首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 863 毫秒
1.
The origin of many dolomites is still a matter of debate because of many possible chemical and hydrological conditions of formation. Fluid inclusion studies have been applied in order to improve knowledge about paleofluids responsible for the precipitation of dolomite, and used to define temperatures and salinities. The combination of Raman Spectroscopy and microthermometry is tested here to improve the analytical method to identify the main ion species present in individual inclusions. Natural samples of saddle dolomite from the Cambrian Láncara Fm., Cantabrian Mountains (NW Spain), contain zoned crystals with two‐phase aqueous fluid inclusions (liquid‐rich). The most stable phase assemblage in these inclusions at −150 °C consists of ice, hydrohalite and an unknown salt hydrate. The latter melts between −47 and −41 °C, probably representing a eutectic temperature. Subsequently, ice melts in the range of −32.5 to −29 °C and, finally, hydrohalite melts between −9 and −3.5 °C. Salinities can be calculated in the fluid system H2O–NaCl with addition of another salt, either CaCl2 or MgCl2, and result in 7.5–10.6 eq. mass% NaCl and 17.0–21.0 eq. mass% CaCl2. Dependent on the rate of cooling runs, three different types of metastability may occur, i.e. the absence of hydrohalite, the unknown salt‐hydrate is not formed, and the nucleation of only ice. Salinity calculations from those melting temperatures differ substantially from equilibrium behaviour values. The unknown salt‐hydrate needs to be further specified by comparison to standard solutions. The method gives an opportunity to characterize the major compounds in complex fluid systems active during dolomitization, thus contributing to a better understanding of the ‘dolomite problem’.  相似文献   

2.
Contrasting compositions and densities of fluid inclusions were revealed in siderite–barite intergrowths of the Dro?diak polymetallic vein hosted in Variscan basement of the Gemeric unit (Central European Carpathians). Primary two‐phase aqueous inclusions in siderite homogenized between 101 and 165 °C, total salinity ranged between 18 and 27 wt%, and CaCl2/(NaCl + CaCl2) weight ratios were fixed at 0.1–0.3. By contrast, mono‐ and two‐phase aqueous inclusions in barite exhibited total salinities between 2 and 22 wt%, and the CaCl2/NaCl ratios ranged from NaCl‐ to CaCl2‐dominated compositions. The aqueous inclusions in barite were closely associated with very high‐density (0.55–0.745 g cm?3) nitrogen inclusions, in some cases containing up to 16 mol.% CO2. Crystallization P–T conditions of siderite (175–210 °C, 1.2–1.7 kbar) constrained by the vertical oxygen isotope gradient along the studied vein, isochores of fluid inclusions and the K/Na exchange thermometer corresponded to minimal palaeodepths between 4.3 and 6.3 km, assuming lithostatic load and average crust density of 2.75 g cm?3. Maximum fluid pressure during barite crystallization attained 3.6–4.4 kbar at 200–300 °C, and the most dense nitrogen inclusions maintained without decrepitation the residual internal pressure of 2.2 kbar at 25 °C. Contrasting fluid compositions, increasing depths of burial (~4–14 km) and decreasing thermal gradients (~40–15 °C km?1) during initial mineralization stages of the Dro?diak vein reflect Alpine orogenic processes, rather than an incipient Permian rifting suggested in previous metallogenetic models. Siderite crystallized at rising P–T in a closed, rock‐buffered hydrothermal system developed in the Variscan basement during the north‐vergent Cretaceous thrusting and thickening of the Gemeric crustal wedge. Variable salinities of the barite‐hosted inclusions reflect a fluid mixing in open hydrothermal system, and re‐equilibration textures (lengths of decrepitation cracks proportional to fluid inclusion sizes) correspond to retrograde crystallization trajectory coincidental with transpression or unroofing. Maximum recorded fluid pressures indicate ~12‐km‐thick pile of imbricated nappe units accumulated over the Gemeric basement during the Cretaceous collision.  相似文献   

