconao ignimbrite is crystal poor,and contains rhyolitic (76–77 wt % SiO2) tube pumices.The overlying Atana ignimbrite is a homogeneous tuff whose pumiceis dacitic (66–70 wt % SiO2), dense (40–60% vesicularity)and crystal rich (30–40 % crystals). Phase equilibriaindicate that the Atana magma equilibrated at temperatures of770–790°C with melt water contents of 3·1–4·4wt %. The pre-eruptive Toconao magma was cooler (730–750°C)and its melt more water rich (6·3–6·8 wt% H2O). A pressure of 200 MPa is inferred from mineral barometryfor the Atana magma chamber. Isotope compositions are variablebut overlapping for both units (87Sr/86Sri 0·7094–0·7131;143Nd/144Nd 0·51222–0·51230) and are consistentwith a dominantly crustal origin. Glass analyses from Atanapumices are similar in composition to those in Toconao tubepumices, demonstrating that the Toconao magma could representa differentiated melt of the Atana magma. Fractional crystallizationmodelling suggests that the Toconao magma can be produced by30% crystallization of the observed Atana mineral phases. Toconaomelt characteristics and intensive parameters are consistentwith a volatile oversaturation-driven eruption. However, thelow H2O content, high viscosity and high crystal content ofthe Atana magma imply an external eruption trigger. KEY WORDS: Central Andes; crystal-rich dacite; eruption trigger; high-silica rhyolite; zoned magma chamber  相似文献   

12.
Potassic volcanic rocks from the Wudalianchi, Erkeshan and Keluo(WEK) fields in NE China are located between the Mesozoic SongliaoBasin and the Palaeozoic Xing'am Mountains fold belt. Theserocks erupted during three main eruptive episodes-Miocene (9•6–7•0Ma), Pleistocene (0•56–0•13 Ma) and Recent (AD1719–1721)-and are subdivided into three types-olivineleucitite, leucite basanite and trachybasalt—on the basisof modal composition. In comparison with Cenozoic alkaline basaltsfrom East China that are similar to oceanic island basalts (OIBs),WEK volcanic rocks are lower in Al2O3, CaO, Fe2O3 and Sc, buthigher in K2O (3•5–7•1 wt %), K2O/Na2O (>1)and incompatible elements. High 87Sr/86Sr (0•7050–0•7056),low 143Nd/144Nd (0•51238–0•51250) and 206Pb/204Pb(17•06–16•61) ratios also distinguish them fromoceanic and Chinese basalts. Trace element and isotope dataindicate that a post-Archaean subcontinental lithospheric mantlesource similar to the postulated EM1 component (enriched mantlewith low l43Nd/144Nd and moderate high 87Sr/86Sr) must haveplayed a significant role in magma generation. The source rockis considered to be refractory phlogopite-bearing garnet peridotiteheterogeneously enriched in both large ion lithophile elementsand light rare earth elements by ancient metasomatism duringProterozoic times. This source may have mixed recently withOIB-like melts, but has not been modified by subduction of theKula-Pacific plate. Primitive WEK potassic magma was generatedby a low degree of partial melting, initiated by an extensionalphase beginning in the late Tertiary, at pressures of 20–45kbar and in the presence of mixed volatile components of H2O,CO2 and halogens. KEY WORDS: potassic volcanic rocks; NE China; geochemistry; montle sourc *Corresponding author. Present address: Centre for Petrology and Lithoipheric Studies, School of Earth Sciences, Macquarie University, NSW 2109, Australia  相似文献   

13.
Low-Pressure Experimental Constraints on the Evolution of Komatiites   总被引:1,自引:0,他引:1  
THY  P. 《Journal of Petrology》1995,36(6):1529-1548
Melting experiments were performed on a komatiitic basalt with17 wt% MgO from Munro Township, Ontario, at I-atm pressure andan oxygen fugacity controlled approximately to the fayalite-magnetite-quartzbuffer. The experiments showed that olivine appears at 1344±5°C,spinel at 1334±6°C plagioclase at 1185±5°C,augite at 1176±5°C and pigeonite at 1154±6°C.Compositionally, olivine varies from Fo90 to Fo74 and displaysan average KFe/MgD (ol/liq) of 0•32. The spinels are chromitesand chromian spinels with Mg/(Mg + Fe2+) ratios between 0•66and 0•;32, which show a marked correlation with meltingtemperature. The pyroxenes show an average KFe/MgD (px/liq)of 0•26, identical for augite and pigeonite. Plagiodaseranges compositionally between An82 and An72 Plotted in thepseudo-quaternary basalt phase diagram, the liquid line of descentis similar to that observed for quartz tholeiitic magmas. Therefore,the low-pressure, late-stage evolution products of komatiiteand basaltic komatiite parental magmas will chemically and mineralogicallybe ferrobasaltic quartz tholeiites. High-temperature and high-pressuremodeling suggests that the main observed compositional variationof Munro komatiites can be explained by low-pressure crystalfractionation and accumulation of olivine into komatiite liquidswith below 21•5–23•5 wt% MgO and eruptive temperaturesbelow 1435–1465°C for oxygen fugacities between thefayalite-magnetite quartz (FMQ) and iron-wiistite (IW) buffers.The maximum magnesium content of liquid komatiites, assumingequilibrium Fo94 olivine, is 27–29 wt% MgO and eruptivetemperatures are between 1515 and 1540°C. KEY WORDS: komatiites; experimental petrology; Munro Township; Ontario  相似文献   

14.
Carbonate scapolite is a potentially powerful mineral for calculatingCO2 activities in non-calcareous rocks, but an analysis of thethermodynamics and phase equilibria of carbonate scapolite isfirst necessary. This includes an evaluation of Al-Si disorderin meionite, as this has the greatest effect on derived phaserelations. Available experimental data on meionite stability,X-ray diffraction refinements and nuclear magnetic resonancespectra for calcic scapolite do not uniquely constrain the Al-Siordering state of synthetic meionite. However, the data aremost consistent with a high degree of Al-Si disorder and inconsistentwith long-range Al-Si order. An internally consistent thermodynamicdata set was derived and used to calculate P-T and T-XCO2 equilibriainvolving meionite in the CaO-Al2O3-SiO2-CO2-H2O (CASCH) system.The effect of Al-Si disorder is illustrated by calculating thephase equilibria using an ordered, an arbitrary intermediatedisordered, and a completely Al-Si disordered standard statefor meionite. The Gibbs free energy of meionite was calculatedfrom reversals (at 790–815?C, 2–15 kb) on the reaction 3 Anorthite +Calcite =Meionite The fG?m, 298 for each of the standard states is –13 146?6,–13128?8, and –130930kJ/mol, respectively. Becauseof the steep slope of reaction (1) and limited temperature rangeover which it breaks down, meionite used in the experimentsto constrain reaction (1) must possess a limited range of Al-Sidisorder. The P-T slope of reaction (1) increases, and the slopeof meionite decarbonation equilibria changes from positive tonegative in T-XCO2 and P-T space, as a function of increasingAl-Si disorder. Meionite has a wide stability field at highT in T-X space at 5 and 10 kb (PTotal=PFluid), being stableto XCO2=0?06. Meionite alone breaks down to undersaturated gehleniteand/or corundum-bearing assemblages at 5 kb, and to clinozoisiteat 10 kb. The effect of solid solutions on the T-X stabilityof meionite is similar to that of increasing pressure, stabilizingmeionite to lower temperature. Variable Al-Si disorder doesnot significantly affect the upper limit of meionite stabilityin T-XCO2 space. Activity-composition relations for meionitein carbonate scapolite were calculated relative to reaction(1) from data on natural scapolite-plagioclase-calcite assemblages.The extent of departure from ideality varies as a function ofAl-Si disorder. Negative deviations from ideality are indicatedfor natural scapolite solid solutions at T<750?C, based ona disordered Al-Si standard state for meionite. This is likelyto reflect a more ordered Al-Si distribution in natural scapolitescompared with the synthetic endmember standard state. Present address: Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794-2100  相似文献   