3.
Calculated phase equilibria involving minerals and H2O–CO2–NaCl fluid lead to predictions of how infiltration of rock by H2O–NaCl fluids with X NaCl in the range 0–0.3 (0–58 wt% NaCl) drives the reactions calcite + quartz = wollastonite + CO2 and dolomite = periclase + calcite + CO2. Calculations focus on metamorphism in four aureoles that together are representative of the normal PT conditions and processes of infiltration-driven contact metamorphic reactions. The effect of salinity on the spatial extent of oxygen isotope alteration was also computed. The time-integrated input fluid flux (q°) that displaces the mineral reaction front an increment of distance along the flow path always increases with increasing X NaCl. For input fluids with salinity up to approximately five times that of seawater (X NaCl ≤ 0.05), values of q° required to explain the spatial extent of decarbonation reaction are no more than 1.1–1.5 times that computed assuming the input fluid was pure H2O. For more saline fluids, values of q° may be up to 1.4–7.9 times that for pure H2O. Except for reaction in the presence of halite and vapor (V), infiltration of H2O–NaCl fluids expands the region of oxygen isotope alteration relative to the size of the region of mineral reaction. The expansion is significant only for saline fluids with X NaCl ≥ ~0.1. Immiscible fluid phase separation and differential loss of the liquid (L) or V phase from the mineral reaction site increases the amount of reactive fluid required to advance the mineral reaction front compared to conditions under which equilibration of minerals and fluid is attained with no loss of L or V. Decarbonation reactions driven by infiltration of fluids with even modest seawater-like salinity can explain the occurrence of salt-saturated fluid and solid halide inclusions in contact metamorphosed carbonate rocks.  相似文献   

4.
A microthermometric study of inclusions in granites and pegmatites in the Proterozoic Harney Peak Granite system identified four types of inclusions. Type 1 inclusions are mixtures of CO2 and H2O and have low salinities, on average 3.5 wt.% NaCleq; type 2 inclusions are aqueous solutions of variable salinities, from 0 to 40% wt.% NaCleq; type 3 inclusions are carbonic, dominated by CO2, with no detectable water; and type 4 inclusions consist of 20 to 100% solids, with the remaining volume occupied by a CO2-H2O fluid. Many inclusions have a secondary character; however, a primary character can be unambiguously established in several occurrences of the type 1 inclusions. These inclusions were trapped above the solidus and represent the exsolved magmatic fluid. The secondary populations of types 1, 2, and 3 probably formed as a result of reequilibration and unmixing of the type 1 fluid that progressively changed composition and density with decreasing temperature and pressure and was finally trapped along healed microfractures under subsolidus conditions. Type 4 inclusions are primary and are interpreted to be trapped, fluid-bearing, complex silicate melts that subsequently solidified or underwent other posttrapping changes.It is demonstrated that primary type 1 fluid inclusions that coexist with crystallized melt inclusions in the complex, Li-bearing Tin Mountain pegmatite were trapped along the two-fluid phase boundary in the system CO2-H2O-NaCleq. Consequently, the temperature and pressure conditions of trapping are identical to the bulk homogenization conditions—on average 340°C and 2.7 kbar. These conditions indicate that this Li-, Cs-, Rb-, P-, and B-rich pegmatite crystallized at some of the lowest known temperatures for a silicate melt in the crust. An internally consistent, empirical solvus surface in P-T-XCO2 coordinates was generated for the pseudobinary CO2-(H2O-4.3 wt.% NaCleq) pegmatite fluid system. Distribution coefficients for the major species CO2, H2O, NaCl, and CH4 between the immiscible CO2-rich and H2O-rich fluid phases as a function of pressure and temperature were extracted from data for the two cogenetic fluid inclusions types.  相似文献   

5.
 H2O activities in concentrated NaCl solutions were measured in the ranges 600°–900° C and 2–15 kbar and at NaCl concentrations up to halite saturation by depression of the brucite (Mg(OH)2) – periclase (MgO) dehydration equilibrium. Experiments were made in internally heated Ar pressure apparatus at 2 and 4.2 kbar and in 1.91-cm-diameter piston-cylinder apparatus with NaCl pressure medium at 4.2, 7, 10 and 15 kbar. Fluid compositions in equilibrium with brucite and periclase were reversed to closures of less than 2 mol% by measuring weight changes after drying of punctured Pt capsules. Brucite-periclase equilibrium in the binary system was redetermined using coarsely crystalline synthetic brucite and periclase to inhibit back-reaction in quenching. These data lead to a linear expression for the standard Gibbs free energy of the brucite dehydration reaction in the experimental temperature range: ΔG° (±120J)=73418–134.95T(K). Using this function as a baseline, the experimental dehydration points in the system MgO−H2O−NaCl lead to a simple systematic relationship of high-temperature H2O activity in NaCl solution. At low pressure and low fluid densities near 2 kbar the H2O activity is closely approximated by its mole fraction. At pressures of 10 kbar and greater, with fluid densities approaching those of condensed H2O, the H2O activity becomes nearly equal to the square of its mole fraction. Isobaric halite saturation points terminating the univariant brucite-periclase curves were determined at each experimental pressure. The five temperature-composition points in the system NaCl−H2O are in close agreement with the halite saturation curves (liquidus curves) given by existing data from differential thermal analysis to 6 kbar. Solubility of MgO in the vapor phase near halite saturation is much less than one mole percent and could not have influenced our determinations. Activity concentration relations in the experimental P-T range may be retrieved for the binary system H2O-NaCl from our brucite-periclase data and from halite liquidus data with minor extrapolation. At two kbar, solutions closely approach an ideal gas mixture, whereas at 10 kbar and above the solutions closely approximate an ideal fused salt mixture, where the activities of H2O and NaCl correspond to an ideal activity formulation. This profound pressure-induced change of state may be characterized by the activity (a) – concentration (X) expression: a H 2O=X H 2O/(1+αX NaCl), and a NaCl=(1+α)(1+α)[X NaCl/(1+αX NaCl)](1+α). The parameter α is determined by regression of the brucite-periclase H2O activity data: α=exp[A–B/ϱH 2O ]-CP/T, where A=4.226, B=2.9605, C=164.984, and P is in kbar, T is in Kelvins, and ϱH 2O is the density of H2O at given P and T in g/cm3. These formulas reproduce both the H2O activity data and the NaCl activity data with a standard deviation of ±0.010. The thermodynamic behavior of concentrated NaCl solutions at high temperature and pressure is thus much simpler than portrayed by extended Debye-Hückel theory. The low H2O activity at high pressures in concentrated supercritical NaCl solutions (or hydrosaline melts) indicates that such solutions should be feasible as chemically active fluids capable of coexisting with solid rocks and silicate liquids (and a CO2-rich vapor) in many processes of deep crustal and upper mantle metamorphism and metasomatism. Received: 1 September 1995 / Accepted: 24 March 1996  相似文献   

6.
Previous cryogenic Raman spectroscopic analysis of H2O-NaCl-CaCl2 solutions has identified the Raman peaks of various hydrates of NaCl and CaCl2,and established a linear relationship between Raman band intensity of the hydrates and the composition of the solution(NaCl/(NaCl+CaCl2) molar ratio,or XNaC1) using synthetic fluids,which created the opportunity to quantitatively determine the solute composition of aqueous fluid inclusions with cryogenic Raman spectroscopy.This paper aims to test the feasibility of this newly established method with natural fluid inclusions.Twenty-five fluid inclusions in quartz from various occurrences which show a high degree of freezing during the cooling processes were carefully chosen for cryogenic Raman analysis.XNaCl was calculated using their spectra and an equation established in a previous study.These inclusions were then analyzed with the thermal decrepitation-SEM-EDS method.The XNaCl values estimated from the two methods show a 1:1 correlation,indicating that the new,non-destructive cryogenic Raman spectroscopic analysis method can indeed be used for fluid inclusion compositional study.  相似文献   

7.
The Dayingezhuang gold deposit, hosted mainly by Late Jurassic granitoids on Jiaodong Peninsula in eastern China, contains an estimated 170 t of gold and is one of the largest deposits within the Zhaoping fracture zone. The orebodies consist of auriferous altered pyrite–sericite–quartz granites that show Jiaojia-type (i.e., disseminated and veinlet) mineralization. Mineralization and alteration are structurally controlled by the NE- to NNE-striking Linglong detachment fault. The mineralization can be divided into four stages: (K-feldspar)–pyrite–sericite–quartz, quartz–gold–pyrite, quartz–gold–polymetallic sulfide, and quartz–carbonate, with the majority of the gold being produced in the second and third stages. Based on a combination of petrography, microthermometry, and laser Raman spectroscopy, three types of fluid inclusion were identified in the vein minerals: NaCl–H2O (A-type), CO2–H2O–NaCl (AC-type), and pure CO2 (PC-type). Quartz crystals in veinlets that formed during the first stage contain mainly AC-type fluid inclusions, with rare PC-type inclusions. These fluid inclusions homogenize at temperatures of 251°C–403°C and have low salinities of 2.2–9.4 wt% NaCl equivalent. Quartz crystals that formed in the second and third stages contain all three types of fluid inclusions, with total homogenization temperatures of 216°C–339°C and salinities of 1.8–13.8 wt% NaCl equivalent for the second stage and homogenization temperatures of 195°C–321°C and salinities of 1.4–13.3 wt% NaCl equivalent for the third stage. In contrast, quartz crystals that formed in the fourth stage contains mainly A-type fluid inclusions, with minor occurrences of AC-type inclusions; these inclusions have homogenization temperatures of 106°C–287°C and salinities of 0.5–7.7 wt% NaCl equivalent. Gold in the ore-forming fluids may have changed from Au(HS)0 as the dominant species under acidic conditions and at relatively high temperatures and fO2 in the early stages, to Au(HS)2– under neutral-pH conditions at lower temperatures and fO2 in the later stages. The precipitation of gold and other metals is inferred to be caused by a combination of fluid immiscibility and water–rock interaction.  相似文献   