15.
The Kap Edvard Holm Layered Gabbro Complex is a large layeredgabbro intrusion (>300 km2) situated on the opposite sideof the Kangerdlugssuaq fjord from the Skaergaard Intrusion.It was emplaced in a continental margin ophiolite setting duringearly Tertiary rifting of the North Atlantic. Gabbroic cumulates, covering a total stratigraphic thicknessof >5 km, have a typical four-phase tholeiitic cumulus mineralogy:plagioclase, clinopyroxene, olivine, and Fe–Ti oxides.The cryptic variation is restricted (plagioclase An81–51,olivine Fo85–66, clinopyroxene Wo43–41 En46–37Fs20–11) and there are several reversals in mineral chemistry.Crystallization took place in a low-pressure, continuously fractionatingmagma chamber system which was periodically replenished andtapped. Fine-grained (0•2–0•4 mm) equigranular, thin(0•5–3 m), laterally continuous basaltic zones occurwithin an {small tilde}1000 m thick layered sequence in theTaco Point area. Twelve such zones define the bases of individualmacrorhythmic units with an average thickness of {small tilde}80m. The fine-grained basaltic zones grade upwards, over a fewmetres, into medium-grained (>1 mm) poikilitic, olivine gabbrowith smallscale modal layering. Each fine-grained basaltic zoneis interpreted as an intraplutonic quench zone in which magmachilled against the underlying layered gabbros during influxalong the chamber floor. Supercooling by {small tilde}50C isbelieved to have caused nucleation of plagioclase, olivine,and clinopyroxene in the quench zone. The nucleation rate isbelieved to have been enhanced as the result of in situ crystallizationin a continuously flowing magma. The transition to the overlyingpoikilitic olivine gabbro reflects a decreasing degree of supercooling. Compositional variation in the Taco Point sequence is typicalfor an open magma chamber system: olivine (Fo77–68 5)and plagioclase cores (An80–72) show a zig-zag crypticvariation pattern with no overall systematic trend. Olivinehas the most primitive compositions in the quench zones andmore evolved compositions in the olivine gabbro; plagioclasecores show the opposite trend. Although plagioclase cores arebelieved to retain their original compositions, olivines re-equilibratedby reaction with trapped liquid. Some plagioclase cores containrelatively sodic patches which retain quench compositions. Whole-rock compositions of nine different quench zones varyover a range from 10 to 18% MgO although the mg-number remainsconstant at {small tilde}0•78. The average composition(47•7% SiO2, 13•3%MgO, 1•57% Na2O+K2O) is takenas a best estimate of the parental magma composition, and isequivalent to a high-magnesian olivine tholeiite. The compositionalvariation of the quench zones is believed to reflect burstsof nucleation and growth of olivine and plagioclase during quenching. Magma emplacement is believed to have taken place by separatetranquil influxes which flowed along the interface between alargely consolidated cumulus pile and the residual magma. Theresident magma was elevated with little or no mixing. At certainlevels in the layered sequence the magma drained back into thefeeder system; such a mechanism is referred to as a surge-typemagma chamber system.  相似文献   

16.
Petrographic and petrologic investigations of upper amphibolitefacies metacarbonates from the East Humboldt Range core complex,Nevada, provide important constraints on P-T-XCO2 conditionsand fluid flow during metamorphism. Three marble assemblagesare observed [(1)dol+cc+bt+cpx+q+ruscapkspamph; (2) cc+bt+cpx+plag+q+sphscapksp;(3) cc+cpx+plag+q+sphscapksp], all of which equilibrated withrelatively CO2-rich fluid compositions, at P-T conditions of6 kbar and 600–750C. The most recent equilibration eventis recorded in some calcsilicate gneisses where retrograde amphiboleand epidotegarnet replace clinopyroxene and plagioclase, respectively.This is attributed to infiltration of H2O-rich fluids at and/orafter peak metamorphic temperatures, which continued as therocks were cooled and rapidly uplifted after a Tertiary extension-relatedheating event. Likely sources for the retrograde fluids are the abundant pegmatiticleucogranites in the area. Volumetric fluid-rock ratios of 0.02–0.4are required to generate the retrograde assemblage, and observedleucogranite proportions are more than adequate to provide therequired volume of fluid. Estimates of retrograde fluid fluxesrange from 0.25 to 5102 cm3/cm2 for a transient temperaturegradient of 5C/m, to 3103 to 7104 cm3/cm2 for a temperaturegradient of 35C/km. These gradients are characteristic of askarn-type contact metamorphic environment and a regional crustalgeotherm, respectively. They imply different time-scales andlength-scales for the retrograde fluid flow system, with theformer more akin to a contact metamorphic setting with local,meter-scale retrograde fluid flow, and the latter to a regionalmetamorphic setting with regionally high mid- and lower-crustaltemperatures and fluid flow throughout a significant thicknessof the middle crust. Higher gradients are considered more likelygiven the proximity of leucogranites to retrogressed calc-silicategneisses, and the resultant relatively small fluxes are consistentwith a magmatic source. The length-scale of reaction within the retrograde fluid flowsystem was of the order of meters to hundreds of meters andinvolved both pervasive and (later) fracture-controlled down-temperatureflow. Retrograde fluid flow in this terrance, as well as othersdominated by magmatic volatiles, is in the form of multiplediscrete bursts of fluid released in a discontinuous mannerpotentially over long periods of time (1–10 Ma) with locallyvariable thermal gradients along the flow path.  相似文献   