8.
Three-phase NaCl-H2O fluid inclusions featuring halite dissolution temperature(Tm)higher than vapor bubble disappearance temperature(Th) are commonly observed in porphyry copper/molybdenum deposits,skarn-type deposits and other magmatic- hydrothermal ore deposits.Based on |ΔV1|(the absolute value of volume variation of NaCl-H2O solution in a heating or cooling process of inclusions)= |ΔVs|(the absolute value of volume variation of the halite crystal in a heating or cooling process of inclusions) and on the principle of conservation of the mass of NaCl and H2O,we systematically calculated the densities of NaCl-H2O solutions in the solid-liquid two-phase field for temperatures(Th) from 0.1℃ to 800℃ and salinities from 26.3 wt%to 99.2wt%.Consequently for the first time we obtained the upper limit of the density of NaCI-H2O solutions in the solid-liquid twophase field for Tbm inclusions with variant salinities.The results indicate that for inclusions of the Thm type with the same Th,the higher the Tm or salinity is,the higher the density of the NaClsaturated solution will be.If a group of fluid inclusions were homogeneously trapped,they must have the same Th value and the same Tm or salinity value.This may be used to distinguish homogeneous,inhomogeneous,and multiple entrapments of fluid inclusions.  相似文献   

9.
Fluid inclusions from a biotite-garnet schist in the Southern Aravalli Mountain Belt (India) give information on both peak metamorphic conditions and post-peak metamorphic processes during uplift. A combination of careful petrography, microthermometry and Raman spectroscopy reveals the presence of at least five generations of enclosed fluids. Lower amphibolite-facies pressure-temperature conditions of the growth of garnet rims are reproduced by the highest fluid density of the relatively oldest inclusion type of CO2 (±N2)-rich compositions. A calculated fluid composition in the COH system, in equilibrium with the graphite buffer corresponds to a CO2-rich fluid at metamorphic conditions. However, the results of these calculations are very sensitive to small fluctuations in oxygen fugacity and the accuracy of thermodynamic properties of mineral equilibria. Re-equilibration, conceived by specific size-density distribution and the absence of an aqueous phase in inclusions that contain nahcolite crystals, is monitored in these inclusions as post-peak metamorphic processes, like partial decrepitation and preferential leakage. The other fluid types represent heterogeneous fluid trapping of coexisting aqueous NaCl-bearing solutions with CO2-CH4-rich vapour bubbles in healed cracks, and probably the introduction of external fluids containing high salinity aqueous CaCl2-rich solutions in nearly pure N2 vapour bubbles, at lower P-T conditions. This study illustrates that fluid inclusions remain a valuable database of peak metamorphic conditions, moreover, alterations of the entrapped fluids and surrounding crystals are illustrative for specific exhumation evolutions. Received: 24 March 1999 / Accepted: 13 January 2000  相似文献   

10.
The Ciemas gold deposit is located in West Java of Indonesia,which is a Cenozoic magmatism belt resulting from the Indo-Australian plate subducting under the Eurasian plate.Two different volcanic rock belts and associated epithermal deposits are distributed in West Java:the younger late Miocene-Pliocene magmatic belt generated the Pliocene-Pleistocene epithermal deposits,while the older late Eocene-early Miocene magmatic belt generated the Miocene epithermal deposits.To constrain the physico-chemical conditions and the origin of the ore fluid in Ciemas,a detailed study of ore petrography,fluid inclusions,laser Raman spectroscopy,oxygen-hydrogen isotopes for quartz was conducted.The results show that hydrothermal pyrite and quartz are widespread,hydrothermal alteration is well developed,and that leaching structures such as vuggy rocks and extension structures such as comb quartz are common.Fluid inclusions in quartz are mainly liquid-rich two phase inclusions,with fluid compositions in the NaCl-H20 fluid system,and contain no or little CO_2.Their homogenization temperatures cluster around 240℃-320℃,the salinities lie in the range of 14-17 wt.%NaCl equiv,and the calculated fluid densities are 0.65-1.00 g/cm~3.The values of δ~(18)O_(H2O-VSMOW)for quartz range from +5.5‰ to +7.7‰,the δD_(VSMOW) of fluid inclusions in quartz ranges from-70‰ to-115‰.All of these data indicate that mixing of magmatic fluid with meteoric water resulted in the formation of the Ciemas deposit.A comparison among gold deposits of West Java suggests that Miocene epithermal ore deposits in the southernmost part of West Java were more affected by magmatic fluids and exhibit a higher degree of sulfldation than those of Pliocene-Pleistocene.  相似文献   

11.
Three different types of carbonatite magma may be recognized in the Cambrian Fen complex, S.E. Norway: (1) Peralkaline calcite carbonatite magma derived from ijolitic magma; (2) Alkaline magnesian calcite carbonatite magma which yielded biotite-amphibole søvite and dolomite carbonatite; and (3) ferrocarbonatite liquids, related to (2) and/or to alkaline lamprophyre magma (damjernite). Apatite formed during the pre-emplacement evolution of (2) contains inclusions of calcite and dolomite, devitrified mafic silicate glass and aqueous fluid. All of these inclusions have a magmatic origin, and were trapped during a mid-crustal fractionation event (P4 kbars, T625° C), where apatite and carbonates precipitated from a carbonatite magma which coexisted with a mafic silicate melt. The fluid inclusions contain water, dissolved ionic species (mainly NaCl, with minor polyvalent metal salts) and in some cases CO2. Two main groups of fluid inclusions are recognized: Type A: CO2-bearing inclusions, of approximate molar composition H2O 88–90 CO 27-5 NaCl 5 (d=0.85–0.87 g/ cm3). Type B: CO2-free aqueous inclusions with salinities from 1 to 24 wt% NaCleq and densities betwen 0.7 and 1.0 g/cm3. More strongly saline type B inclusions (salinity ca. 35wt%, d=1.0 to 1.1 g/cm3) contain solid halite at room temperature and occur in overgrowths on apatite. Type A inclusions probably contain the most primitive fluid, from which type B fluids have evolved during fractionation of the magmatic system. Type B inclusions define a continuous trend from low towards higher salinities and densities and formed as a result of cooling and partitioning of alkali chloride components in the carbonatite system into the fluid phase. Available petrological data on the carbonatites show that the fluid evolution in the Fen complex leads from a regime dominated by juvenile CO2 + H2O fluids during the magmatic stage, to groundwater-derived aqueous fluids during post-magmatic reequilibration.  相似文献   

12.
The Junction gold deposit, in Western Australia, is an orogenic gold deposit hosted by a differentiated, iron‐rich, tholeiitic dolerite sill. Petrographic, microthermometric and laser Raman microprobe analyses of fluid inclusions from the Junction deposit indicate that three different vein systems formed at three distinct periods of geological time, and host four fluid‐inclusion populations with a wide range of compositions in the H2O–CO2–CH4–NaCl ± CaCl2 system. Pre‐shearing, pre‐gold, molybdenite‐bearing quartz veins host fluid inclusions that are characterised by relatively consistent phase ratios comprising H2O–CO2–CH4 ± halite. Microthermometry suggests that these veins precipitated when a highly saline, >340°C fluid mixed with a less saline ≥150°C fluid. The syn‐gold mineralisation event is hosted within the Junction shear zone and is associated with extensive quartz‐calcite ± albite ± chlorite ± pyrrhotite veining. Fluid‐inclusion analyses indicate that gold deposition occurred during the unmixing of a 400°C, moderately saline, H2O–CO2 ± CH4 fluid at pressures between 70 MPa and 440 MPa. Post‐gold quartz‐calcite‐biotite‐pyrrhotite veins occupy normal fault sets that slightly offset the Junction shear zone. Fluid inclusions in these veins are predominantly vapour rich, with CO2?CH4. Homogenisation temperatures indicate that the post‐gold quartz veins precipitated from a 310 ± 30°C fluid. Finally, late secondary fluid inclusions show that a <200°C, highly saline, H2O–CaCl2–NaCl–bearing fluid percolated along microfractures late in the deposit's history, but did not form any notable vein type. Raman spectroscopy supports the microthermometric data and reveals that CH4–bearing fluid inclusions occur in syn‐gold quartz grains found almost exclusively at the vein margin, whereas CO2–bearing fluid inclusions occur in quartz grains that are found toward the centre of the veins. The zonation of CO2:CH4 ratios, with respect to the location of fluid inclusions within the syn‐gold quartz veins, suggest that the CH4 did not travel as part of the auriferous fluid. Fluid unmixing and post‐entrapment alteration of the syn‐gold fluid inclusions are known to have occurred, but cannot adequately account for the relatively ordered zonation of CO2:CH4 ratios. Instead, the late introduction of a CH4–rich fluid into the Junction shear zone appears more likely. Alternatively, the process of CO2 reduction to CH4 is a viable and plausible explanation that fits the available data. The CH4–bearing fluid inclusions occur almost exclusively at the margin of the syn‐gold quartz veins within the zone of high‐grade gold mineralisation because this is where all the criteria needed to reduce CO2 to CH4 were satisfied in the Junction deposit.  相似文献   

13.