17.
Experimental studies were carried out to evaluate phase relationsinvolving titanite–F–Al-titanite solid solutionin the system CaSiO3–Al2SiO5–TiO2–CaF2. Theexperiments were conducted at 900–1000°C and 1·1–4·0GPa. The average F/Al ratio in titanite solid solution in theexperimental run products is 1·01 ± 0·06,and XAl ranges from 0·33 ± 0·02 to 0·91± 0·05, consistent with the substitution [TiO2+]–1[AlF2+]1.Analysis of the phase relations indicates that titanite solidsolutions coexisting with rutile are always low in XAl, whereasthe maximum XAl of titanite solid solution occurs with fluoriteand either anorthite or Al2SiO5. Reaction displacement experimentswere performed by adding fluorite to the assemblage anorthite+ rutile = titanite + kyanite. The reaction shifts from 1·60GPa to 1·15 ± 0·05 GPa at 900°C, from1·79 GPa to 1·375 ± 0·025 GPa at1000°C, and from 1·98 GPa to 1·575 ±0·025 GPa at 1100°C. The data show that the activityof CaTiSiO4O is very close to the ideal molecular activity model(XTi) at 1100°C, but shows a negative deviation at 1000°Cand 900°C. The results constrain  相似文献   

18.
Kistufell: Primitive Melt from the Iceland Mantle Plume   总被引:5,自引:2,他引:5  
This paper presents new geochemical data from Kistufell (64°48'N,17°13'W), a monogenetic table mountain situated directlyabove the inferred locus of the Iceland mantle plume. Kistufellis composed of the most primitive olivine tholeiitic glassesfound in central Iceland (MgO 10·56 wt %, olivine Fo89·7).The glasses are interpreted as near-primary, high-degree plumemelts derived from a heterogeneous mantle source. Mineral, glassand bulk-rock (glass + minerals) chemistry indicates a low averagemelting pressure (15 kbar), high initial crystallization pressuresand temperatures (10–15 kbar and 1270°C), and eruptiontemperatures (1240°C) that are among the highest observedin Iceland. The glasses have trace element signatures (Lan/Ybn<1, Ban/Zrn 0·55–0·58) indicative ofa trace element depleted source, and the Sr–Nd–Pbisotopic ratios (87Sr/86Sr 0·70304–0·70308,143Nd/144Nd 0·513058–0·513099, 206Pb/204Pb18·343–18·361) further suggest a long-termtrace element depletion relative to primordial mantle. HighHe isotopic ratios (15·3–16·8 R/Ra) combinedwith low 207Pb/204Pb (15·42–15·43) suggestthat the mantle source of the magma is different from that ofNorth Atlantic mid-ocean ridge basalt. Negative Pb anomalies,and positive Nb and Ta anomalies indicate that the source includesa recycled, subducted oceanic crustal or mantle component. PositiveSr anomalies (Srn/Ndn = 1·39–1·50) furthersuggest that this recycled source component involves lower oceaniccrustal gabbros. The  相似文献   