The Naozhi Au–Cu deposit is located on the continental margin of Northeast China, forming part of the West Pacific porphyry–epithermal gold–copper metallogenic belt. In this paper, we systematically analyzed the compositions, homogenization temperatures, and salinity of fluid inclusions as well as their noble gas isotopic and Pb isotopic compositions from the deposit. These new data show that (1) five types of fluid inclusions were identified as pure gas inclusions (V-type), pure liquid inclusions (L-type), gas–liquid two-phase inclusions (W-type, as the main fluid inclusions (FIs)), CO2-bearing inclusions (C-type), and daughter-mineral-bearing polyphase inclusions (S-type); (2) W-type FIs in quartz crystals of early, main, and late stage are homogenized at temperatures of 324.7–406.7, 230–338.8, and 154.6–308 °C, with salinities of 2.40–7.01 wt% NaCleq, 1.73–9.47 wt% NaCleq, and 6.29 wt% NaCleq, respectively. S-type FIs in quartz crystals of early stage are homogenized at temperatures of 328.6–400 °C, with salinities of 39.96–46.00 wt% NaCleq; (3) Raman analysis results reveal that the vapor compositions of early ore-forming fluids consisted of CO2 and H2O, with H2O gradually increasing and CO2 being absent at the late mineralization stage; (4) fluid inclusions in pyrite and chalcopyrite have 3He/4He ratios of 0.03–0.104 Ra, 20Ne/22Ne ratios of 9.817–9.960, and 40Ar/36Ar ratios of 324–349. These results indicate that the percentage of radiogenic 40Ar* in fluid inclusions varies from 8.8 to 15.5 %, containing 84.5–91.2 % atmospheric 40Ar; (5) the 206Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios of sulfides are 18.1822–18.3979, 15.5215–15.5998, and 38.1313–38.3786, respectively. These data combined with stable isotope data and the chronology of diagenesis and metallogenesis enable us suppose that the ore-forming fluids originated from the melting of the lower crust, caused by the subduction of an oceanic slab, whereas the mineralized fluids were exsolved from the late crystallization stage and subsequently contaminated by crustal materials/fluids during ascent, including meteoric water, and the mineral precipitation occurred at a shallow crustal level.

  相似文献   

14.
Fluid inclusions that bear halite daughter minerals were discovered in volcanic rocks at Pingnan area in the Dongying sag. The samples of the fluid inclusions collected from the BGX-15 well drill cores are hosted in quartz of diorite-porphyrite. The daughter minerals are identified as NaCl crystals after being observed under a microscope and analyzed by in situ Raman spectroscopy at −185°C. The results of micro-thermal analysis show that the homogenization temperatures of primary fluid inclusions are between 359 and 496°C, and the salinities of fluid inclusions are from 43.26 to 54.51 wt-%. All fluid inclusions in the studied samples can be divided into five types including primary fluid inclusions and secondary fluid inclusions. The fact that five types of fluid inclusions were symbiotic in the same quartz grain implies that immiscibility happened in magma. Due to the decrease in temperature and pressure during the ascent of magma, the fluids became intensively immiscible. This process accelerates the degassing of CO2 from magma, but the remnant fluids with high salinity are preserved in fluid inclusions. Thus, the primary fluid inclusions are mainly in NaCl-H2O fluids and poor in CO2. The results of our study indicate that the degassing of magma and accumulation of CO2 gas at the Pingnan area are relative to the immiscibility of high salinity fluids. This discovery is important because it can help us have a further understanding of the mechanism of magma degassing and accumulation of the inorganic CO2 in eastern China. Translated from Acta Geologica Sinica, 2006, 80(11): 1699–1705 [译自: 地质学报]  相似文献   

15.
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ~(18)O_(H2O) values calculated from the δ~(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.  相似文献   

16.
The ultrahigh‐pressure pyrope whiteschists from the Brossasco‐Isasca Unit of the Southern Dora‐Maira Massif represent metasomatic rocks originated at the expense of post‐Variscan granitoids by the influx of fluids along shear zones. In this study, geochemical, petrological and fluid‐inclusion data, correlated with different generations of pyrope‐rich garnet (from medium, to very‐coarse‐grained in size) allow constraints to be placed on the relative timing of metasomatism and sources of the metasomatic fluid. Geochemical investigations reveal that whiteschists are strongly enriched in Mg and depleted in Na, K, Ca and LILE (Cs, Pb, Rb, Sr, Ba) with respect to the metagranite. Three generations of pyrope, with different composition and mineral inclusions, have been distinguished: (i) the prograde Prp I, which constitutes the large core of megablasts and the small core of porphyroblasts; (ii) the peak Prp II, which constitutes the inner rim of megablasts and porphyroblasts and the core of small neoblasts; and (iii) the early retrograde Prp III, which locally constitutes an outer rim. Two generations of fluid inclusions have been recognized: (i) primary fluid inclusions in prograde kyanite that represent a NaCl‐MgCl2‐rich brine (6–28 wt% NaCleq with Si and Al as other dissolved cations) trapped during growth of Prp I (type‐I fluid); (ii) primary multiphase‐solid inclusions in Prp II that are remnants of an alumino‐silicate aqueous solution, containing Mg, Fe, alkalies, Ca and subordinate P, Cl, S, CO32‐, LILE (Pb, Cs, Sr, Rb, K, LREE, Ba), U and Th (type‐II fluid), at the peak pressure stage. We propose a model that illustrates the prograde metasomatic and metamorphic evolution of the whiteschists and that could also explain the genesis of other Mg‐rich, alkali‐poor schists of the Alps. During Alpine metamorphism, the post‐Variscan metagranite of the Brossasco‐Isasca Unit experienced a prograde metamorphism at HP conditions (stage A: ~1.6 GPa and ≤ 600 °C), as indicated by the growth of an almandine‐rich garnet in some xenoliths. At stage B (1.7–2.1 GPa and 560–590 °C), the influx of external fluids, originated from antigorite breakdown in subducting oceanic serpentinites, promoted the increase in Mg and the decrease of alkalies and Ca in the orthogneiss toward a whiteschist composition. During stage C (2.1 < P < 2.8 GPa and 590 < T < 650 °C), the metasomatic fluid influx coupled with internal dehydration reactions involving Mg‐chlorite promoted the growth of Prp I in the presence of the type‐I MgCl2‐brine. At the metamorphic peak (stage D: 4.0–4.3 GPa and 730 °C), Prp II growth occurred in the presence of a type–II alumino‐silicate aqueous solution, mostly generated by internal dehydration reactions involving phlogopite and talc. The contribution of metasomatic external brines at the metamorphic climax appears negligible. This fluid, showing enrichment in LILE and depletion in HFSE, could represent a metasomatic agent for the supra‐subduction mantle wedge.  相似文献   

17.
The Xiaojiashan tungsten deposit is located about 200 km northwest of Hami City, the Eastern Tianshan orogenic belt, Xinjiang, northwestern China, and is a quartz vein‐type tungsten deposit. Combined fluid inclusion microthermometry, host rock geochemistry, and H–O isotopic compositions are used to constrain the ore genesis and tectonic setting of the Xiaojiashan tungsten deposit. The orebodies occur in granite intrusions adjacent to the metamorphic crystal tuff, which consists of the second lithological section of the first Sub‐Formation of the Dananhu Formation (D2d 12). Biotite granite is the most widely distributed intrusive bodies in the Xiaojiashan tungsten deposit. Altered diorite and metamorphic crystal tuff are the main surrounding rocks. The granite belongs to peraluminous A‐type granite with high potassic calc‐alkaline series, and all rocks show light Rare Earth Element (REE)‐enriched patterns. The trace element characters suggest that crystallization differentiation might even occur in the diagenetic process. The granite belongs to postcollisional extension granite, and the rocks formed in an extensional tectonic environment, which might result from magma activity in such an extensional tectonic environment. Tungsten‐bearing quartz veins are divided into gray quartz vein and white quartz veins. Based on petrography observation, fluid inclusions in both kinds of vein quartz are mainly aqueous inclusions. Microthermometry shows that gray quartz veins have 143–354°C of Th, and white quartz veins have 154–312°C of Th. The laser‐Raman test shows that CO2 is found in fluid inclusions of the tungsten‐bearing quartz veins. Quadrupole mass spectrometry reveals that fluid inclusions contain major vapor‐phase contents of CO2, H2O. Meanwhile, fluid inclusions contain major liquid‐phase contents of Cl?, Na+. It can be speculated that the ore‐forming fluid of the Xiaojiashan tungsten deposit is characterized by an H2O–CO2, low salinity, and H2O–CO2–NaCl system. The range of hydrogen and oxygen isotope compositions indicated that the ore‐forming fluids of the tungsten deposit were mainly magmatic water. The ore‐forming age of the Xiaojiashan deposit should to be ~227 Ma. During the ore‐forming process, the magmatic water had separated from magmatic intrusions, and the ore‐bearing complex was taken to a portion where tungsten‐bearing ores could be mineralized. The magmatic fluid was mixed by meteoric water in the late stage.  相似文献   