19.
Phase relations for the bulk compositions 3CaO·2FeOx·3SiO2+excessH2O and CaO·FeOx·2SiO2+excess H2O were determinedusing conventional hydrothermal techniques with solid phaseoxygen buffers to control fO2. Andradite, Ca3Fe3+2Si3O12, synthesized above 550 °C hasan average unit cell edge, ao, of 12.055±0.001 Å,and an index of refraction, n, of 1.887±0.003. Belowthis temperature, ao increases whereas n decreases, indicatingthe formation of a member of the andradite-hydroandradite solidsolution. At 2000 bars Pfluid andradite is stable above an fO2of 1015 bar at 800 °C and 10-32 bar at 400 °C. At lowerfO2 andradite+fluid gives way at successively lower temperaturesto the condensed assemblages magnetite+wollastonite, kirschsteinite(CaFe2+SiO4)+ wollastonite and kirschsteinite+xonotlite (Ca6Si6O17(OH)2). Synthetic hedenbergite, CaFe2+Si2O6, has average unit cell dimensionsof ao = 9.857± 0.004 Å, bo = 9.033±0.002Å, co = 5.254±0.002 Å and ß = 104.82°±0.03°,and refractive indices of n = 1.731±0.003 and n = 1.755±0.005.At 2000 bars Pfiuid, hedenbergite is stable below an fO2 of10-13 bar at 800 °C and 10-28 bar at 400 °C. Above thesefO2 values, hedenbergite+O2 breaks down to andradite+magnetite+quartz. The mineral pair andradite +hedenbergite thus limit the fO2range possible for their joint formation under equilibrium conditions. The hydration of wollastonite to xonotlite occurs at much lowertemperatures than previous experimental work indicated. A tentativehigh temperature limit for this reaction is set at 185°±15°C and 5000±25 bars and 210°±15 °Cand 2000±20 bars. Inasmuch as the growth of xonotlitefrom wollastonite + H2O was never accomplished, this high temperaturelimit does not represent an equilibrium univariant curve. Nine phases were encountered in the study of andradite and hedenbergite.They are andradite, hedenbergite, magnetite, wollastonite, kirschsteinite,xonotlite, quartz, ilvaite, and vapor (fluid). An invariantpoint analysis using the method of Schreinemakers shows thetopologic relations of the reactions involved. The resultinggrid can be used to interpret natural occurrences.  相似文献   

20.
The pressure-temperature-compositional (P-T-X) dependence ofthe solubility of Al2O3 in orthopyroxene coexisting with garnethas been experimentally determined in the P-T range 5–30kilobars and 800–1200 ?C in the system FeO—MgO—Al2O3—SiO2(FMAS). These results have been extended into the CaO—FeO—MgO—Al2O3—SiO2(CFMAS) system in a further set of experiments designed to determinethe effect of the calcium content of garnet on the Al2O3 contentsof coexisting orthopyroxene at near-constant Mg/(Mg + Fe). Startingmaterials were mainly glasses of differing Mg/(Mg + Fe) or Ca/(Ca+ Mg + Fe) values, seeded with garnet and orthopyroxene of knowncomposition, but mineral mixes were also used to demonstratereversible equilibrium. Experiments were performed in a piston-cylinderapparatus using a talc/pyrex medium. Measured orthopyroxene and corrected garnet compositions werefitted by multiple and stepwise regression techniques to anequilibrium relation in the FMAS system, yielding best-fit,model-dependent parameters Goy= –5436 + 2.45T cal mol–1,and WM1FeA1= –920 cal mol–1. The volume change ofreaction, Vo, the entropy change, So970 and the enthalpy changeHo1,970, were calculated from the MAS system data of Perkinset al. (1981) and available heat capacity data for the phases.Data from CFMAS experiments were fitted to an expanded equilibriumrelation to give an estimate of the term WgaCaMg = 1900 ? 400cal/mole cation, using the other parametric values already obtainedin FMAS. The experimental data allow the development of a arnet-orthopyroxenegeobarometer applicable in FMAS and CFMAS: where This geobarometer is applicable to both pelitic and metabasicgranulites containing garnet orthopyroxene, and to garnet peridoditeand garnet pyroxenite assemblages found as xenoliths in diatremesor in peridotite massifs. It is limited, however, by the necessityof an independent temperature estimate, by errors associatedwith analysis of low Al2O3 contents in orthopyroxenes in high-pressureor low-temperature parageneses, and by uncertainties in thecomposition of garnet in equilibrium with orthopyroxene. Ananalysis of errors associated with this formulation of the geobarometersuggests that it is subject to great uncertainty at low pressuresand for Fe-rich compositions. The results of application ofthis geobarometer to natural assemblages are presented in acompanion paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号