18.
The Antuoling Mo deposit is a major porphyry‐type deposit in the polymetallic metallogenic belt of the northern Taihang Mountains, China. The processes of mineralization in this deposit can be divided into three stages: an early quartz–pyrite stage, a middle quartz–polymetallic sulfide stage, and a late quartz–carbonate stage. Four types of primary fluid inclusions are found in the deposit: two‐phase aqueous inclusions, daughter‐mineral‐bearing multiphase inclusions, CO2–H2O inclusions, and pure CO2 inclusions. From the early to the late ore‐forming stages, the homogenization temperatures of the fluid inclusions are 300 to >500°C, 270–425°C, and 195–330°C, respectively, with salinities of up to 50.2 wt%, 5.3–47.3 wt%, and 2.2–10.4 wt% NaCl equivalent, revealing that the ore‐forming fluids changed from high temperature and high salinity to lower temperature and lower salinity. Moreover, based on the laser Raman spectra, the compositions of the fluid inclusions evolved from the NaCl–CO2–H2O to the NaCl–H2O system. The δ18OH2O and δD values of quartz in the deposit range from +3.9‰ to +7.0‰ and ?117.5‰ to ?134.2‰, respectively, reflecting the δD of local meteoric water after oxygen isotopic exchange with host rocks. The Pb isotope values of the sulfides (208Pb/204Pb, 36.320–37.428; 207Pb/204Pb, 15.210–15.495; 206Pb/204Pb, 16.366–17.822) indicate that the ore‐forming materials originated from a mixed upper mantle–lower crust source.  相似文献   

19.
A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well‐preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A PT path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2‐bearing NaCl‐rich solutions, whereas it changed into CO2‐dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low‐salinity fluids were involved. In situ UV‐laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (δ18OVSMOW = c. 6.7‰) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid–rock interactions. Unusual MORB‐like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra‐high‐pressure (UHP) eclogites in the Dabie‐Sulu area. However, the age‐corrected initial εNd(t) is ? 2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism.  相似文献   

20.
The solubility and stability of synthetic grossular were determined at 800 °C and 10 kbar in NaCl-H2O solutions over a large range of salinity. The measurements were made by evaluating the weight losses of grossular, corundum, and wollastonite crystals equilibrated with fluid for up to one week in Pt capsules and a piston-cylinder apparatus. Grossular dissolves congruently over the entire salinity range and displays a large solubility increase of 0.0053 to 0.132 molal Ca3Al2Si3O12 with increasing NaCl mole fraction (XNaCl) from 0 to 0.4. There is thus a solubility enhancement 25 times the pure H2O value over the investigated range, indicating strong solute interaction with NaCl. The Ca3Al2Si3O12 mole fraction versus NaCl mole fraction curve has a broad plateau between XNaCl = 0.2 and 0.4, indicating that the solute products are hydrous; the enhancement effect of NaCl interaction is eventually overtaken by the destabilizing effect of lowering H2O activity. In this respect, the solubility behavior of grossular in NaCl solutions is similar to that of corundum and wollastonite. There is a substantial field of stability of grossular at 800 °C and 10 kbar in the system CaSiO3-Al2O3-H2O-NaCl. At high Al2O3/CaSiO3 bulk compositions the grossular + fluid field is limited by the appearance of corundum. Zoisite appears metastably with corundum in initially pure H2O, but disappears once grossular is nucleated. At XNaCl = 0.3, however, zoisite is stable with corundum and fluid; this is the only departure from the quaternary system encountered in this study. Corundum solubility is very high in solutions containing both NaCl and CaSiO3: Al2O3 molality increases from 0.0013 in initially pure H2O to near 0.15 at XNaCl = 0.4 in CaSiO3-saturated solutions, a >100-fold enhancement. In contrast, addition of Al2O3 to wollastonite-saturated NaCl solutions increases CaSiO3 molality by only 12%. This suggests that at high pH (quench pH is 11-12), the stability of solute Ca chloride and Na-Al ± Si complexes account for high Al2O3 solubility, and that Ca-Al ± Si complexes are minor. The high solubility and basic dissolution reaction of grossular suggest that Al may be a very mobile component in calcareous rocks in the deep crust and upper mantle when migrating saline solutions are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号